STAT509: One-way ANOVA

Peijie Hou

University of South Carolina

November 19, 2014

< ∃ >

-

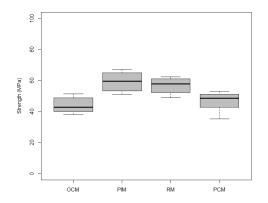
э

Motivation of Inference on Two Samples

- When we want to compare the mean of two normal distributions, we can use a *t*-test to detect the difference.
- What if we want to compare the means of several normal populations?
- A *t*-test does not suffice to detect the difference.
- We need to use one-way analysis of variance technique (frequently abbreviated ANOVA).

Four types of mortars: ordinary cement mortar (OCM), polymer impregnated mortar (PIM), resin mortar (RM), and polymer cement mortar (PCM), were subjected to a compression test to measure strength (MPA). Here are the strength measurements taken on different mortar specimens (36 in all).

OCM:	51.45	42.96	41.11	48.06	38.27	38.88	42.74	49.62		
PIM:	64.97	64.21	57.39	52.79	64.87	53.27	51.24	55.87	61.76	67.15
RM:	48.95	62.41	52.11	60.45	58.07	52.16	61.71	61.06	57.63	56.80
PCM:	35.28	38.59	48.64	50.99	51.52	52.85	46.75	48.31		



- "Treatment" = mortar type (OCM, PIM, RM, and PCM).
 There are t = 4 treatment groups.
- This is an example of an observational study; not an experiment. That is, we do not physically apply a treatment.

QUERY: An initial question that we might have is the following:

"Are the treatment (mortar type) population means equal? Or, are the treatment population means different?"

- In a one-way ANOVA design, the only way in which individuals are "classified" is by the treatment group assignment. Hence, such an arrangement is called a one-way classification
- ► Assumptions: In general, we have independent random samples from p ≥ 2 normal distributions with same variance:

Sample 1 :
$$Y_{11}, Y_{12}, \dots, Y_{1n_1} \sim \mathcal{N}(\mu_1, \sigma^2)$$

Sample 2 : $Y_{21}, Y_{22}, \dots, Y_{2n_2} \sim \mathcal{N}(\mu_2, \sigma^2)$
 \vdots \vdots

Sample $p: Y_{p1}, Y_{p2}, \ldots, Y_{pn_p} \sim \mathcal{N}(\mu_p, \sigma^2).$

< 回 > < 回 > < 回 > …

We want to test

 $H_0: \mu_1 = \mu_2 = \dots = \mu_t$ $H_i:$ the population means μ_i are not

 H_a : the population means μ_i are not all equal.

- ▶ The **null hypothesis** *H*₀ says that there is "no treatment difference", that is, all treatment population means are the same.
- ▶ The alternative hypothesis *H*_a says that a difference among the t population means exists somewhere (but does not specify how the means are different).

The procedures we develop is formulated by deriving two estimators for σ^2 . These two estimators are formed by

- looking at the variance of the observations within samples
 - Unbiased for σ^2 : $MS_{res} = \frac{SS_{res}}{N-t}$

 looking at the variance of the sample means across the t samples

• Unbiased for
$$\sigma^2$$
 under H_0 : $MS_{trt} = \frac{SS_{trt}}{t-1}$

where

$$SS_{total} = SS_{trt} + SS_{res}$$

Sampling distribution: when H_0 is true:

$$F = \frac{MS_{trt}}{MS_{res}} \sim F(t-1, N-t)$$

Such decomposition is usually presented in a so-called ANOVA table of the following form:

Source of Variation	SS	df	MS	F	
Treatments	SS _{trt}	t-1	$MS_{trt} = \frac{SS_{trt}}{t-1}$	$F = \frac{MS_{trt}}{MS_{res}}$	
Error	SS _{res}	N-t	$MS_{res} = rac{SS_{res}}{N-t}$		
Total	SS _{total}	N-1			

- ► *SS*_{total} measures the total variation in all the data
- ► SS_{trt} measures how much of the total variation is due to the treatments
- ▶ *SS_{res}* measures what is "left over"

3 N

1. State the null and alternative hypotheses

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_p$$

 H_a : the population means μ_i are not all equal.

- 2. The test statistic is $F_0 = \frac{MS_{trt}}{MS_{res}}$, which can be found from ANOVA table.
- 3. Draw conclusion based on the *p*-value of the test.
 - ▶ *p*-value $< \alpha$: We reject the H_0 , and conclude not all treatments have the same effect
 - *p*-value≥ α: We do not reject the H₀, and conclude that there is not difference among the treatments

```
> DCM = c(51.45,42.96,41.11,48.06,38.27,38.88,42.74,49.62)
> PIM = c(64.97,64.21,57.39,52.79,64.87,53.27,51.24,55.87,61.76,67.15)
> RM = c(48.95,62.41,52.11,60.45,58.07,52.16,61.71,61.06,57.63,56.80)
> PCM = c(35.28,38.59,48.64,50.99,51.52,52.85,46.75,48.31)
```

```
> strength = c(OCM.PIM.RM.PCM)
> # Create a treatment indicator variable
> mortar.type = c(
     rep("OCM",length(OCM)),
+
     rep("PIM",length(PIM)),
+
+
     rep("RM",length(RM)),
     rep("PCM",length(PCM))
+
+ )
> mortar.type = factor(mortar.type)
> # Create data frame
> # R wants the data in this format to do the ANOVA
> data = data.frame(strength,mortar.type)
```

```
Now. the dataset looks like
       strength mortar.type
   [1.] 51.45
                        1
   [2,] 42.96
                        1
   [3,] 41.11
                        1
  [33,] 51.52
                        2
                        2
  [34.] 52.85
  [35.] 46.75
                        2
  [36,] 48.31
                        2
▶ The R output is given by
  > anova(lm(strength ~ mortar.type))
  Analysis of Variance Table
  Response: strength
             Df Sum Sq Mean Sq F value Pr(>F)
  mortar.type 3 1520.88 506.96 16.848 9.576e-07 ***
  Residuals 32 962.86 30.09
  ___
  Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

4 E b

Source of Variation	SS	df	MS	F
Treatments	1520.88	3	506.96	16.848
Error	962.86	32	30.09	
Total	2483.74	35		

The *p*-value of the test is $9.576 * 10^{-7}$, so we reject the H_0 at any reasonable level of significance, and conclude that we have sufficient evidence that the strength for four mortars are not equal.

Multiple Comparisons Following the ANOVA

- ▶ When the null hypothesis H₀ : µ₁ = µ₂ = ··· = µ_p is rejected in the ANOVA, we know that some of the treatment or factor level means are different.
- However, the ANOVA doesn't identify which means are different.
- Methods for investigating this issue are called *multiple* comparisons methods.
- ► To do this, we will construct Tukey pairwise confidence intervals for all population treatment mean differences µ_i - µ_{i'}, 1 ≤ i < i' ≤ p.</p>
- In the Kenton food Example, we have 4 treatments, we have total (⁴₂) = 6 Tukey intervals to construct. Namely,

$$\mu_1 - \mu_2, \mu_1 - \mu_3, \mu_1 - \mu_4, \mu_2 - \mu_3, \mu_3 - \mu_4.$$

→ Ξ → → Ξ →

Multiple Comparisons Following the ANOVA

- If we construct multiple confidence intervals (here, 6 of them), and if we construct each one at the 100(1 − α) percent confidence level, then the overall confidence level for all 6 intervals will be less than 100(1 − α) percent.
- GOAL: Construct confidence intervals for all pairwise intervals μ_i − μ_{i'}, 1 ≤ i < i' ≤ p, and have our overall confidence level still be at 100(1 − α) percent.</p>
- SOLUTION: Simply increase the confidence level associated with each individual interval! Tukeys method is designed to do this. The interval are of the form:

$$(\overline{Y}_{i} - \overline{Y}_{i'}) \pm q_{\alpha, p, N-p} \sqrt{MSE\left(\frac{1}{n_{i}} + \frac{1}{n_{i'}}\right)},$$

where $q_{\alpha,p,N-p}$ is the Tukey upper percentage point. We will use R to construct such intervals.

> TukeyHSD(aov(lm(strength ~ mortar.type)),conf.level=0.95)
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = lm(strength ~ mortar.type))

\$\$\$mortar.type							
	diff	lwr	upr	p adj			
PCM-OCM	2.48000	-4.950955	9.910955	0.8026758			
PIM-OCM	15.21575	8.166127	22.265373	0.000097			
RM-OCM	12.99875	5.949127	20.048373	0.0001138			
PIM-PCM	12.73575	5.686127	19.785373	0.0001522			
RM-PCM	10.51875	3.469127	17.568373	0.0016850			
RM-PIM	-2.21700	-8.863448	4.429448	0.8029266			

- ∢ ≣ ▶

3

Multiple Comparisons: Read Output

- The columns labeled lwr and upr give the lower and upper confidence limits of the pairwise confidence interval.
- ► We are (at least) 95 percent confident that the difference between the population mean strengths for the PCM and OCM mortars is between -4.95 and 9.91 MPa.
 - ► Note that this confidence interval includes "0", which suggests that these two population means are not different.
 - An equivalent finding is that the adjusted p-value, given in the p adj column, is large.
- We are (at least) 95 percent confident that the difference between the population mean strengths for the PIM and OCM mortars is between 8.17 and 22.27 MPa.
 - Note that this confidence interval does not include "0", which suggests that these two population means are different.
 - An equivalent finding is that the adjusted p-value, given in the p adj column, is small.

→ Ξ → < Ξ →</p>

Therefore, for the strength/mortar type data, the following pairs of population means are declared to be different:

PIM-OCM, RM-OCM, PIM-PCM, RM-PCM

The following pairs of population means are declared to be not different:

PCM-OCM, RM-PIM