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Introduction

I Many problems in engineering and the sciences involve a study
or analysis of the relationship between two or more variables.

I For example, we want to study the displacement of a particle dt
and time t. Let d0 be the displacement of the particle from the
origin at time t = 0 and v be the velocity, then we have a
deterministic linear relationship dt = d0 + vt. We say it is
deterministic since the model predicts displacement perfectly.

I However, there are many situations where the relationship
between variables is not deterministic.

I For example, the electrical energy consumption of a house (y) is
related to the size of the house (x , in square feet), but it is
unlikely to be a deterministic relationship.
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An Motivational Example

As part of a waste removal project, a new compression machine for
processing sewage sludge is being studied. In particular, engineers are
interested in the following variables:

Y = moisture control of compressed pellets (measured as a percent)

x = machine filtration rate (kg-DS/m/hr).

Engineers collect n = 20 observations of (x ,Y ); the data are
displayed in the scatter diagram.
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Introduction to Linear Regression

I No simple curve passed exactly through all the points.

I All the points scattered randomly around a straight line.

I It is reasonable to assume that the mean of the random variable
Y is related to x by the following straight-line relationship:

E (Y ) = β0 + β1x

I Regression coefficients: β0 (intercept), β1 (slope)

I A probabilistic model is

Y = β0 + β1x + ε

where ε is the random error term.

I We assume that E (ε) = 0 and Var(ε) = σ2

I We will call this model the simple linear regression model,
because it has only one independent variable or regressor.
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Properties of Simple Linear Regression

I β0 quantifies the mean of Y when x = 0.

I β1 quantifies the change in E (Y ) brought about by a one-unit
change in x

I For the model Y = β0 + β1x + ε, we have

E (Y ) = E (β0 + β1x + ε) = β0 + β1x + E (ε) = β0 + β1x ,

and
Var (Y ) = Var (β0 + β1x + ε) = Var (ε) = σ2.
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Least squares estimation

I We want to fit a regression model, i.e, we would like to estimate
the regression coefficients β0 and β1 using least squares
estimation.

I Least squares says to choose the values β0 and β1 that minimize

Q(β0, β1) =
n∑

i=1

[Yi − (β0 + β1xi )]2.

I Recall that we can minimize or maximize a multivariable
function by taking the derivatives with respect to each
arguments and set them to 0. So, taking partial derivative of
Q(β0, β1), we obtain

∂Q(β0, β1)

∂β0
= −2

n∑
i=1

(Yi − β0 − β1xi )
set
= 0

∂Q(β0, β1)

∂β1
= −2

n∑
i=1

(Yi − β0 − β1xi )xi
set
= 0
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Solution of LSE

I Solve above system of equations yields the least squares
estimators

β̂0 = Y − β̂1x

β̂1 =

∑n
i=1(xi − x)(Yi − Y )∑n

i=1(xi − x)2
=

SSxy
SSxx

.

I In real life, it is rarely necessary to calculate β̂0 and β̂1 by hand.
Let us look at how to use R to fit a regression model in the
waste removal project example
#enter the data
filtration.rate=c(125.3,98.2,201.4,147.3,145.9,124.7,112.2,120.2,161.2,178.9,

159.5,145.8,75.1,151.4,144.2,125.0,198.8,132.5,159.6,110.7)
moisture=c(77.9,76.8,81.5,79.8,78.2,78.3,77.5,77.0,80.1,80.2,79.9,

79.0,76.7,78.2,79.5,78.1,81.5,77.0,79.0,78.6)
# Fit the model
fit = lm(moisture~filtration.rate)
fit
Call:
lm(formula = moisture ~ filtration.rate)
Coefficients:

(Intercept) filtration.rate
72.95855 0.04103
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Solution of LSE

I From the output, we see that the least squares estimates are
β̂0 = 72.959, and β̂1 = 0.041.

I Therefore, the equation of the least squares line that relates
moisture percentage Y to the filtration rate x is

Ŷ = 72.959 + 0.041x .

That is to say an estimate of expected moisture is given by

M̂oisture = 72.959 + 0.041Filtration rate.

I The least squares line is also called prediction equation. We can
predict the mean response E (Y ) for any value of x . For
example, when the filtration rate is x = 150kg· DS/m/hr, we
would predict the mean moisture percentage to be

Ŷ (150) = 72.959 + 0.041(150) = 79.109.
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Scatter Plot with Least Squares Line

plot(filtration.rate,moisture,xlab = "Filtration rate (kg-DS/m/hr)",
ylab = "Moisture (Percentage)",pch=16)

abline(fit)
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Model Assumptions

I We have
Yi = β0 + β1xi + εi .

We will assume the error term εi follows
I E(εi ) = 0, for i = 1, 2, . . . , n
I Var (εi ) = σ2, for i = 1, 2, . . . , n, i.e., the variance is constant
I the random variable εi are independent
I the random variable εi are normally distributed

I Those assumptions of the error terms can be summarized as

ε1, ε2, . . . , εn
i.i.d.∼ N (0, σ2),

where i .i .d . stands for independent and identically distributed.

I Under the assumptions, it follows that

Yi ∼ N (β0 + β1xi , σ
2)

I We have three unknown but fixed parameters to estimate,
namely, β0, β1, and σ2.
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Pictorial Illustration of Model Assumptions
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Estimating σ2

I We know we can use least squares method to estimate β0 and
β1.

I The residuals ei = yi − ŷi are used to obtain an estimator of σ2.
The sum of squares of the residuals, often called the error sum
of squares, is

SSE =
n∑

i=1

e2i =
n∑

i=1

(yi − ŷi )
2.

I It can be shown that the expected value of the error sum of
squares is E (SSE ) = (n − 2)σ2.

I Therefore an unbiased estimator of σ2 is

σ̂2 =
SSE

n − 2

σ̂2 is also called mean squared error (MSE).
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Properties of Least Squares Estimators

I Recall that

β̂0 = Y − β̂1x

β̂1 =

∑n
i=1(xi − x)(Yi − Y )∑n

i=1(xi − x)2
=

SSxy
SSxx

.

I β̂0 and β̂1 are functions of Yi , so they are random variables and
have their sampling distributions.

I It can be shown that

β̂0 ∼ N
(
β0,

(
1

n
+

x2

SSxx

)
σ2

)
and β̂1 ∼ N

(
β1,

σ2

SSxx

)
I Note that both β̂0 and β̂1 are unbiased.
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Properties of Least Squares Estimators

I Since σ2 is unknown, the estimated standard error of β̂0 and
β̂1 are

se(β̂0) =

√(
1

n
+

x2

SSxx

)
σ̂2 and se(β̂1) =

√
σ̂2

SSxx

where

σ̂2 =
SSE

n − 2

I We can use the standard errors to make hypothesis tests on β0
and β1.
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Hypothesis Tests in Simple Linear Regression

I An important part of assessing the adequacy of a linear
regression model is testing statistical hypotheses about the
model parameters and constructing certain confidence intervals.

I In practice, inference for the slope parameter β1 is of primary
interest because of its connection to the independent variable x
in the model.

I Inference for β0 is less meaningful, unless one is explicitly
interested in the mean of Y when x = 0. We will focus on
inference on β1.

I Under our model assumptions, the following sampling
distribution arises:

t =
β̂1 − β1

ŝe(β̂1)
=

β̂1 − β1√
σ̂2/SSxx

∼ t(n − 2)
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Calculating σ̂2 in R

In R, predict(fit) gives the predicted value at each xi , namely,
Ŷ (x1), Ŷ (x2), . . . , Ŷxn .

> fit = lm(moisture~filtration.rate)

> fitted.values = predict(fit)

> residuals = moisture-fitted.values

> # Calculate MSE

> sum(residuals^2)/18

[1] 0.4426659

We have σ̂2 = MSE = 0.443.
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Confidence Interval of β̂1

I The sampling distribution of β̂1 leads to the following
(1− α)100% confidence interval of β1:

β̂1︸︷︷︸
Point Estimate

± tα/2︸︷︷︸
Quantile

√
σ̂2/SSxx︸ ︷︷ ︸

standard error

I Note that this is two-sided confidence interval, which
corresponds to the test H0 : β1 = 0 against Ha : β1 6= 0.

I If ‘0‘” is covered by this interval, we fail to reject H0 at
significance level of α. This suggests that Y and x are not
linearly related.

I If ‘0‘” is not covered by this interval, we reject H0 at significance
level of α. This suggests that Y and x are linearly related.
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Hypothesis Test for β1

I Suppose we want to test β1 equals to a certain value, say β1,0,
that is our interest is to test

H0 : β1 = β1,0 versus Ha : β1 6= β1,0

where β1,0 is often set to 0 (why?)

I The test statistic under the null is

t0 =
β̂1 − β1,0√
σ̂2/SSxx

∼ t(n − 2).

I The p-value of the test is 2P(Tn−2 < −|t0|), you can use R to
find this probability. Remember that smaller p-value provide
stronger evidence against H0

I Let us look at removal project example...
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Removal Project Example

We wish to test H0 : β1 = 0 against Ha : β1 6= 0.

fit = lm(moisture~filtration.rate)
summary(fit)

Call:
lm(formula = moisture ~ filtration.rate)

Residuals:
Min 1Q Median 3Q Max

-1.39552 -0.27694 0.03548 0.42913 1.09901

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 72.958547 0.697528 104.596 < 2e-16 ***
filtration.rate 0.041034 0.004837 8.484 1.05e-07 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6653 on 18 degrees of freedom
Multiple R-squared: 0.7999, Adjusted R-squared: 0.7888
F-statistic: 71.97 on 1 and 18 DF, p-value: 1.052e-07

What is your conclusion based the R output? Note that the residual
standard error is

√
σ̂2 =

√
MSE = 0.6653.
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Analysis of Variance Approach to Test Significance of
Regression

I (Analysis of Variance Identity) We decompose the total
variability into

n∑
i=1

(yi − y)2 =
n∑

i=1

(ŷi − y)2 +
n∑

i=1

(yi − ŷi )
2.

I We usually call SSE =
∑n

i=1(yi − ŷi )
2 the error sum of squares

and SSR =
∑n

i=1(ŷi − y)2 the regression sum of squares.

I Symbolically, we have

SSTO = SSR + SSE .
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I We want to test H0 : β1 = 0 versus H1 : β1 6= 0.

I It can be shown that

E (SSE/(n − 2)) = σ2, and E (SSR) = σ2 + β2
1Sxx .

I If H0 : β1 = 0 is true, it can be shown that

F0 =
SSR/1

SSE/(n − 2)
=

MSR

MSE
∼ F (1, n − 2).

I We will reject H0, if p-value is small.

I We can summarize these results in the ANOVA table.

I This overall test F test is equivalent to the t test approach for
testing β1.
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ANOVA Table for Simple Linear Regression

Source of Variation SS df MS F

Regression
∑n

i=1(ŷi − y)2 1 SSR
1 F = MSR

MSE

Error
∑n

i=1(yi − ŷi )
2 n − 2 SSE

n−2

Total
∑n

i=1(yi − y)2 n − 1
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Removal Project Example: F Test

We wish to test H0 : β1 = 0 against Ha : β1 6= 0 using the ANOVA
approach. You can use anova command in R.

> # Fit the model
> fit = lm(moisture~filtration.rate)
> anova(fit)
Analysis of Variance Table

Response: moisture
Df Sum Sq Mean Sq F value Pr(>F)

filtration.rate 1 31.860 31.860 71.973 1.052e-07 ***
Residuals 18 7.968 0.443
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Again, we reject H0 : β1 = 0 at any reasonable α level and conclude
that there is a strong evidence support β1 6= 0.
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Confidence and prediction intervals for a given x = x0

P.421 - 425

I Consider the simple linear regression model

Yi = β0 + β1xi + εi ,

I We are interested in using the fitted model to learn about the
response variable Y at a certain setting for the independent
variable, say, x = x0.

I Two potential goals:
I Estimating the mean response of Y . This value is the mean of

the following probability distribution

Y (x0) ∼ N (β0 + β1x0, σ
2)

I Predicting a new response Y , denoted by Y ∗(x0). This value is
a new outcome from

Y (x0) ∼ N (β0 + β1x0, σ
2)
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Confidence and prediction intervals for a given x = x0

Cont’d

I GOALS : We would like to create 100(1− α)% intervals for the
mean E (Y |x0) and for the new value Y ∗(x0).

I The former is called a confidence interval and the latter is
called a prediction interval.

I A 100(1− α)% confidence interval for the mean E (Y |x0) is

Ŷ (x0)± tn−2,α/2

√
σ̂2

[
1

n
+

(x0 − x)2

Sxx

]
I A 100(1− α)% prediction interval for the new value Y ∗(x0) is

Ŷ (x0)± tn−2,α/2

√
σ̂2

[
1 +

1

n
+

(x0 − x)2

Sxx

]
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Confidence and prediction intervals for a given x = x0

Cont’d

I Note that the prediction interval is wider than the confidence
interval!

I The length of the interval is smallest when x0 = x and will get
larger the farther x0 is from x in either direction.

I Warning: It can be very dangerous to estimate E (Y |x0) or
predict Y ∗(x0) based on the fit of the model for values of x0
outside the range of x values used in the experiment/study.
This is called extrapolation.
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Removal Project Example

In the removal Project example, suppose that we are interested in
estimating E (Y |x0) and predicting a new Y ∗(x0) when the filtration
rate is x0 = 150.

I E (Y |x0) denotes the mean moisture percentage for compressed
pellets when the machine filtration rate is x0 = 150.

I Y ∗(x0) denotes a possible value of Y for a single run of the
machine when the filtration rate is set at x0 = 150.
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Removal Project Example

I Confidence interval:
> predict(fit,data.frame(filtration.rate=150),level=0.95,interval="confidence")

fit lwr upr
1 79.11361 78.78765 79.43958

I Prediction interval:
> predict(fit,data.frame(filtration.rate=150),level=0.95,interval="prediction")

fit lwr upr
1 79.11361 77.6783 80.54893

I Interpretation
I A 95% confidence interval for E(Y |x0 = 150) is (78.79, 79.44).

When the filtration rate is x0 = 150 kg-DS/m/hr, we are 95%
confident that the mean moisture percentage is between 78.79
and 79.44 percent.

I A 95 percent prediction interval for Y ∗(x0 = 150) is
(77.68, 80.55). When the filtration rate is x0 = 150
kg-DS/m/hr, we are 95% confident that the moisture
percentage for a single run of the experiment will be between
77.68 and 80.55 percent.

Peijie Hou STAT509: Simple Linear Regression



Confidence Intervals Versus Prediction Intervals
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Coefficient of Correlation

I Correlation measures the linear relationship between two
quantitative variables.

I For example,

I To assign a numeric value: sample coefficient of correlation
defined as

r =

∑n
i=1(xi − x)(Yi − Y )√∑n

i=1(xi − x)2
∑n

i=1(Yi − Y )
=

SSxy√
SSxxSSyy

.
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The plot in the top left corner has r = 1; the plot in the top right
corner has r = −1; the plot in the bottom left and right corner have
r ≈ 0;
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Coefficient of Determination

I Coefficient of Determination, denoted by r2, measures the
contribution of x in the predicting of y .

I Recall that

SSTO =
n∑

i=1

(Yi − Y )2,SSE =
n∑

i=1

(Yi − Ŷi )
2

I If x makes no contribution to prediction of y , then β1 = 0. In
this case,

Y = β0 + ε.

It can be shown that Ŷi = β̂0 = Y , and SSE = SSTO.

I If x contribute to prediction of Yi , then we expect
SSE << SSTO. In other words, the independent variable x
“explain” significant amount of variability among data.
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Coefficient of Determination

I Intuitively, SSTO is total sample variation around Y , and SSE
is unexplained sample variability after fitting regression line.

I Proportion of total sample variation explained by linear
relationship:

Explained Variability

Total Variability
=

SSR

SSTO
.

I Coefficient of determination is defined as

r2 =
SSTO − SSE

SSTO
=

SSR

SSTO
.

I It can be shown that the coefficient of determination of a simple
linear regression equals to the squared sample coefficient of
correlation between x and Y .
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Example: Removal Project Example

We can use command cor to calculate sample coefficient of
correlation. The coefficient of determination r2 is called Multiple
R-squared in the summary of simple linear regression.

> cor(filtration.rate,moisture)
[1] 0.8943937
> fit<-lm(moisture~filtration.rate)
> summary(fit)
Call:
lm(formula = moisture ~ filtration.rate)
Residuals:

Min 1Q Median 3Q Max
-1.39552 -0.27694 0.03548 0.42913 1.09901
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 72.958547 0.697528 104.596 < 2e-16 ***
filtration.rate 0.041034 0.004837 8.484 1.05e-07 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6653 on 18 degrees of freedom
Multiple R-squared: 0.7999, Adjusted R-squared: 0.7888
F-statistic: 71.97 on 1 and 18 DF, p-value: 1.052e-07
> r<-cor(filtration.rate,moisture)
> r^2
[1] 0.7999401
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Model Adequacy Checking: Residual Analysis P. 426

I The residuals from a regression model are ei = yi − ŷi ,
i = 1, 2, . . . , n., where yi is an actual observation and ŷi is the
corresponding fitted value from the regression model.

I Analysis of the residuals is frequently helpful in checking the
assumption that the errors are approximately normally
distributed with constant variance, and in determining whether
additional terms in the model would be useful.

I As an approximate check of normality, we can use apply the fat
pencil test to the normal probability plot of residuals.

I Model checking is an important exercise because if the model
assumptions are violated, then our analysis (and all subsequent
interpretations) could be compromised.
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I Recall we have four assumptions on the error terms εi
1. E(εi ) = 0, for i = 1, 2, . . . , n
2. Var(εi ) = σ2, for i = 1, 2, . . . , n, that is, variance is constant
3. the random variables εi are independent
4. the random variables εi are normally distributed.

I It is frequently helpful to plot the residuals (1) against ŷi , and
(2) against the independent variable x .

I Q-Q plot for removal project
resid<-residuals(fit)
qqnorm(resid);qqline(resid)
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Residual Plots

The residual plot is simply the scatterplot of residuals ei ’s and
predicted values. These graphs will usually look like one of the four
general patterns shown below
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I Pattern (a) represents the ideal situation.

I Pattern (b) represents the cases where the variance of the
observations may be increasing with the magnitude of yi or xi .
Pattern (b) and (c) represents the unequal variance cases.

I Pattern (d) indicates the linear relationship between E (Yi ) and
xi is not proper. We need to add higher order term, which
requires multiple linear regression.
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Example: Electricity Consumption

An electric company is interested in modeling peak hour electricity
demand (Y ) as a function of total monthly energy usage (x). This is
important for planning purposes because the generating system must
be large enough to meet the maximum demand imposed by
customers.

electricity<-read.table(file.choose(),head=TRUE)
# Define variables
monthly.usage = electricity[,1]
peak.demand = electricity[,2]
# Fit the model
fit = lm(peak.demand ~ monthly.usage)

# Plots were constructed separately
# Scatterplot
plot(monthly.usage,peak.demand,xlab = "Monthly Usage (kWh)",

ylab = "Peak Demand (kWh)", pch=16)
abline(fit)
# Residual plot
plot(fitted(fit),residuals(fit),pch=16,

xlab="Fitted values",ylab="Residuals")
abline(h=0)
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I The residual plot shows clearly a “megaphone” shape, which
indicates that the equal variance assumption is violated.

I Widely used variance-stabilizing transformations include the use
of
√
y , log y , or 1/y as the response.

I Let us try
√
y as the response.
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Transforming the Response

You can use sqrt(peak.demand) in R to transform the response
variable directly.

# Fit the transformed model
fit.2 = lm(sqrt(peak.demand) ~ monthly.usage)
fit.2

# Plots were constructed separately
# Scatterplot
plot(monthly.usage,sqrt(peak.demand),xlab = "Monthly Usage (kWh)",

ylab = "Peak Demand (kWh): Square root scale", pch=16)
abline(fit.2)
# Residual plot
plot(fitted(fit.2),residuals(fit.2),pch=16,

xlab="Fitted values",ylab="Residuals")
abline(h=0)
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I The residual plot looks much better.

I Model interpretation:
√
Yi = β0 + β1xi + εi .
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