Chapter 11: Analysis of variance

Note made by: Timothy Hanson Instructor: Peijie Hou

Department of Statistics, University of South Carolina

Stat 205: Elementary Statistics for the Biological and Life Sciences

- In Chapter 7 we had two groups and tested $H_0: \mu_1 = \mu_2$.
- In Chapter 11 we will have I groups and test $H_0: \mu_1 = \mu_2 = \cdots = \mu_I.$
- We are still interested in whether the population means are the same across groups, there's just more than two.
- The alternative hypothesis is H_A : one or more of μ₁, μ₂,..., μ_I are different.
- Let's look at an example where I = 5.

Example 11.1.1: Organic farming of corn

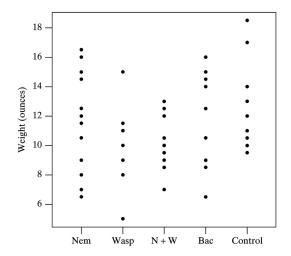
When growing sweet corn, can organic methods be used successfully to control harmful insects and limit their effect on the corn? In a study researchers compared the weights of ears of corn under five organic conditions: (a) using a beneficial soil nematode, (b) parasitic wasp, (c) both the nematode and the wasp, (d) a bacterium, and (e) a control with no treatment. In summary, the treatments are

- Treatment 1: Nematodes
- Treatment 2: Wasps
- Treatment 3: Nematodes and wasps
- Treatment 4: Bacteria
- Treatment 5: Control

Corn data

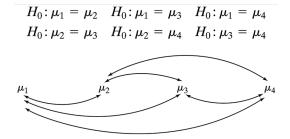
Table 11.	I.I Weights	s (ounces) o	f ears of swe	eet corn		
		Treatment				
	1	2	3	4	5	
	16.5	11.0	8.5	16.0	13.0	
	15.0	15.0	13.0	14.5	10.5	
	11.5	9.0	12.0	15.0	11.0	
	12.0	9.0	10.0	9.0	10.0	
	12.5	11.5	12.5	10.5	14.0	
	9.0	11.0	8.5	14.0	12.0	
	16.0	9.0	9.5	12.5	11.0	
	6.5	10.0	7.0	9.0	9.5	
	8.0	9.0	10.5	9.0	18.5	
	14.5	8.0	10.5	9.0	17.0	
	7.0	8.0	13.0	6.5	10.0	
	10.5	5.0	9.0	8.5	11.0	
Mean	11.5	9.6	10.3	11.1	12.3	
SD	3.5	2.4	2.0	3.1	2.9	
n	12	12	12	12	12	

Side-by-side dotplots of corn data



- It's natural to ask: why not now just compare all possible pairs $\mu_1 \mu_2, \mu_1 \mu_3, \mu_2 \mu_3$, etc., with a bunch of pairwise t-tests?
- This results in *multiple comparisons*: the same data set is used to make multiple inferences on l > 2 associated parameters.
- The overall Type I error is then larger (perhaps much larger) than α .
- ANOVA keeps α fixed, even with lots of comparisons all at once.

Comparing four population means requires six comparisons



Comparing 3 means requires 3 comparisons, 4 means requires 6 comparisons, 5 means requires, 10 comparisons, etc. In general, there's I(I-1)/2 pairwise comparisons to make.

Table 11.1.2	Overall risk of Type I error in using repeated t tests at $\alpha = 0.05$		
Ι	Overall risk		
2	0.05		
3	0.12		
4	0.20		
6	0.37		
8	0.51		
10	0.63		

This is an example of what the true Type I error might be if we didn't use ANOVA, but rather used I(I - 1)/2 t-tests.

- We will test $H_0: \mu_1 = \mu_2 = \cdots = \mu_I$ via analysis of variance (ANOVA).
- ANOVA compares how variable the sample means
 \$\overline{y}_1, \overline{y}_2, \ldots, \overline{y}_1\$ are to how variable observations are around each mean.
- Assumptions: Observations in each group are indepedently normally distributed with the same variance σ^2 .
- The data in different groups are also independent.

Sums of Squares

- SS(between) = $\sum_{i=1}^{l} n_i (\bar{y}_i \bar{\bar{y}})^2$ measures the variability explained by letting each group have its own mean.
- SS(within)= $\sum_{i=1}^{l} (n_i 1)s_i^2$ measures the variability *that is left over*, also called "pure error."
- SS(total) = $\sum_{i=1}^{l} \sum_{j=1}^{n_i} (y_{ij} \bar{y})^2$ measures the total variability in the data ignoring groups.
- SS(total)=SS(between)+SS(within).
- The variability in the data is equal to the variability explained by the model plus the slop that's left over.

- A mean square is the average of the squared deviations from a central value. It is a sum of squares divided by the number of informative values in the sum of squares, called the "degrees of freedom", or df.
- The df for between is $df_b = I 1$; the df for within is $df_w = n I$ where $n = n_1 + n_2 + \cdots + n_I$.
- MS(between)=SS(between)/(I 1), MS(within)=SS(within)/(n - I).
- We collect the sums of squares, mean squares, df, in a table called an ANOVA table.

- ANOVA Quantities with Formulas

Source	df	SS (Sum of Squares)	MS (Mean Square)
Between groups	I - 1	$\sum_{i=1}^{I} n_i (\overline{y}_i - \overline{y})^2$	SS/df
Within groups	$n_{\bullet} - I$	$\sum_{i=1}^{I} (n_i - 1) s_i^2$	SS/df
Total	<i>n</i> . − 1	$\sum_{i=1}^{I}\sum_{j=1}^{n_i}(y_{ij}-\overline{y})^2$	

Table 11.2.1 Weight gains of lambs (lb)*				
	Diet 1	Diet 2	Diet 3	
	8	9	15	
	16	16	10	
	9	21	17	
		11	6	
		18		
n _i	3	5	4	
Sum = $\sum_{j=1}^{n_i} y_{ij}$	33	75	48	
Mean = \overline{y}_i	11.000	15.000	12.000	
$SD = s_i$	4.359	4.950	4.967	
*Extra digits are reported for accuracy of subsequent calculations.				

Table 11.2.3 ANOVA table for lamb weight gains				
Source	df	SS	MS	
Between diets	2	36	18.00	
Within diets	9	210	23.33	
Total	11	246		

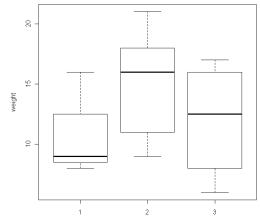
Estimate of common $\sigma^2 = MS(within)$.

F test

- Want to reject $H_0: \mu_1 = \mu_2 = \cdots = \mu_I$.
- Test statistic is F = MS(Between)/MS(Within), which has an $F(df_b, df_w)$ distribution if H_0 is true.
- R uses this F-distribution to get the P-value. Read your text if you are interested in more details.
- In R, need to define two lists. One list has the response measurement of interest, the other has which group each response is from. The grouping list needs to be a 'factor' – the sample code shows how to do this.
- In R, SS(within) is called 'Residuals Sum Sq' and SS(between) takes the same name as the group list name.
- Obtain P-value from R. Reject H_0 if P-value is less than α as usual.

```
weight=( 8,16, 9, 9,16,21,11,18,15,10,17, 6)
diet =c( 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3)
diet=factor(diet)
boxplot(weight~diet)
fit=aov(weight~diet)
summary(fit)
Df Sum Sq Mean Sq F value Pr(>F)
diet 2 36 18.000 0.7714 0.4907
Residuals 9 210 23.333
```

We accept $H_0: \mu_1 = \mu_2 = \mu_3$ at the $\alpha = 0.05$ level. There is no significant difference in weight across diet.

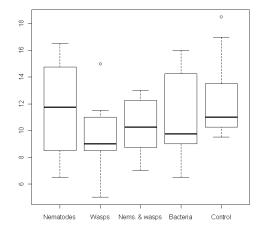


diet

```
weight=c(16.5.11.0, 8.5.16.0.13.0.15.0.15.0.13.0.14.5.10.5.
         11.5, 9.0,12.0,15.0,11.0,12.0, 9.0,10.0, 9.0,10.0,
         12.5,11.5,12.5,10.5,14.0, 9.0,11.0, 8.5,14.0,12.0,
         16.0, 9.0, 9.5.12.5.11.0, 6.5.10.0, 7.0, 9.0, 9.5,
         8.0, 9.0,10.5, 9.0,18.5,14.5, 8.0,10.5, 9.0,17.0,
          7.0. 8.0.13.0, 6.5, 10.0, 10.5, 5.0, 9.0, 8.5, 11.0)
treat= c(1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,
         1.2.3.4.5.1.2.3.4.5.1.2.3.4.5.1.2.3.4.5.1.2.3.4.5.
         1,2,3,4,5,1,2,3.4.5)
treat=factor(treat)
boxplot(weight<sup>t</sup>reat,names=c("Nematodes","Wasps","Nems. & wasps","Bacteria","Control"))
fit=aov(weight~treat)
summary(fit)
            Df Sum Sq Mean Sq F value Pr(>F)
            4 52.31 13.0771 1.6461 0.1758
treat
Residuals 55 436.94 7.9443
```

We accept $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ at the $\alpha = 0.05$ level. There is no significant difference in weight across treatment.

Organic sweet corn boxplots



- Monoamine oxidase (MOA) enzyme thought to regulate behavior.
- Blood from n = 42 schizophrenia patients collected, stratified by diagnosis (I, II, III).
- Is there an association between MOA and diagnosis?

Example 1.1.4: MOA and schizophrenia

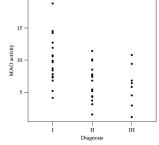


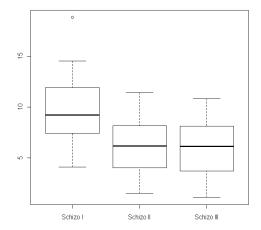
Figure 1.1.2 MAO activity in schizophrenic patients

- What happens to MOA as severity of diagnosis increases? Is the relationship perfect?
- Let's test $H_0: \mu_1 = \mu_2 = \mu_3$ in R.

```
moa=c(6.8.4.1.7.3.14.2.18.8.9.9.7.4.11.9.5.2.7.8.7.8.8.7.12.7.14.5.10.7.8.4.9.7.
     10.6,7.8,4.4,11.4,3.1,4.3,10.1,1.5,7.4,5.2,10.0,3.7,5.5,8.5,7.7,6.8,3.1,
     6.4.10.8.1.1.2.9.4.5.5.8.9.4.6.8)
group=factor(group)
boxplot(moa~group,names=c("Schizo I","Schizo II","Schizo III"))
fit<-aov(moa~group)
summary(fit)
          Df Sum Sq Mean Sq F value Pr(>F)
          2 136.1 68.06 6.346 0.00411 **
group
Residuals 39 418.3 10.72
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
          Df Sum Sq Mean Sq F value Pr(>F)
         2 136.12 68.059 6.3461 0.004111 **
group
Residuals 39 418.25 10.724
_ _ _
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Reject $H_0: \mu_1 = \mu_2 = \mu_3$ at $\alpha = 0.05$ because 0.004 < 0.05. There is a significant difference in mean MOA activity across the three diagnoses.

MAO activity in schizophrenia



Side-by-side boxplots from R code.