Review for Exam III Stat 205: Statistics for the Life Sciences

Note made by: Timothy Hanson Instructor: Peijie Hou

University of South Carolina

< ∃ →

Logistics

- * Multiple choice, 28 questions.
- * You can bring one page (both sides) of formula sheet.
- * No hats, no phones.
- * Exam III covers Chapters 9, 10, 11, and 12.

Chapter 9: Population proportion

- One population
 - Binary: p
 - Sample proportion estimate population proportion : \hat{p}
- Hypothesis testing and confidence interval:
 - $H_0: p = p_0$ vs. $H_a: p \neq$, or <, or $> p_0$
 - R command:

```
binom.test(33,103,p=0.5,alternative="less")
```

```
Exact binomial test
```

- * 同 * * ヨ * * ヨ * - ヨ

Chapter 9 cont'd

• One population

▶ More than two categories, eg., severity level (I, II, III), deer habitat, etc.

Table 9.4.1 Deer distribution				
Region	Acres	Proportion		
1. Inner burn	520	0.173		
2. Inner edge	210	0.070		
3. Outer edge	240	0.080		
4. Outer unburned	2,030	0.677		
	3,000	1.000		

• Hypothesis testing:

- H_0 : no preference vs. H_a : there is a preference
- Method: χ^2 goodness of fit test
 - ★ Observed vs. expected

글 🖌 🖌 글 🕨

Chapter 9 cont'd

- In R, needs to define two lists
 - List 1: observed counts, e.g.: deer=c(2,12,18,43)
 - List 2: a list of hypothesized H₀ probabilities, e.g.: prob=c(0.173,0.070,0.080,0.677)

• R command:

```
> deer=c(2,12,18,43)
```

- > prob=c(0.173,0.070,0.080,0.677)
- > chisq.test(deer,p=prob)

Chi-squared test for given probabilities

```
data: deer
X-squared = 43.1524, df = 3, p-value = 2.284e-09
```

Chapter 10 Contingency table

Two populations

- In population 1, we observed y_1 out of n_1 successes;
- In population 2, we observed y_2 out of n_2 successes;

		Group	
		1	2
Outcome	Success	<i>y</i> 1	<i>y</i> 2
	Failure	$n_1 - y_1$	$n_2 - y_2$
	Total	<i>n</i> ₁	<i>n</i> ₂

• $\hat{p}_1 = y_1/n_1$ estimates p_1 & $\hat{p}_2 = y_2/n_2$ estimates p_2 .

• χ^2 test of independence

• $H_0: p_1 = p_2$ vs. $H_a: p_1 \neq p_2$