Section 4.4 Assessing normality Section 6.2 Standard error of \bar{Y} Section 6.3 Confidence interval for μ

Chapter 4 Supplement; Sections 6.2 and 6.3

Note made by: Timothy Hanson Instructor: Peijie Hou

Department of Statistics, University of South Carolina

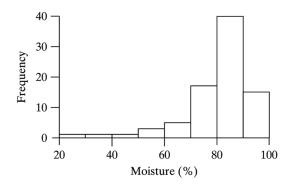
Stat 205: Elementary Statistics for the Biological and Life Sciences

4.4 Checking data are normal

- In many procedures coming up (t tests, confidence intervals, linear regression, & ANOVA) the data are assumed to be normal.
- We'll need to check that assumption.
- Given some data Y_1, \ldots, Y_n we can make a histogram; it should be unimodal and roughly symmetric.
- Your book suggests seeing if data roughly follow the 68/95/99.7 rule. I've never heard of anyone else actually doing this.
- Another option is to make a (modified) boxplot. We expect to see one outlier out of every 150 observations from truly normal data. If we see three or four outliers from a sample of size n = 50, the data are not normal.

Example 4.4.2 Moisture content in freshwater fruit

Moisture content was measured in n = 83 freshwater fruit. Does the data appear to have come from a normal distribution? Why or why not?

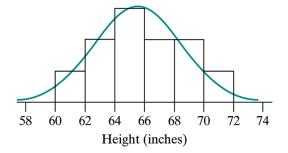


Normal probability plots

- Another commonly used plot is a normal probability plot or "quantile-quantile" plot.
- $Y_{(1)}, Y_{(2)}, \dots, Y_{(n)}$ is data sorted from smallest to largest.
- The normal probability plot plots the sorted Y_i 's against what we'd expect to see from "perfectly" normal data: the percentiles z_1, \ldots, z_n where $\Pr\{Z \le z_i\} = \frac{i}{n+1}$ for $i = 1, \ldots, n$.
- A computer simply makes a scatterplot of (z₁, Y₍₁₎), (z₂, Y₍₂₎), ..., (z_n, Y_(n)).
- Your book goes into more detail if you're interested.
- These plots will never be perfectly straight due to sampling variability; we're just looking for them to be not totally curved.

Section 4.4 Assessing normality Section 6.2 Standard error of \overline{Y} Section 6.3 Confidence interval for μ

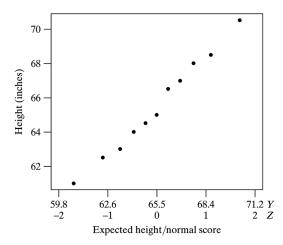
Histogram of heights of n = 11 women



Histogram with normal density using $\sigma = s = 2.9$ inches and $\mu = \bar{y} = 65.5$ inches. The plot looks okay, but the sample size is pretty small. Let's look at a normal probability plot...

Section 4.4 Assessing normality Section 6.2 Standard error of \overline{Y} Section 6.3 Confidence interval for μ

Quantile-Quantile plot of 11 women

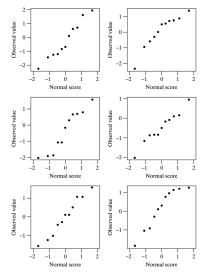


The plot is quite straight. The data matches *what we'd expect* from normal data.

Section 4.4 Assessing normality Section 6.2 Standard error of \tilde{Y} Section 6.3 Confidence interval for μ

Normal probability plots for normal data (n = 11)

They're never perfect, but all reasonably straight.



Try it yourself...

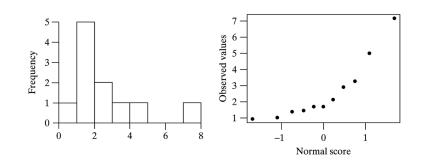
In R type qqnorm(rnorm(11)) Enter \uparrow over and over again. Try sample sizes of 50 and 100 too.

In general, if your data set is called, e.g. heights, just type qqnorm(heights) in R to get the normal probability plot.

If data *are not normal*, the plot will be non-linear. Let's see some examples.

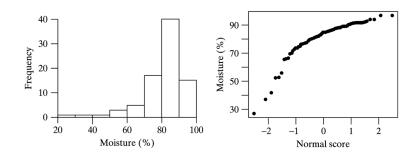
Section 4.4 Assessing normality Section 6.2 Standard error of \tilde{Y} Section 6.3 Confidence interval for μ

Data that are skewed right



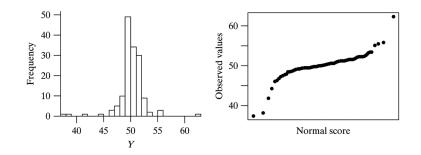
Section 4.4 Assessing normality Section 6.2 Standard error of \tilde{Y} Section 6.3 Confidence interval for μ

Data that are skewed left



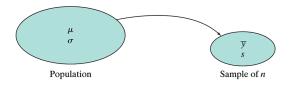
Section 4.4 Assessing normality Section 6.2 Standard error of \check{Y} Section 6.3 Confidence interval for μ

Data with tails fatter than normal



Section 4.4 Assessing normality Section 6.2 Standard error of $\overline{\mathbf{Y}}$ Section 6.3 Confidence interval for μ

Chapter 6 Confidence interval



Take a random sample of data Y_1, \ldots, Y_n from the population; \bar{y} estimates μ and s estimates σ .

Example 6.1.1 Butterfly wings

n = 14 male Monarch butterflies were measured for wing area (Oceano Dunes State Park, California).

Table 6.1.1 Wing areas of male Monarch butterflies							
Wing area (cm ²)							
33.9	33.0	30.6	36.6	36.5			
34.0	36.1	32.0	28.0	32.0			
32.2	32.2	32.3	30.0				

 $\bar{y} = 32.81 \text{ cm}^2$ and $s = 2.48 \text{ cm}^2$ estimate μ and σ , the mean and standard deviation of all Monarch butterfly wing areas from Oceano Dunes.

How good are these estimates? Can we provide a *plausible range* for μ ?

6.2 Standard error of \overline{Y}

- Recall on p. 151 that $\sigma_{\bar{Y}} = \frac{\sigma}{\sqrt{n}}$.
- We will usually not know σ (if we don't know μ , how can we know σ ?)
- Simply plug in s for σ .
- The standard error of the sample mean is

$$SE_{\bar{Y}} = rac{s}{\sqrt{n}}.$$

- For the butterfly wings, $SE_{\bar{Y}} = \frac{s}{\sqrt{n}} = \frac{2.48}{\sqrt{14}} = 0.66 \text{ cm}^2$.
- The standard error $SE_{\bar{Y}}$ gives the variability of \bar{Y} ; the standard deviation *s* gives the variability *in the data itself*.

Section 4.4 Assessing normality Section 6.2 Standard error of $\overline{\mathbf{Y}}$ Section 6.3 Confidence interval for μ

Example 6.2.2

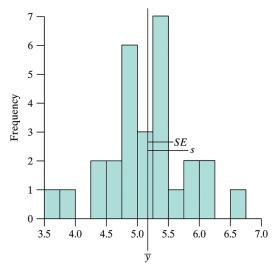
Geneticist weighs n = 28 female Rambouillet lambs at birth, all born in April, all single births.

Table 6.2.1 Birthweights of twenty-eight Rambouillet lambs								
Birthweight (kg)								
4.3	5.2	6.2	6.7	5.3	4.9	4.7		
5.5	5.3	4.0	4.9	5.2	4.9	5.3		
5.4	5.5	3.6	5.8	5.6	5.0	5.2		
5.8	6.1	4.9	4.5	4.8	5.4	4.7		

- $\bar{y} = 5.17$ kg estimates μ , the population mean.
- s = 0.65 kg estimates the spread in the sample.
- $SE_{\bar{Y}} = \frac{s}{\sqrt{n}} = \frac{0.65}{\sqrt{28}} = 0.12$ kg estimates how variable \bar{y} is, i.e. how "close" we can expect \bar{y} to be to μ .

Section 4.4 Assessing normality Section 6.2 Standard error of $\bar{\mathbf{Y}}$ Section 6.3 Confidence interval for μ

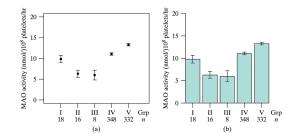
Birthweight of n = 28 lambs



Birthweight (kg)

Example 6.2.4 MAO data using SE's across groups

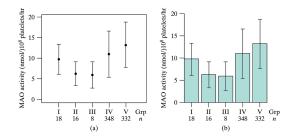
MAO levels vs. schizophrenia diagnosis (I, II, III) and healthy male and female controls (IV and V).



 $\bar{y} \pm SE$ using (a) an interval plot, and (b) a bargraph with standard error bars. Gets at how variable the sample means are.

Example 6.2.4 MAO data using s's across groups

MAO levels vs. schizophrenia diagnosis (I, II, III) and healthy male and female controls (IV and V).



 $\bar{y} \pm s$ using (a) an interval plot, and (b) a bargraph with standard deviation bars. Gets at how variable the data are.

Section 4.4 Assessing normality Section 6.2 Standard error of $\bar{\mathbf{Y}}$ Section 6.3 Confidence interval for μ

Example 6.2.4 MAO data table with all information

Table 6.2.2 MAO activity in five groups of people							
MAO activity (nmol/10 ⁸ platelets/hr)							
Group	п	Mean	SE	SD			
Ι	18	9.81	0.85	3.62			
II	16	6.28	0.72	2.88			
ш	8	5.97	1.13	3.19			
IV	348	11.04	0.30	5.59			
v	332	13.29	0.30	5.50			

Confidence Interval

- y
 y provides an estimate of μ, but it ignores important
 information; namely, how variable the estimator is.
- To avoid this problem (i.e., to account for the uncertainty in the sampling procedure), we therefore pursue the topic of interval estimation (also known as confidence intervals).
- The main difference between a point estimate and an interval estimate is that
 - a **point estimate** is a one-shot guess at the value of the parameter; this ignores the variability in the estimate.
 - an **interval estimate** (i.e., **confidence interval**) is an interval of values. It is formed by taking the point estimate and then adjusting it downwards and upwards to account for the point estimate's variability.

Confidence interval, known σ , formal derivation

Say we know σ (for now) and the data are normal. Then

$$ar{\mathbf{Y}} \sim \mathbf{N}\left(\mu, \sigma_{ar{\mathbf{Y}}}
ight) = \mathbf{N}\left(\mu, rac{\sigma}{\sqrt{n}}
ight).$$

We can standardize \bar{Y} to get

$$Z=\frac{\bar{Y}-\mu}{\sigma/\sqrt{n}}.$$

We can show $Pr\{-1.96 \le Z \le 1.96\} = 0.95$. Then

Why "confidence"? What if σ is unknown? Non-normal?

- $\bar{Y} \pm 1.96 \frac{\sigma}{\sqrt{n}}$ is a 95% probability interval for μ .
- Once we go out and see $\bar{Y} = \bar{y}$, e.g. $\bar{y} = 32.8 \text{ cm}^2$, there is no probability. Either the interval includes μ or not (more in next lecture)
- We don't actually know $\sigma_{\bar{Y}} = \frac{\sigma}{\sqrt{n}}$, but we do know $SE_{\bar{Y}} = \frac{s}{\sqrt{n}}$.
- William Sealy Gosset figured out what $\frac{\bar{Y} \mu}{SE_{\bar{Y}}}$ is distributed as.