Sections 5.1 and 5.2; review for Exam I

Note made by: Timothy Hanson Instructor: Peijie Hou

Department of Statistics, University of South Carolina

Stat 205: Elementary Statistics for the Biological and Life Sciences

Sampling variability

- A random sample is exactly that: random.
- You can collect a sample of *n* observations and compute the mean \overline{Y} . Before you do it, \overline{Y} is random.
- If you you randomly sample a population two different times, taking, e.g. n = 5 each time, the two sample means \bar{Y}_1 and \bar{Y}_2 will be different.
- Example: sampling n = 5 ages from Stat 205.
- Variability among random samples is called **sampling variability**.
- Variability is assessed through a hypothetical "mind experiment" called a **meta-study**.

Study and meta-study

Example 5.1.1 Rat blood pressure

- Study is measuring change in blood pressure in n = 10 rats after giving them a drug, and computing a mean change \bar{Y} from Y_1, \ldots, Y_{10} .
- Meta study (which takes place in our mind) is simply repeating this study over and over again on different samples of n = 10 rats and computing a mean each time $\bar{Y}_1, \bar{Y}_2, \bar{Y}_3, \ldots$
- Because the sample is random each time, the means will be different.
- A (hypothetical) histogram of the $\bar{Y}_1, \bar{Y}_2, \bar{Y}_3, \ldots$ would give the **sampling distribution** of \bar{Y} , and smoothed version would give the density of \bar{Y} .
- Restated: the sample mean *from one randomly drawn sample of size n* = 10 has a density.

The density of \bar{Y}

- \overline{Y} estimates $\mu_Y = E(Y_i)$, the mean of all the observations in the population.
- We'll first look at a picture of where the sampling distribution of \bar{Y} comes from.
- Then we'll discuss a Theorem that tells us about the mean $\mu_{\bar{Y}}$, standard deviation $\sigma_{\bar{Y}}$, and shape of the density for \bar{Y} .

Sampling distribution of \bar{Y}

"Meta-experiment..."

Sampling distribution of \bar{Y}

- Theorem 5.2.1: The Sampling Distribution of \overline{Y}

1. Mean The mean of the sampling distribution of \overline{Y} is equal to the population mean. In symbols,

$$\mu_{\overline{Y}} = \mu$$

2. Standard deviation The standard deviation of the sampling distribution of \overline{Y} is equal to the population standard deviation divided by the square root of the sample size. In symbols,

$$\sigma_{\overline{Y}} = \frac{\sigma}{\sqrt{n}}$$

3. Shape

- (a) If the population distribution of Y is normal, then the sampling distribution of \overline{Y} is normal, regardless of the sample size *n*.
- (b) Central Limit Theorem If n is large, then the sampling distribution of \overline{Y} is approximately normal, even if the population distribution of Y is not normal.

Sampling distribution of \overline{Y} from normal data

If data Y_1, Y_2, \ldots, Y_n are normal, then \overline{Y} is *also normal*, centered at the same place as the data, but with smaller spread.

(a) population distribution of normal data Y_1, \ldots, Y_n , and (b) sampling distribution of \overline{Y} .

Example 5.2.2 Seed weights

- The population of weights of the princess bean is *normal* with $\mu = 500 \text{ mg}$ and $\sigma = 120 \text{ mg}$. We intend to take a samplle of n = 4 seeds and compute the (random!) sample mean \overline{Y} .
- E(Y
 ^γ) = μ_Ȳ = μ = 500 mg. On average, the sample mean gets it right.
- $\sigma_{\bar{Y}} = \frac{\sigma}{\sqrt{n}} = \frac{120}{\sqrt{4}} = 60$ mg. 68% of the time, \bar{Y} will be within 60 mg of $\mu = 500$ mg.

Sampling distribution for Y for Example 5.2.2

 $\mu_{\bar{Y}} = 500 \text{ mg and } \sigma_{\bar{Y}} = 60 \text{ mg.}$ 680 \overline{Y} 380 500 560 620 320 440 Sample mean weight (mg)

 $\Pr{\{\bar{Y} > 550\}}$ for n = 4

Recall for n = 4 that $\mu_{\bar{Y}} = 500$ mg and $\sigma_{\bar{Y}} = 60$ mg.

> 1-pnorm(550,500,60)
[1] 0.2023284

What happens when *n* is increased?

- As *n* gets bigger, $\sigma_{\bar{Y}} = \frac{\sigma}{\sqrt{n}}$ gets smaller. The density of \bar{Y} gets more focused around μ .
- If Y_1, \ldots, Y_n come from a normal density, then so does \overline{Y} , regardless of the sample size.
- Even if Y₁,..., Y_n do not come from a normal density, the Central Limit Theorem guarantees that the density of \$\vec{Y}\$ will look more and more like a normal distribution as n gets bigger.
- This is in Section 5.3; have a look if you're interested.

Sampling dist'n for \overline{Y} from different sample sizes n

Exam I logistics...

- Tuesday, February 17, 8:30–9:45.
- Closed book, closed notes. Bring a calculator and a pencil.
- Problems will be patterned after homework problems; multiple choice.
- Be on time.
- Note that textbook problem solutions manual are posted on the course website.
- Each of exams I, II, and III are worth 15% of your final grade.
- No phones, no hats. The exam is straightforward; I will not try to "trick" you.

Chapter 2: Summarizing data Chapter 3: Probability, random variables, binomial distribution Chapter 4: normal distribution

2.1 Types of variables

- Categorical
 - Ordinal (e.g. "low, medium, high", "infant, toddler, child, teen, adult")
 - Nominal (e.g. eye color, car type)
- Numeric
 - Continuous (e.g. height, cholesterol, tree diameter)
 - Discrete (e.g. number of cracked eggs in a carton, die roll)

HW 2.1.1, 2.1.2, 2.1.4

Chapter 2: Summarizing data Chapter 3: Probability, random variables, binomial distribution Chapter 4: normal distribution

2.2: Histograms, distributions, skew and modality

- Have data y_1, y_2, \ldots, y_n ; want to describe it with pictures and tables.
- If data categorical, can make a bar chart. Can record frequency of data value occurrences in a table.
- Continuous data can be displayed in a histogram defined by bins. Again, need a table of frequency values for occurrences within each bin.
- Histogram/density shape: unimodal, bimodal, multimodal.
- Histogram/density skew: left skew, right skew, symmetry.
- HW 2.2.3 (use R).

Chapter 2: Summarizing data Chapter 3: Probability, random variables, binomial distribution Chapter 4: normal distribution

2.3, 2.4, 2.6: Descriptive statistics: mean, median, quartiles, 5 number summary, IQR, boxplots, outliers.

- Mean $\bar{y} = \frac{1}{n}(y_1 + y_2 + \dots + y_n)$ is "balance point" of data.
- Median Q_2 (or \tilde{y}) cuts ordered data into halves of equal size.
- First quartile Q_1 is median of lower half; Third quartile Q_3 is median of upper half.
- min, Q_1, \tilde{y}, Q_3 , max is 5 number summary, used to make boxplot.
- $IQR = Q_3 Q_1$, length of interval containing middle 50% of data. Sample variance is $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i \bar{y})^2$, standard deviation is s.
- $UF = Q_3 + 1.5 \times IQR$, $LF = Q_1 1.5 \times IQR$. Any of
 - y_1, \ldots, y_n larger than UF or smaller than LF are "outliers."
- HW 2.3.4 (use R), 2.4.2 (use R), 2.4.7, 2.6.5 (by hand), 2.6.11, 2.6.12.

3.3: Probability

- Let A and B two events. A and B is that both occur. A or B is either occurs. A^C is that A does not occur. Always:
 0 ≤ Pr{A} ≤ 1.
- A and B are *disjoint* if they have no outcomes in common.
- Formulas:
 - 1 If E_1, E_2, \ldots, E_k disjoint, then $\Pr{E_1 \text{ or } E_2 \text{ or } \cdots \text{ or } E_k} = \Pr{E_1} + \Pr{E_2} + \cdots + \Pr{E_k}.$
 - 2 $Pr{A \text{ or } B} = Pr{A} + Pr{B} Pr{A \text{ and } B}$.
 - 3 (conditional probability) $Pr{A|B} = Pr{A \text{ and } B}/Pr{B}$.
 - 4 (compliment rules) $Pr{A^C} = 1 Pr{A}$ and $Pr{A^C|B} = 1 Pr{A|B}$.
 - 5 (independence) A and B are independent if $Pr{A} = Pr{A|B}$.
- HW 3.3.1, 3.3.2, 3.3.3, 3.3.4.

Chapter 2: Summarizing data Chapter 3: Probability, random variables, binomial distribution Chapter 4: normal distribution

3.2 Probability trees

 $Pr\{Disease, Test positive\} = 0.08(0.95) = 0.076$ $Pr\{No \ disease, Test positive\} = 0.92(0.10) = 0.092$

 $Pr\{Disease, Test negative\} = 0.08(0.05) = 0.004$ $Pr\{No \ disease, Test negative\} = 0.92(0.90) = 0.828$

What is the probability of testing positive? What is Pr{disease|test positive}? HW 3.2.3, 3.2.4, 3.2.5, 3.2.7

Chapter 2: Summarizing data Chapter 3: Probability, random variables, binomial distribution Chapter 4: normal distribution

3.4: Continuous random variables, densities

- A continuous random variable Y has a *density* f(y). Examples: cholesterol, height, GPA, blood pressure.
- Pr{a < Y < b} is the area under the density curve f(y) between a and b. Total area equals one.
- Note that Pr{Y < a} = Pr{Y ≤ a}. Only with continuous random variables.
- HW 3.4.2, 3.4.3.

Chapter 2: Summarizing data Chapter 3: Probability, random variables, binomial distribution Chapter 4: normal distribution

3.5: Discrete random variables

- A *discrete* random variable can only take on a countable number of values. Examples: number of broken eggs in a carton, number of earthquakes in a day.
- Finite discrete random variables have probability mass functions, e.g.

No. vertebrae <i>y</i>	$Pr\{Y=y\}$
20	0.03
21	0.51
22	0.40
23	0.06

- Get probabilities Pr{a ≤ Y ≤ b} by summing probabilities in table for a ≤ y ≤ b.
- For discrete $Pr{Y < a}$ will be different than $Pr{Y \le a}$.

Chapter 2: Summarizing data Chapter 3: Probability, random variables, binomial distribution Chapter 4: normal distribution

3.5: Discrete random variables

Mean is now weighted average

$$\mu_{\mathbf{Y}} = E(\mathbf{Y}) = \sum y_i \Pr\{\mathbf{Y} = y_i\}.$$

• Variance is weighted average squared deviation about mean

$$\sigma_Y^2 = \sum (y_i - \mu_Y)^2 \Pr\{Y = y_i\}.$$

- Standard deviation is σ_Y .
- HW 3.5.4, 3.5.5.

Chapter 2: Summarizing data Chapter 3: Probability, random variables, binomial distribution Chapter 4: normal distribution

3.6: Binomial distribution

 Notation Y ~ binomial(n, p). Y counts number of "success" trials out of n. Y can be 0, 1, 2, ..., n.

•
$$\Pr{Y = j} = {}_{n}C_{j} p^{j}(1-p)^{n-j}$$
 for $j = 0, 1, ..., n$.

 I will give you R output for Pr{Y = 0}, Pr{Y = 1}, ..., Pr{Y = n}

•
$$\mu_Y = E(Y) = n \ p, \ \sigma_Y^2 = n \ p \ (1-p).$$

• HW 3.6.1, 3.6.2, 3.6.6, 3.6.10 (use R for all of these).

Chapter 2: Summarizing data Chapter 3: Probability, random variables, binomial distribution Chapter 4: normal distribution

4.2, 4.3: Normal distribution

- Used to model *many, many* different kinds of continuous data: cholesterol, eggshell thickness, creatinine clearance, $T_{1\rho}$ measurements from MRI, health care expenditures, etc.
- Notation: $Y \sim N(\mu, \sigma^2)$.
- μ is mean and σ^2 is variance of Y (requires calculus to show this). σ is standard deviation.
- Y is *continuous* random variable that can be any number $-\infty < Y < \infty$.
- Get probabilities from R using pnorm (y,μ,σ) .

Chapter 2: Summarizing data Chapter 3: Probability, random variables, binomial distribution Chapter 4: normal distribution

Normal distribution

 μ and σ are given to you in Chapter 4.

$$Pr\{a < Y < b\} = pnorm(b,\mu,\sigma) - pnorm(a,\mu,\sigma)$$
$$Pr\{Y < b\} = pnorm(b,\mu,\sigma)$$
$$Pr\{Y > a\} = 1 - pnorm(a,\mu,\sigma)$$

Chapter 2: Summarizing data Chapter 3: Probability, random variables, binomial distribution Chapter 4: normal distribution

Normal distribution

- Let $Y \sim N(\mu, \sigma^2)$. Say we want y^* such that $\Pr{Y < y^*} = p$ where p is given.
- qnorm (p,μ,σ) gives y^* .
- y^* is called p(100)th percentile of Y.
- e.g. If $Pr{Y \le 10} = 0.7$ then the 70*th* percentile of Y is 10.
- HW 4.3.3, 4.4.4, 4.3.5, 4.3.6, 4.3.8 (use R for all of these).