
Section 4.4 Assessing normality
Section 6.2 Standard error of Ȳ
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4.4 Checking data are normal

In many procedures coming up (t tests, confidence intervals,
linear regression, & ANOVA) the data are assumed to be
normal.

We’ll need to check that assumption.

Given some data Y1, . . . ,Yn we can make a histogram; it
should be unimodal and roughly symmetric.

Your book suggests seeing if data roughly follow the
68/95/99.7 rule. I’ve never heard of anyone else actually
doing this.

Another option is to make a (modified) boxplot. We expect to
see one outlier out of every 150 observations from truly
normal data. If we see three or four outliers from a sample of
size n = 50, the data are not normal.
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Example 4.4.2 Moisture content in freshwater fruit

Moisture content was measured in n = 83 freshwater fruit. Does
the data appear to have come from a normal distribution? Why or
why not?
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Normal probability plots

Another commonly used plot is a normal probability plot or
“quantile-quantile” plot.

Y(1),Y(2), . . . ,Y(n) is data sorted from smallest to largest.

The normal probability plot plots the sorted Yi ’s against what
we’d expect to see from “perfectly” normal data: the
percentiles z1, . . . , zn where Pr{Z ≤ zi} = i

n+1 for
i = 1, . . . , n.

A computer simply makes a scatterplot of
(z1,Y(1)), (z2,Y(2)), . . . , (zn,Y(n)).

Your book goes into more detail if you’re interested.

These plots will never be perfectly straight due to sampling
variability; we’re just looking for them to be not totally curved.
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Histogram of heights of n = 11 women

Histogram with normal density using σ = s = 2.9 inches and
µ = ȳ = 65.5 inches. The plot looks okay, but the sample size is
pretty small. Let’s look at a normal probability plot...
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Quantile-Quantile plot of 11 women

The plot is quite straight. The data matches what we’d expect
from normal data.
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Normal probability plots for normal data (n = 11)

They’re never perfect, but all reasonably straight.
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Try it yourself...

In R type qqnorm(rnorm(11)) Enter ↑ over and over again.
Try sample sizes of 50 and 100 too.

In general, if your data set is called, e.g. heights, just type
qqnorm(heights) in R to get the normal probability plot.

If data are not normal, the plot will be non-linear. Let’s see some
examples.
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Data that are skewed right
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Section 6.3 Confidence interval for µ

Data that are skewed left
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Data with tails fatter than normal
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Chapter 6 Confidence interval

Take a random sample of data Y1, . . . ,Yn from the population; ȳ
estimates µ and s estimates σ.
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Example 6.1.1 Butterfly wings

n = 14 male Monarch butterflies were measured for wing area
(Oceano Dunes State Park, California).

ȳ = 32.81 cm2 and s = 2.48 cm2 estimate µ and σ, the mean and
standard deviation of all Monarch butterfly wing areas from
Oceano Dunes.

How good are these estimates? Can we provide a plausible range
for µ?
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6.2 Standard error of Ȳ

Recall on p. 151 that σȲ = σ√
n

.

We will usually not know σ (if we don’t know µ, how can we
know σ?)

Simply plug in s for σ.

The standard error of the sample mean is

SEȲ =
s√
n
.

For the butterfly wings, SEȲ = s√
n

= 2.48√
14

= 0.66 cm2.

The standard error SEȲ gives the variability of Ȳ ; the
standard deviation s gives the variability in the data itself.
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Example 6.2.2

Geneticist weighs n = 28 female Rambouillet lambs at birth, all
born in April, all single births.

ȳ = 5.17 kg estimates µ, the population mean.

s = 0.65 kg estimates the spread in the sample.

SEȲ = s√
n

= 0.65√
28

= 0.12 kg estimates how variable ȳ is, i.e.

how “close” we can expect ȳ to be to µ.
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Birthweight of n = 28 lambs

16 / 22



Section 4.4 Assessing normality
Section 6.2 Standard error of Ȳ
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Example 6.2.4 MAO data using SE ’s across groups

MAO levels vs. schizophrenia diagnosis (I, II, III) and healthy male
and female controls (IV and V).

ȳ ± SE using (a) an interval plot, and (b) a bargraph with
standard error bars. Gets at how variable the sample means are.
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Example 6.2.4 MAO data using s’s across groups

MAO levels vs. schizophrenia diagnosis (I, II, III) and healthy male
and female controls (IV and V).

ȳ ± s using (a) an interval plot, and (b) a bargraph with standard
deviation bars. Gets at how variable the data are.
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Example 6.2.4 MAO data table with all information
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Confidence Interval

ȳ provides an estimate of µ, but it ignores important
information; namely, how variable the estimator is.

To avoid this problem (i.e., to account for the uncertainty
in the sampling procedure), we therefore pursue the topic
of interval estimation (also known as confidence intervals).

The main difference between a point estimate and an
interval estimate is that

a point estimate is a one-shot guess at the value of the
parameter; this ignores the variability in the estimate.

an interval estimate (i.e., confidence interval) is an
interval of values. It is formed by taking the point
estimate and then adjusting it downwards and upwards to
account for the point estimate’s variability.
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Confidence interval, known σ, formal derivation

Say we know σ (for now) and the data are normal. Then

Ȳ ∼ N (µ, σȲ ) = N

(
µ,

σ√
n

)
.

We can standardize Ȳ to get

Z =
Ȳ − µ
σ/
√
n
.

We can show Pr{−1.96 ≤ Z ≤ 1.96} = 0.95. Then
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Why “confidence”? What if σ is unknown? Non-normal?

Ȳ ± 1.96 σ√
n

is a 95% probability interval for µ.

Once we go out and see Ȳ = ȳ , e.g. ȳ = 32.8 cm2, there is
no probability. Either the interval includes µ or not (more in
next lecture)

We don’t actually know σȲ = σ√
n

, but we do know

SEȲ = s√
n

.

William Sealy Gosset figured out what Ȳ−µ
SEȲ

is distributed as.
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