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2.8 Statistical inference

Data is a sample from a larger population.
Point of collecting and describing data is to infer about the
population.
Random sampling of data ensures that a representative
collection of measurements has been taken, and that the
data provide a reasonable “snapshot” of the population.
Data can be used to formally assess population
characteristics.
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Example 2.8.1 Blood types in England

n = 3696 blood types collected in England (published in
1939).
1634 were type A.
In the sample 1634

3696 = 0.44 = 44% are type A.
This is a good estimate of the percentage in the population
if the sample is representative.
If the sample is “bad” 44% still estimates the percentage in
the population, but it may be biased.
Estimating the population percentage as 44% is inferring a
population characteristic from an imperfect sample.
Questions: What is the population here? Is the sample
representative?
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Example 2.8.3 Alcohol and MOPEG

n = 7 healthy men had MOPEG
(3-methoxy-4-hydroxyphenylethyleneglycol, the major
noradrenaline metabolite in the central nervous system)
measured (pmol/ml) before and after drinking 80 gm of
alcohol (about 6 drinks) at 8am.
Population: All people? Men? Healthy men? Healthy men
who have 6 drinks? Healthy men who have 6 drinks at
8am? Healthy men who have 6 drinks at 8am in a
laboratory while being watched by scientists in white lab
coats?
The population is often narrower than we would like, but
we are able to infer something anyway.
If the results are conclusive, we can embark on a more
ambitious study involving a more heterogeneous sample.
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MOPEG

Data collected from a population. We would like to infer
whether MOPEG generally increases after consuming alcohol.
Does it? Can we say this with certainty? For which population?
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Proportions

Variables with only two possible outcomes are said to be
dichotomous.
A population proportion is the fraction of all population
units that exhibit the trait of interest, denoted p.
We can take a random sample of n observational units and
find the sample proportion of the n units with the trait of
interest, denoted p̂.
Example 2.8.1. p̂ = 0.44 estimates the population
proportion of blood type A in England.
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Example 2.8.5 Lung cancer treatment

Example 2.8.5: n = 11 patients with adenocarcinoma (type
of lung cancer) treated with Mitomycin. y = 3 of the
patients had a positive response (tumor shrunk more than
50%).
p̂ = 3

11 = 0.27 estimates p, which is unknown.
What is the population here?
How good is this estimate?
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Parameters versus statistics

Sample characteristics estimate population characteristics.
The sample mean ȳ estimates the population mean µ,
the average over everyone in the population.
The sample standard deviation s estimates the population
standard deviation σ.
p̂ estimates p.
Sample medians estimate population medians, etc.
The sample estimates are called statistics, their
population counterparts are called parameters (their
values are usually unknown).
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Example 2.8.6 Leaves on tobacco plants

An agronomist counted the number of leaves on n = 150
Havana tobacco plants
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Example 2.8.6 Leaves on tobacco plants

The sample mean is ȳ = 19.8 leaves.
This estimates µ, where µ is average number of leaves
grown on all Havana tobacco plants grown under the same
conditions.
The sample standard deviation is s = 1.4 leaves.
This estimates σ, where σ is the standard deviation of
leaves grown on all Havana tobacco plants grown under
the same conditions.
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Section 2.9 What’s coming up...

The mean is a number; the density is a function.
However, both can be estimated from a sample of size n.
Confidence interval gives plausible range of values for µ.
Hypothesis tests allow us to assess evidence that µ is
some fixed number, like µ = 15 leaves.
Chapters 3 (probability & random variables), 4 (normal
distribution), and 5 (distribution of sample statistics) lay
groundwork for these statistical tools.
The next slide catalogues three population parameters and
their sample estimates...
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Statistics & population parameters they estimate
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Chapter 2, review of important terms & ideas

2.1 numeric (continuous & discrete) vs. categorical (ordinal
& nominal) variables; observational unit.
2.2 frequency distributions for categorical and continuous
data: tables, bar charts, and histograms; shape: skewed
vs. symmetric, modality.
2.3 Measures of center: sample mean ȳ and sample
median ỹ ; when to use which; what happens with skewed
data.
2.4 Five number summary and boxplots; IQR; outliers.
2.5 Looking for association: categorical-categorical,
categorical-numeric, numeric-numeric.
2.6 Measures of spread/dispersion: range, IQR, and s;
empirical rule based on ȳ & s.
2.8 Inference: parameter vs. statistic.
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Probability

The probability of an event E occurring is the long-run
proportion of times it will occur in repeated experiments.
Denoted Pr{E}.
0 ≤ Pr{E} ≤ 1.
Pr{E} = 1 means E always occurs; e.g. E = lab rat has
two eyes.
Pr{E} = 0 means E never occurs; e.g. E = lab rat speaks
fluent Finnish.
Example 3.2.1. E = “tails” on fair coin toss, Pr{E} = 0.5.
Half the tosses will be tails.
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Probability and sampling a population

Consider a population with proportion p of a characteristic.
Randomly choose one member from the population.
Let E = randonly chosen member has characteristic.
Then Pr{E} = p.
Example 3.2.3. Large population of Drosophila
melanogaster (fruit fly) kept in lab. Proportion that are
black is p = 0.3; proportion gray is 1− p = 0.7.
Say E = randomly sampled fruit fly is black.
Pr{E} = 0.3.
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Rolling a fair 6-sided die

Say I roll one fair 6-sided die.
E = “roll a 7.5.” Pr{E}?
E = “roll a number between zero and ten.” Pr{E}?
E = “roll a 6,” i.e. E = {6}. Pr{E}?
E = “roll a 1 or a 6,” i.e. E = {1,6}. Pr{E}?
E = “roll an even number,” i.e. E = {2,4,6}. Pr{E}?
If I roll the die 100,000 times and find the sample
proportion of times I rolled an even number, what would
this sample proportion be close to?
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Frequency interpretation in more detail

What do I (and the book) mean by Pr{E} is the “long-run
proportion of times E occurs in repeated experiments” ?
We will show shortly that the probability of sampling two
flies of the same color is 0.7× 0.7 + 0.3× 0.3 = 0.58.
Let’s look at what happens why we try repeating the
experiment “randomly sample two flies” over and over and
over and over again...
After each sample we will update the sample proportion of
times two flies of the same color were are sampled.
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Cumulatively estimating p̂
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Plotting p̂ versus number of experiments

19 / 23



2.8 Statistical inference
3.2 Intoduction to probability

What is happening?

As more and more information (data!) are collected, we
can estimate the probability p = 0.58 almost perfectly.
In some textbooks, probability is defined as a limit

Pr{E} = lim
n→∞

# times E occurs out of n experiments
n

= lim
n→∞

p̂.

This is “long-run proportion.”
The previous two slides allow n to get really large, but not
infinite.
We see that as n gets large, p̂ → Pr{E} (“gets arbitrarily
close to”).
We can replace ‘→’ by ‘=’ only at n =∞.
Next lecture: probability trees and probability rules.
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Section 3.3 Probability rules

1 Rule (1) 0 ≤ Pr{E} ≤ 1 for any event E .
2 Rule (2) If E1,E2, . . . ,Ek are all possible experimental

outcomes (smallest events possible), then

k∑
i=1

Pr{Ei} = Pr{E1}+ Pr{E2}+ · · ·+ Pr{Ek} = 1.

3 Rule (3) The probability that an event does not happen, EC

is Pr{EC} = 1− Pr{E}.

21 / 23



2.8 Statistical inference
3.2 Intoduction to probability

Probability of any event

Let all experimental outcomes be listed as the smallest
events E1,E2,E3, . . . ,Ek .
We can make new events from these, e.g. A = {E2,E4}.
The probability of any event is the sum of the probabilities
of the experimental outcomes in the event

Pr{A} =
∑

Ei in A

Pr{Ei}.

Computing probabilities involves a lot of counting and
summing.
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Example 3.3.1 Blood type

The smallest events possible are the individual
experimental outcomes O, A, B, and AB. The proportions
in the U.S. are Pr{O} = 0.44, Pr{A} = 0.42, Pr{B} = 0.10,
and Pr{AB} = 0.04.
All of these are between 0 and 1.
Pr{O}+ Pr{A}+ Pr{B}+ Pr{AB} = 1.
The probability that a randomly selected individual does
not have type AB is
Pr{ABC} = 1− Pr{AB} = 1− 0.04 = 0.96.
The probability of either A or AB is

Pr{A,AB} = Pr{A}+ Pr{AB} = 0.42 + 0.04 = 0.46.
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