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Comparing more than two means

In Chapter 7 we had two groups and tested H0 : µ1 = µ2.

In Chapter 11 we will have I groups and test
H0 : µ1 = µ2 = · · · = µI .

We are still interested in whether the population means are
the same across groups, there’s just more than two.

The alternative hypothesis is HA : one or more of
µ1, µ2, . . . , µI are different.

Let’s look at an example where I = 5.
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Example 11.1.1: Organic farming of corn

When growing sweet corn, can organic methods be used
successfully to control harmful insects and limit their effect on the
corn? In a study researchers compared the weights of ears of corn
under five organic conditions: (a) using a beneficial soil nematode,
(b) parasitic wasp, (c) both the nematode and the wasp, (d) a
bacterium, and (e) a control with no treatment. In summary, the
treatments are

Treatment 1: Nematodes

Treatment 2: Wasps

Treatment 3: Nematodes and wasps

Treatment 4: Bacteria

Treatment 5: Control
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Corn data
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Side-by-side dotplots of corn data
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Comparing more than two means at the same time

It’s natural to ask: why not now just compare all possible
pairs µ1 − µ2, µ1 − µ3, µ2 − µ3, etc., with a bunch of pairwise
t-tests?

This results in multiple comparisons: the same data set is used
to make multiple inferences on I > 2 associated parameters.

The overall Type I error is then larger (perhaps much larger)
than α.

ANOVA keeps α fixed, even with lots of comparisons all at
once.
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Comparing four population means requires six comparisons

Comparing 3 means requires 3 comparisons, 4 means requires 6
comparisons, 5 means requires, 10 comparisons, etc. In general,
there’s I (I − 1)/2 pairwise comparisons to make.
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Type I error

This is an example of what the true Type I error might be if we
didn’t use ANOVA, but rather used I (I − 1)/2 t-tests.
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Building the test

We will test H0 : µ1 = µ2 = · · · = µI via analysis of variance
(ANOVA).

ANOVA compares how variable the sample means
ȳ1, ȳ2, . . . , ȳI are to how variable observations are around each
mean.

Assumptions: Observations in each group are indepedently
normally distributed with the same variance σ2.

The data in different groups are also independent.
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Sums of Squares

SS(between)=
∑I

i=1 ni (ȳi − ¯̄y)2 measures the variability
explained by letting each group have its own mean.

SS(within)=
∑I

i=1(ni − 1)s2i measures the variability that is
left over, also called “pure error.”

SS(total)=
∑I

i=1

∑ni
j=1(yij − ȳ)2 measures the total variability

in the data ignoring groups.

SS(total)=SS(between)+SS(within).

The variability in the data is equal to the variability explained
by the model plus the slop that’s left over.
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ANOVA table

A mean square is the average of the squared deviations from a
central value. It is a sum of squares divided by the number of
informative values in the sum of squares, called the “degrees
of freedom”, or df.

The df for between is dfb = I − 1; the df for within is
dfw = n − I where n = n1 + n2 + · · · + nI .

MS(between)=SS(between)/(I − 1),
MS(within)=SS(within)/(n − I ).

We collect the sums of squares, mean squares, df, in a table
called an ANOVA table.
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ANOVA formulae
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Lamb weights

13 / 23



ANOVA table

Estimate of common σ2 = MS(within).
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F test

Want to reject H0 : µ1 = µ2 = · · · = µI .

Test statistic is F = MS(Between)/MS(Within), which has
an F (dfb, dfw ) distribution if H0 is true.

R uses this F-distribution to get the P-value. Read your text if
you are interested in more details.

In R, need to define two lists. One list has the response
measurement of interest, the other has which group each
response is from. The grouping list needs to be a ‘factor’ –
the sample code shows how to do this.

In R, SS(within) is called ‘Residuals Sum Sq’ and
SS(between) takes the same name as the group list name.

Obtain P-value from R. Reject H0 if P-value is less than α as
usual.
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R code for lamb diet data

weight=c( 8,16, 9, 9,16,21,11,18,15,10,17, 6)

diet =c( 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3)

diet=factor(diet)

boxplot(weight~diet)

fit=aov(weight~diet)

summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)

diet 2 36 18.000 0.7714 0.4907

Residuals 9 210 23.333

We accept H0 : µ1 = µ2 = µ3 at the α = 0.05 level. There is no
significant difference in weight across diet.
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Lamb data
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R code for corn growth data

weight=c(16.5,11.0, 8.5,16.0,13.0,15.0,15.0,13.0,14.5,10.5,

11.5, 9.0,12.0,15.0,11.0,12.0, 9.0,10.0, 9.0,10.0,

12.5,11.5,12.5,10.5,14.0, 9.0,11.0, 8.5,14.0,12.0,

16.0, 9.0, 9.5,12.5,11.0, 6.5,10.0, 7.0, 9.0, 9.5,

8.0, 9.0,10.5, 9.0,18.5,14.5, 8.0,10.5, 9.0,17.0,

7.0, 8.0,13.0, 6.5,10.0,10.5, 5.0, 9.0, 8.5,11.0)

treat= c(1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,

1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,

1,2,3,4,5,1,2,3,4,5)

treat=factor(treat)

boxplot(weight~treat,names=c("Nematodes","Wasps","Nems. & wasps","Bacteria","Control"))

fit=aov(weight~treat)

summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)

treat 4 52.31 13.0771 1.6461 0.1758

Residuals 55 436.94 7.9443

We accept H0 : µ1 = µ2 = µ3 = µ4 = µ5 at the α = 0.05 level.
There is no significant difference in weight across treatment.
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Organic sweet corn boxplots
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Example 1.1.4: MOA and schizophrenia

Monoamine oxidase (MOA) enzyme thought to regulate
behavior.

Blood from n = 42 schizophrenia patients collected, stratified
by diagnosis (I, II, III).

Is there an association between MOA and diagnosis?
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Example 1.1.4: MOA and schizophrenia

What happens to MOA as severity of diagnosis increases? Is
the relationship perfect?

Let’s test H0 : µ1 = µ2 = µ3 in R.
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MAO activity (Fig. 1.1.2)

moa=c(6.8,4.1,7.3,14.2,18.8,9.9,7.4,11.9,5.2,7.8,7.8,8.7,12.7,14.5,10.7,8.4,9.7,

10.6,7.8,4.4,11.4,3.1,4.3,10.1,1.5,7.4,5.2,10.0,3.7,5.5,8.5,7.7,6.8,3.1,

6.4,10.8,1.1,2.9,4.5,5.8,9.4,6.8)

group=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3)

group=factor(group)

boxplot(moa~group,names=c("Schizo I","Schizo II","Schizo III"))

fit<-aov(moa~group)

summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)

group 2 136.1 68.06 6.346 0.00411 **

Residuals 39 418.3 10.72

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Df Sum Sq Mean Sq F value Pr(>F)

group 2 136.12 68.059 6.3461 0.004111 **

Residuals 39 418.25 10.724

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Reject H0 : µ1 = µ2 = µ3 at α = 0.05 because 0.004 < 0.05.
There is a significant difference in mean MOA activity across the
three diagnoses.
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MAO activity in schizophrenia

Side-by-side boxplots from R code.
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