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1. INTRODUCTION 
 
R is a shareware implementation of the S language, which was developed at Bell Labs in 
the 1970s and ‘80s.  As such it has many similarities with Splus, another 
implementation of S now for sale as a commercial software package for data analysis, 
distributed by the Insightful Corporation.  Learning R is essentially equivalent to learning 
Splus.  Most commands/programs written in R (Splus) run with little or no modification 
in Splus (R).  R is free, though; to download it, go to  

http://www.r-project.org/ 
Note also that additional R documentation is available through this link; in particular, 
under the Manuals link, there is a good quick-start “Introduction to R” manual. 
 
This primer is aimed at an individual with minimal R (or Splus) experience, to introduce 
the structure and syntax of the language, to provide some basic tools for manipulating 
data, and to introduce many other topics which deserve further study.  It assumes you are 
using the Windows implementation of R, version 1.9.  Implementations for Unix and 
Macintosh were also available at the time of this writing, and supposedly do not differ 
dramatically in syntax or operation from the Windows implementation.  Any suggestions 
for improvements to this primer can be sent to Don Edwards (edwards@stat.sc.edu). 
 
R is a powerful language, but it has a fairly steep learning curve.  It is case sensitive, 
therefore unforgiving of careless mistakes, and its error messages leave a bit to be 
desired.  Patience and a lot of regular use are keys to learning R.  As the cover cartoon 
suggests, it is like a musical instrument - if you can get past the learning phase, working 
with R can be enjoyable.  
 
In this primer, R objects, operators, etc. are written in Courier New font (like this), 
the default font used in the R command window.  Names of syntactically rigid 
commands, keywords, and built-in function names in R are written in boldface to 
distinguish them from created objects, whose names would often be user-provided.  We 
also often use silly generic names like my.object when referring to user-named 
objects.  Names can be of essentially any length, but should start with a character and 
contain no blanks.  If a name consists of multiple words, usually we connect them with 
periods.  Try not to use names that might be natural choices for an existing built-in 
function.  Some names to avoid, specifically, are “plot”, “t”, “c”, “df”, 
“T”, and “F”, though these should only cause warning messages or confusion unless 
you use them as names for functions you create.  Choose names meaningfully, since 
created objects tend to collect in the workspace at an alarming rate, and if they are not 
named well, and/or if you do not clean up your workspace regularly, you’ll forget what 
they are. 
 
To start R, of course you double-click on the R icon on the desktop, or under Programs in 
the Start menu.  Start R now; an “Rgui” window should open, and at the bottom you 
should see the R command prompt “>“.  When you type a command, push Enter or 
Return to execute it.  You can page through recent commands using the up- and down- 
arrow keys.  When you want to quit R, execute the quit function:  > q()  

http://www.r-project.org/
mailto:edwards@stat.sc.edu
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2. OBJECTS, MODES, ASSIGNMENTS 
 
R is an “object oriented” interactive language.  I am sure all the CSCE majors reading 
this can give me a better definition of the term “object oriented” (and I hope you will), 
but in my non-CSCE way of thinking it means that data in R are organized into specific 
structures called “objects”, of different types.  Functions in R are programs which do 
work, creating new objects from existing ones, making graphical displays, and so on 
(though functions are also objects).  Try to keep track of your objects’ types as you work, 
because many functions accept only certain types of objects as arguments, or they do 
different work depending on what kind of object(s) you use as argument(s).  For example, 
the following call to the plot function:  
 > plot(my.object)  
will have different consequences depending on whether my.object is a vector, a 
matrix, a factor, etc; these terms will be explained below.  When you get comfortable 
with R, you can (and should) write your own functions as the need arises.  You can also 
call (e.g.) Fortran and C functions from R. 
 
The most common object types for our purposes, in order of increasing complexity, are 
vectors, factors, matrices, data frames, lists, and functions.  Each of these will be 
discussed in some detail now. 
 
2.1 Vectors (and data modes, and assignments) 
 
Vectors are strings of data values, all of the same “mode”.  The major modes are: 
numeric (=double-precision floating point), character, and logical (a datum of mode 
logical has either the value TRUE or the value FALSE, sometimes abbreviated as T and 
F).  Some other modes are integer, complex, and NULL.  R has a number of built-in data 
sets we can play with; to access these, we use the data function.  Let’s start with a data 
set with descriptives on the fifty United States: enter 
 > data(state) 
Let’s now look at one of the vectors in this data set: 
 > state.name 
and R will list out this vector’s values on the screen.  To save space when printing, a 
vector’s values are printed in rows across the screen, with index numbers provided in 
brackets at the beginning of each row.  The double-quotes on each value tell us this 
vector is of mode character; if we weren’t sure, we could ask (try it): 
 > is.character(state.name) 
We can access an individual component of the vcector by specifying the position in 
square brackets like so: 
 > state.name[40] 
The above two statements are actually R expressions that produce single-element vectors 
of modes logical and character, respectively.  If you want to save the object resulting 
from an expression for later use, assign it a name, e.g. 
 > my.state<-state.name[40] 
The assignment arrow is literally the “<” character followed by the “-“ character.  You 
can use the equals character “=” in place of these two characters if you like, but I’m 
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partial to the arrow because it is much more descriptive of what actually happens in an 
assignment (the right-hand-side is evaluated, and then stored under the name provided on 
the left-hand-side).  If there is already an object in your workspace with the name 
my.state, this statement will replace it.  Don’t worry about replacing or damaging 
built-in R functions or data; they do not reside in your workspace, so you can’t change 
them.  Look at your new object my.state now by entering its name at the prompt. 
 
Any given object usually has associated attributes, which are descriptive information 
about the object.  With vectors, one possible attribute is a names vector.  For example, 
let’s load another built-in data set: 
 > data(precip) 
and now look at it: 
 > precip 
This is a numeric vector of average annual precipitation amounts in 70 U.S. cities.  Each 
value in the vector has an associated name (the city), which you see printed above the 
value.  If you want to access the names themselves, you can do so with the names 
function: 
 > names(precip) 
The result of this command is a character vector, which you could store separately and 
work with if necessary.  Names can be very useful, e.g. in scatter plots, or to help 
remember if a vector has been sorted. 
 
The length() function for vectors is fairly self-explanatory.  Try it by entering  
 > length(precip) 
The c() function combines values (or vectors, or lists) and is a simple way to create 
short vectors by typing in their values.  Try this: 
 > blastoff <- c(5,4,3,2,1) 
Now look at the vector blastoff by entering its name at the prompt.  Another way to 
generate this particular vector is with the integer sequence operator “:”.  Try each one of 
these: 
 > 1:100 
 > 3:6 
 > 10:(-100) 
 > 5:1 
We can combine /nest several functions, arithmetic operators, etc. in expressions; for 
example: 
 > seq.length<-length(seq(-10,10,0.1)) 
applies the length() function to the vector returned by seq(); the vector itself is not 
saved.  Look at seq.length now. 
 
Note the vectors in R differ from vectors in matrix algebra in that they have no 
orientation: an R vector is neither a row vector nor a column vector.  This can cause 
problems in matrix arithmetic if you’re not careful. 
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2.2 Factors (and coercion) 
 
A factor object is superficially similar to a character vector.  Let’s look at one: 
 > state.region 
These are regions of the U.S. corresponding to each of the 50 states already seen.  You 
see no quotes around each element, which is a clue that state.region is not a 
character vector.  To see its attributes, type 
 > attributes(state.region) 
And you should see vectors called levels (the four unique values that occur in the 
factor) and class, which tells you that state.region is indeed a factor object.  
Factor objects are required for ANOVA or similar analyses.  Also, most data-input 
functions will by default read any column having non-numeric data as a factor object.  If 
you want to change a factor object into a character vector, for example to use it as 
plotting symbols on a graph, you can “coerce” it to be character with the as.character() 
function: 
 > regions.cvec<-as.character(state.region) 
This creates the character vector regions.cvec (look at it).  Note that if 
state.region was something that could not easily be changed into a character object, 
this statement might produce an undecipherable error message and abort, or produce a 
NULL object.  There are many coercion functions for forcing objects of one class/mode 
to a different class/mode: as.numeric(), as.vector(), as.matrix(), 
as.data.frame(), and so on.   
 
2.3 Matrices 
 
A matrix is a two-dimensional array of values having the same data mode.  The rows are 
the first dimension; columns are the second dimension.  Here’s a built-in numeric matrix: 
 > state.x77 
This is a 50x8 (50 rows, 8 columns) numeric matrix - the words you see on screen are not 
part of the matrix’ values – they are row and/or column names.  To see this matrix’s  
attributes, type 
 > attributes(state.x77) 
and you see three vectors displayed on screen.  The first is the matrix’ dimensions (a two-
element vector “dim”).  You can see it or conjure it up directly with the dim() function: 
 > dim(state.x77) 
Any matrix has row and column names (though they may only be numbers), but these are  
referred to as the dimnames of the matrix – the rows are the first dimension of the 
matrix, so dimnames(state.x77)[[1]] are the row names of this matrix.  The 
columns are the second dimension, so dimnames(state.x77)[[2]] are the 
column names.  These are character vectors.  Look at the column names of the matrix 
state.x77 now. 
 
Be careful with the length() function function when its argument is a matrix; 
length(my.matrix) is the total number of elements in the matrix, not its row or 
column dimension.  R has a rich collection of matrix/linear algebra functions; for a 
sampling, see the Arithmetic section of this handout. 
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You can reference individual matrix elements by providing row and column indices in  
brackets, e.g. the element in row 3, column 5: 
 > state.x77[3,5] 
You can also reference entire rows and columns, e.g. row 3: 
 > state.x77[3,] 
or column 5: 
 > state.x77[,5] 
Note that the results of the above statements are not matrix objects, though; they are 
vectors.  You can also reference elements, or entire rows or columns, using dimension 
names; e.g.  
 > state.x77[,”Murder”] 
for the fifth column.  More on referencing and extraction of elements later!  
 
2.4 Data Frames 
 
A data frame is similar to a matrix, but its columns may be of different modes (though 
data must be of the same mode within each column).  It is analogous to a SAS data set.  
Some very important functions will operate only on data frames.  Let’s create a data 
frame using the data.frame() function: 
> state.dfr <- 
   data.frame(state.name,state.region,state.abb,state.x77) 
This creates a data frame from the existing vectors of equal lengths but varying modes 
state.name, state.region, and state.abb, and the numeric matrix 
state.x77.  Type the new data frame’s name to look at it: 

> state.dfr 
When objects get very big, it’s easier to inspect them via plots, descriptives like dim(), 
or by looking at attributes: 

 > attributes(state.dfr) 
Notice that the column names of a data frame are just called “names”, and the row 
names are called “row.names”.  These can be conjured up as working vectors using the 
names() or row.names() functions: 

> names(state.dfr) 
> row.names(state.dfr) 

Unfortunately, the names() or row.names() functions don’t work on matrices!  The 
individual elements, rows, or columns of a data frame can be referenced and/or extracted 
using the square-bracket indices (numbers or names) as we did for matrices.  Alternately, 
columns can be referenced using two-level names connected with a dollar sign like 
dfrname$colname.  Using the column name alone will not usually work (unless you 
attach the data frame first – see “Managing your Objects” below).  Try the following two 
statements: 

> Population 
> state.dfr$Population 

Of course, you can still access the factor object state.region because it still exists in 
the workspace (separately from the data frame state.dfr).  Notice something else: 

> is.character(state.dfr$state.name) 
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This is now false!  It was a character vector a moment ago, wasn’t it?  Now try 
> is.factor(state.dfr$state.name) 

The data.frame() function coerced the character vectors to be factor objects while 
creating state.dfr!  To prevent this from occurring, you may use the I() function, which 
tells R to leave the object “as is”: 
> state.dfr<- data.frame( I(state.name), state.region,  

I(state.abb), state.x77) 
 
2.5 Lists 
 
Lists are like glued-together strings of objects of possibly very different structures, 
lengths, and modes.  We have already seen some lists – the attributes of any object are a 
list.  Let’s extract this list from our new data frame state.dfr: 

> attlist.state.dfr<-attributes(state.dfr) 
> attlist.state.dfr 

The individual elements of any list can be accessed/extracted by multiple level names 
using dollar signs, like listname$elementname.  Alternately, the first element of a 
list can be referred to using double square brackets: listname[[1]], the second 
element by listname[[2]], and so on.  The elements of a list can themselves be 
lists, in which case you might use a double-dollar-sign reference like this: 

> list1$list2$myvec 
You might use this if you wanted to reference the vector myvec, an element of the list 
list2, which in turn is an element of the list list1. 
 
Most of the most sophisticated computational and data analytical functions return lists of 
objects as their basic output.  For example, the eigen() function: if A is a nonnegative 
definite matrix, 

> elistA <- eigen(A) 
is a list with elements elistA$values (a vector of eigenvalues of A) and 
elistA$vectors (a matrix of eigenvectors of A). 
 
2.6 Functions 
 
Most work in R is accomplished by functions.  Functions can be very strange and 
mysterious beasts; to fully understand what a function does, you may need to read (and 
reread, and reread) its help file (see below), and probably experiment with the function. 
 
Typically, you pass a function some objects (its arguments), and from these it creates and 
returns one (1) new object (which may be several created quantities concatenated into a 
list).  There are exceptions, though – for example, the q() function to quit R usually 
receives no arguments, and many plotting functions create only graphs.  If any object is 
returned from a function, it will not be saved unless it is assigned a name.  Any 
intermediate calculations the function performs are not saved after the function 
terminates, period. 
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A full, unabbreviated function call, with assignment of an object name new.object to 
the function’s output, usually looks somewhat like this: 

> new.object <- fctname(arg1=object1, arg2=object2,…) 
The objects passed might include numeric or character constants, names of objects in the 
workspace, or evaluable expressions.  Some or all of the arguments may be optional – 
optional arguments, if unspecified, will have default values supplied by the function.  
These default values may be expressions involving other arguments. 
 
As an example, consider the function seq()to generate evenly spaced sequences.  It has 
no required arguments, but calling seq()alone generates a sequence vector from 1 to 1 
by 1, not usually very useful.  The most important arguments to seq()are from, to, 
by, and length.  The arguments from and to specify the endpoints of the sequence 
(which will be decreasing if from’s value is larger than to’s).  Usually, either the 
argument by, which specifies the incremental spacing in the sequence values, or 
length, which specifies the length of the sequence vector, is also specified (but not 
both, since the value of by will determine length and vice versa).  Each of the 
following will generate (but not save) a vector (-2.0, -1.5, -1.0,…,1.5, 2.0).  Try them: 

> seq(from=-2.0, to=2.0, by=0.5) 
> seq(from=-2.0, to=2.0, length=9) 

Abbreviated function calls omit most of the “arg=” junk and just list the argument values, 
in order: 

> seq(-2.0, 2.0, 0.5) 
> seq(-2.0, 2.0, length=9) 

Notice that in the second call we had to say length=9 because length is not the 
third argument in the argument list for seq.  Try that last command again without the 
words “length=”.  Can you see the errors waiting to happen here? 
 
As was previously mentioned, functions are sometimes generic, which means that they do 
different work depending on what kind of object(s) are passed to them.  A simple 
example is the diag function in linear algebra.  If A is a matrix, diag(A)returns a 
vector which is the main diagonal of A. If A is a vector, diag(A)returns a square 
matrix with the vector A’s values on the main diagonal. 
 
2.7 Other Object Types 
 
Also worth mentioning are so-called “ordered” objects, which are like factor objects 
except that the levels of the factor are naturally ordered (like Freshman, Sophomore, 
Junior etc).  There are also time series objects, which are like numeric vectors but with 
some special attributes which are helpful / needed for time series analysis.  Other 
important types of objects include arrays, which are generalizations of matrices to more 
than 2 dimensions.  There are lots of other object types! 
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3. GETTING HELP 
 
Perhaps the most important skill to be developed early is reading help files.  If you know 
the function name or topic which you are curious about, enter 
 > help(topic) 
Here, topic is usually a function name, though entering a built-in data set’s name gives 
you background information (“metadata”) on the data set.  Let’s look up information 
about the function rnorm, which generates normally distributed pseudo-random 
variables: 
 > help(rnorm) 
Each function help file starts with a general Description of what the function does, 
followed by lines showing the function’s arguments.  In this case, we see 

rnorm(n, mean=0, sd=1) 
Arguments which are required are listed first, with no “=” signs.  In this case, rnorm will 
generate a vector of length n whose elements are realizations of Normally distributed 
pseudo random variables with expected value specified by the argument “mean” and 
standard deviation by the argument “sd”.  We must specify the length of the vector, n, or 
the function terminates with an error message.  If we do not specify values for the mean 
and/or sd, they are taken to be 0 and 1 respectfully by default.  Try it: the command 
below generates a vector of 30 pseudo-Normal random variable values with mean 100 
and standard deviation 10, and constructs a Normal quantile plot of these (the vector is 
not saved).  If the values indeed come from a Normal distribution, the plot should 
approximate a straight line. 
 > qqnorm(rnorm(30,100,10)) 
 
The helpfile section titled Value explains what sort of object (if any) is returned by the 
function, in this case a numeric vector.  There may be a Details section that gives some 
explanation as to how the function accomplishes its work; there may also be References.  
One of the most important parts of the help file is the See Also section, which provides 
cross-references to other functions which are related to the one whose help file you’re 
reading.  Often the function you’re reading about may not do exactly what you want, but 
one of the cross-referenced functions does.  At the very bottom of the help file there are 
usually some Examples, and these are usually very useful. 
 
Certain important help files are hard to find because they have non-intuitive keywords.  
For example: help(Logic), help(Syntax), help(Comparison); most 
people wouldn’t guess to capitalize the first letter for these important help topics, but R is 
case sensitive, so if you type help(logic), it will reply that there is no 
documentation for this topic.  If you do not remember the precise name of the function 
for which you want help, there is an interactive search facility; invoke it with 
 > help.start() 
This is very different from the interactive help in Splus, so it is less familiar to me.   
 
Finally, if you want to know exactly what a function does, just enter its name without 
parentheses at the prompt and R will obediently display the object itself: the function 
code, line for line, on the screen.  Good luck understanding it! 
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4. MANAGING YOUR OBJECTS 
 
If you are continuing with R from an earlier section of this primer, please quit at this 
time, without saving your workspace image, and restart R to get back to an empty 
workspace. 
 
The objects you will work with reside in a number of directories; when you refer to an 
object, R tries to find it by searching a path of directories in a given order.  To see the 
first few current search path directories in order, type 

> search() 
The first directory, .GlobalEnv, is the current workspace.  Any object which you 
create and assign a name to will be stored there.  The other directories shown at this time 
in the search list are built-in directories containing built-in R functions, data sets, and so 
on.   
 
To see a list of the workspace contents, type 

> ls() 
If you see the word character(0), this means your workspace is currently empty; 
this should be the case if you just started up R for this section and did not save your 
workspace from a previous session.  Let’s load a few things, so we have something to 
work with: 

> data(state) 
> data(mtcars) 

Now use ls() to check the workspace contents again.  You can see a higher level 
directory’s contents using the objects() function, e.g. 

> objects(4) 
will display the object names of the 4th directory of the search path.  You may also refer 
to any directory in the search path by its name, e.g. objects(package:base) 
 
You can modify your search path for the current interactive session.  For example,  
 > attach(mtcars) 
attaches the data frame mtcars in position 2 of the search path, which (like all positions 
above the workspace) is read-only.  You can also attach lists or previously created Rdata 
directories (using a full file specification, in quotes) which may contain data objects 
and/or functions you created in earlier work sessions; we’ll do that later.  Now, look at 
the objects you loaded into position 2.  Now that mtcars is attached, you can access its 
columns (variables) without clunky two-level $-names.  When you want to remove 
mtcars from the search list (don’t do it now), type 
 > detach(mtcars) 
or 
 > detach(2) 
or, simply quit R. 
 
Before going any further, we should clean up our workspace a bit, since it is dangerous to 
have the data frame mtcars both in the workspace and in the search list (you can 
change the copy in your workspace, but the older version would still be attached as a 
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read-only data frame).  We can remove it from the workspace using the rm() function; 
while we’re at it, let’s remove some other things, too: 
 > rm(mtcars, state.area, state.division, state.center) 
Now use ls() and search() again to verify that mtcars is not in the workspace, but 
is still attached in the search path.  Use rm() often to keep your workspace free of old 
objects which you will never use again. 
 
We can save the contents of the current workspace to use as a workspace in a later 
session, or to attach it as a read-only directory in another session.  To do this, go to the 
File menu and choose “Save Workspace”.  Change directories to find a folder where you 
would like to store this new workspace, for example, in a previously-created stat540 
folder “C:/My Documents/classes/stat540”.  Then give the workspace a name, e.g. 
“testing123” and click Save.  Note that the workspace is saved as an “R images” file, 
which has extension “.Rdata”.  In the folder where you stored it, it will henceforth be 
visible with an R logo.  Its full file specification in this example is 
 C:/My Documents/classes/stat540/testing123.Rdata 
 
If you want to use this saved workspace as your workspace in a future session, there are 
several ways to accomplish this.  The easiest way is to launch R directly at that location 
by double-clicking the R logo next to the file you want to use as a workspace.  If instead 
you choose to launch R in some other way, go to File, then Load Workspace, and then 
find the workspace you want to use.  A third way is to load the previously-created 
workspace into position 1 with the attach() function; in the above example, this is 
accomplished by 

> attach(“C:/My Documents/classes 
 /stat540/testing123.Rdata”,pos=1) 

This (apparently) replaces the current workspace with the specified one.  Note that only 
.Rdata files can be loaded in position 1 (no data frames or lists). 
 
If in the future you want to use the objects in a previously created workspace as read-only 
objects (for example, if they are functions that you want to use but not change), use the 
above command with pos=2 (or with no position specified), and it will be attached as 
read-only in position 2. 
 
It is usually a bad idea to keep the same function or data object in more than one 
directory.  If you change one of the copies, you may forget to change the other, and at 
some later date you will be referring to the object and not know which of the two you’re 
working with.  Unfortunately, it seems that R will not warn you about this when you 
create, say, a function in your workspace when there is a function of the same name in 
another directory of the search path (Splus would provide such a warning).  It is also a 
bad idea to have two functions of the same name in the search path; when you call the 
function, R will use the first function of that name it finds in the search path.  Likewise, if 
you use a data-object name a name that is also being used for a built-in function, e.g. 
“plot”, whenever you call the function plot you may see a message like this one: 
 Looking for object “plot” of mode function.  Ignored 
one of mode numeric… 
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5. GETTING DATA INTO R 
 
5.1 Creating Data 
 
First, there are a number if handy functions for creating vectors and matrices in R.  We 
have already seen the c() and seq() functions, and the integer sequence “:” infix 
operator.  Also useful is the rep() function, which creates a vector by repeating a single 
value a specified number of times..try these: 

> rep(1,10) 
> rep(“Gamecocks Rule”,1000) 

 
We can easily generate vectors of pseudo-random numbers in R; we have already 
examined the rnorm()function for generating Normal random variates; there are a 
number of others, including runif(), rchisq(), rbin(), etc.; enter 

> help.search(“distribution”) 
to see a partial list. 
 
Another useful data-creating function is the matrix()function.  The command 
 > constmat <- matrix(value,r,c) 
creates and stores a matrix with r rows and c columns, with every entry equal to value 
(which may be of any mode).  Examples: 
 > zeromat <- matrix(0,5,3) 
 > onesvec.col <- matrix(1,10,1) 
Note the difference between onesvec.col and rep(1,10); the former is a “column 
vector” in the matrix arithmetic sense – a matrix with only one column.   
 
The matrix function can also reshape long vectors into matrices.  For example, suppose 
bigvec is a vector of length 200, and we would like to reshape it into a 100 row, 2 
column matrix.  An important question: should the vector’s elements be written into the 
matrix a row at a time, or a column at a time?  The default is to write by columns, but if 
the desire is to write by rows, add the option byrow=T : 
 > bigvec <- 1:200 
 > mat.bycols <- matrix(bigvec,100,2) 
 > mat.bycols 
 > mat.byrows <- matrix(bigvec,100,2,byrow=T) 
 > mat.byrows 
 
 
5.2 The read.table() function 
 
More often than not, a data analyst will need to import data into R which is in roughly 
columnar form, as a text file, perhaps created by some other software.  If each data record 
consists of the same number of items, on a single line, the function read.table() for 
creating a data frame from the text file is highly recommended.  Note that we will need 
missing values in the text file to be represented by some unambiguous missing value 
code, and values on each line separated by some well-defined delimiter (usually blanks, 
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tabs, or commas).  Items need not be in exactly the same columns on different lines.  It is 
recommended that you read (and reread) the help file for read.table() carefully, to 
find out exactly what its capabilities and limitations are. 
 
To use read.table() most effectively, let the first item of each record be a character 
variable to be used for row names; any names that have imbedded blanks should be 
enclosed in quotes.  Then, add a row at the top of the text file with the column names you 
desire, but no name for the row names column.  If each record’s data values are separated 
by white space, and missing values are represented by the R missing value code NA 
(which stands for “not available”), then the command 
 > my.dfr <- read.table(“filespec”) 
should create a data frame called my.dfr with the desired column and row names.  
Important note: the file specification filespec must use double slashes wherever a 
normal file specification would use single slashes, e.g. A:\\myfile.txt for a text 
file myfile stored on a floppy disk.  If the file specified by filespec is not in the 
directory where the current workspace resides, then the specification must include the full 
directory path to the file. 
 
For example, suppose the text file below, brainbod.txt , which lists typical body 
weights (kg) and brain weights (g) for 15 terrestrial mammals, exists in the same folder 
where R was opened.  Note there are three items in every row, the first being a unique 
name for the row.  Since the first record has one less item, these are presumed to be the 
names for the data frame to be created.  Note the missing value in row 6, column 2.   
 
 
 bodywt brainwt 
afele 6654.00 5712.00 
cow 465.00 423.00 
donkey 187.00 419.00 
man 62.00 1320.00 
graywolf 36.33 119.50 
redfox 4.24 NA 
narmadillo 3.50 10.80 
echidna 3.00 25.00 
phalanger 1.62 11.40 
guineapig 1.04 5.50 
eurhedghog 0.79 3.50 
chinchilla 0.43 64.00 
ghamster 0.12 1.00 
snmole 0.06 1.00 
lbbat 0.01 0.25 
 
 
The command  
 > brainbod <- read.table(“brainbod.txt”) 
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will create a data frame with two columns, names bodywt and brainwt, and 
row.names present.  Note that if there had been any character data other than the row 
names in the text file, their columns would have been converted into factor objects.  To 
preserve character columns as character objects, add the option as.is=T to the 
read.table() call.   It is a highly recommended exercise to copy the above table, 
paste it into a text file, and try to read it into R as a data frame as described above. 
 
Usually, missing values in a raw text file are not represented by the R missing value code 
NA.  If this is the case, there is an option na.strings in read.table that allows 
specification of a different missing value character, e.g. the naked decimal “ .” in SAS: 
na.strings=” .“.  Note there is a blank before the decimal in this specification, to 
make sure that decimals imbedded in numbers are not interpreted as missing values – this 
specification assumes that numeric values less than 1 are represented in the text file using 
leading zeros, i.e.  “0.XXX”.  It may be obvious from this that one must BE VERY 
CAREFUL in reading large, complex data sets (in any language, actually).  When there is 
a great deal of data, anything that can go wrong, will go wrong.  There will probably be 
“typos”, for example.  Always check the results very carefully, and be patient. 
 
Suppose the first entry of every row of the text file is a numeric value, not to be used as a 
row name.  If, as above, column names have been typed as the first row of the file (and 
now every record has the same number of items as there are column names), try 
 > my.dfr <- read.table(“filespec”, header=T) 
This will generate row numbers as default row names.  Or, you can add the option 
row.names=charvec.row in the call to read.table(), where charvec.row is 
a workspace character vector you would like to attach to the data frame as row names.  
Of course, you can also change row names easily after-the-fact with a command like 
 > row.names(my.dfr) <- charvec.row 
 
If for some reason the (column) names of the data frame cannot be included as the first 
row of the source text file, default names V1, V2, etc. will be generated; to avoid 
this, you can use the option col.names=charvec.col in the call to 
read.table().  Or, change them after-the fact with something like 
 > names(my.dfr) <- charvec.col 
 
 
5.3 The scan() function 
 
In rare cases of very complex data to be read into R, the data.frame() function may 
not have the needed flexibility.  In these instances, the scan() function, more flexible 
but more difficult to use, may fill the bill.  The help file is difficult to read, but worth the 
effort(s) if you will be inputting unwieldy data.  Useful optional arguments to scan() 
are the what, multi.line, and widths arguments.  For example, suppose we 
must read a data set with several thousand records, where each record has 50 values, 
some numeric, some character, in variable-width fields, and each record is written in 



Basics of R: A Primer  14    

several lines.  After a careful search-and-change in the text file to change missing values 
in the data to NA, the following generic call should work: 

> my.dfr <- as.data.frame(scan(“filespec”, 
+ what=list(name1=0,name2=””,name3=0,……,name50=””),  
+ multi.line=T)) 

Here, the “+” signs are supplied by R as a continuation, whenever you type a statement 
which reaches beyond the end of the command window.  The what argument in this case 
supplies a model for a single dummy record of the text file, with variable names: 
name1=0 means the first value in each record of the file is numeric; name2=”” means 
the second value is character, and so on.  Since the object assigned to what is (in this 
case) a list, scan() creates a list from the text file with element names name1, 
name2, and so on.  The as.data.frame function converts this list into a data frame; 
the list element names will become the names for the data frame my.dfr.  The 
multi.line=T option causes scan to ignore line breaks in the text file. 
 
If the data in the text file are in fixed-column format, in which case there are often no 
missing values represented in the data, the widths argument would probably be needed.  
To use it, include widths=c(3,4,2,…) anywhere in the scan argument list, where the 
values inside the c() are of course the field widths for each data record.  You may also 
want to include the option strip.white=T so that character variables’ values will not 
include leading or trailing blanks.   
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6. GETTING RESULTS OUT OF R 
 
This can be surprisingly annoying.  The most common situation seems to be the need to 
output a matrix or data frame in R to a text file.  A command like the following usually 
works: 

> write(t(mymat),”mymat.txt”, ncol=ncol(mymat)) 
Here, mymat is an existing matrix or data frame and “mymat.txt” is the desired name 
for the text file to be created; it will be created in the current directory unless you specify 
a different directory path as part of the file specification.  The “t” is the transpose 
operator, which is a necessary annoyance; the transposed matrix is not saved in the 
workspace with the command as written here.  If the values of mymat are floating point 
numeric values, you may want to substitute, e.g. round(t(mymat),digits=2) in 
place of t(mymat) to round values to two decimal places, or 
signif(t(mymat),digits=6)to write only the first 6 significant digits.  The 
ncol argument is needed in write; if you leave it off, write will simply write 5 
values per line. 
 
Another common situation is one in which a user wants a text file representation of a 
function.  This can be accomplished easily using the fix() function: 
 > fix(myfct) 
This opens a text editor (Notepad) window to allow one to modify the function code – 
simply go to File, then Save As, and type the desired name for the text representation.  
Then go back to File and Exit.  If you would like to do this for several functions / objects 
without taking the time to deal with them individually, the dump function will get 
everything out quickly, though you may not like what you get: 

> dump(c(“object1”,”object2”,…),”miscstuff.txt”) 
 

Often, especially in debugging a function, you will want to print messages to the screen 
or an output file.  The print() function will print any character or numeric object (by 
default) to the screen, or to a textfile if a file specification is given.  To combine character 
and numeric objects into one message, use paste() to glue them together into a 
character string: 

> print(paste(“Now starting iteration number”,iter)) 
Here,  iter would probably be an integer-mode counter inside a loop;  paste() 
converts the numeric value to character, binding it with the first character string. 
 
Other functions designed to get results out of R include dput() and sink(). 
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7.  ARITHMETIC 
 
For all details, reading the help(Arithmetic) and help(Syntax) files is  
recommended, along with experimentation with the operators discussed here.  The infix 
operators for addition (+), subtraction (-), multiplication (*), division (/), exponentiation 
(^), and modulo arithmetic on integer objects (%%) are most common.  Operator 
precedence is fairly standard, and is spelled out in the help files; use parentheses liberally 
to be safe.  The general use of these infix operators is  
 > new.object <- (object1 op object2) 
where op is an arithmetic infix operator and object1, object2 are integer, 
numeric or complex objects such as vectors, matrices, or arrays.  If these have the same 
length /dimensions, the result stored in new.object is of that length/dimensions, 
produced by elementwise application of the operator to the two objects.  If object1, 
object2 are not of the same length or dimensions, the smaller one is “recycled as 
necessary”.  This can be a nice feature, but can lead to major errors without error 
messages if one is not careful.  For example, in the expression 
 > new.object <- (object1 ^ object2) 
if object1 is a matrix and object2 is a scalar (a vector of length 1), then 
new.object is a matrix of the same dimensions as object1 obtained by 
exponentiating all of its elements to the power given by object2.  If object2 is a 
vector of length 2, I am not really sure what “recycling as necessary” will give you… 
 
That having been said, a little discussion regarding matrix arithmetic is appropriate.  The 
t()function transposes a matrix (exchanges rows and columns); it has no affect on an R 
vector because vectors in R have no orientation.  The command 
 > colvec <- as.matrix(myvec) 
coerces the R vector myvec to be what humans call a column vector.  The matrix and 
diag functions for creating matrices have already been mentioned; if the argument to  
diag() is a positive integer, an identity matrix of that size is created.  Try the 
command diag(10).  If A and B are matrices and the usual matrix product AB is 
defined (if and only if number of columns of A = number of rows of B), then this product 
is obtained by A%*%B.  If b is a vector such that the system of equations Ax=b is well 
defined and has a solution x, then solve(A,b) will provide one.  If b is a matrix, the 
solution is obtained by solving the systems corresponding to each column of b.  The 
inverse of a nonsingular matrix is obtained by  

> Ainv <- solve(A) 
The functions nrow(), ncol(), and dim()produce simple numeric objects describing 
the size of a matrix supplied as their argument.  The functions rbind() and cbind() 
concatenate matrices by rows or by columns, respectively.  These also can form matrices 
from vectors, if all vectors have the same length. e.g. 
 > newmat <- cbind(vec1,vec2,vec3) 
is a matrix with length(vec1)rows and three columns.  For other functions relevant 
to matrix arithmetic, please refer to the help files.  Most matrix algebra operations, 
expressions, etc. work with purely numeric data frames as well.  If not, try (carefully) 
coercing the data frame to be a matrix using as.matrix(). 
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8.  LOGICAL OBJECTS AND CONDITONAL EXECUTION 
 
An object of mode logical is a vector, matrix, array etc. whose elements consist entirely 
of TRUE or FALSE values (sometimes abbreviated just as T and F).  To see one, load 
some data 
 > data(mtcars) 
and try 
 > guzzlers <- (mtcars$mpg < 20) 
 > names(guzzlers) <- row.names(mtcars) 
 > guzzlers 
The first command of these three creates the logical vector guzzlers, with length 
equal to the length of mtcars$mpg, whose value is TRUE if the corresponding car 
(row) in mtcars gets less than 20 miles per gallon of fuel, and FALSE otherwise.  The 
other commands attach names to the vector guzzlers and display it on screen. 
 
Logical objects are invaluable for subsetting data (Ch. 9) and for conditional execution of 
statements using if() clauses.  Most logical objects are generated with a statement like 
 > logical.obj <- object1 comparison.op object2 
where object1 and object2 are usually numeric constants, vectors, matrices, or 
arrays (though character objects can be used for alphabetical comparisons) and 
comparison.op is one of the following logical infix operators:   
 > < >= <= == != 
The latter two operators above are strict equality and non-equality, respectively; note that 
“=” is not a comparison operator.  Be sure to leave a space between “<” and a negative 
sign in comparisons, or use parentheses to separate these.  As in arithmetic expressions, if 
object1 and object2 are the same length /dimensions, the comparison is done 
elementwise and the created logical object is of the same length / dimensions.  If 
object1 and object2 are not the same length / dimensions, the smaller object is 
“recycled as necessary”, generating a logical object whose length / dimensions match the 
larger of object1 and object2.  In particular, if object2 (e.g.) is a scalar, the 
command compares every element of object1 with that scalar and returns a collection  
of TRUE/FALSE results with the same size and structure as object1.   
 
Logical objects can be combined in a number of ways.  If logical.obj is a logical 
object, then !logical.obj is its complement, i.e. an object of the same size and 
structure as logical.obj with TRUE and FALSE reversed in each position.  If 
logical.obj1 and logical.obj2 are two logical objects, then  
 > logical.obj1 & logical.obj2 
(& is the “and” operator) evaluates to TRUE in every component where the compared 
elements of logical.obj1 and logical.obj2 are both TRUE  (if these objects are 
not of the same length/dimensions, the smaller one is used cyclically, cha cha cha).  In 
contrast,  
 > logical.obj1 | logical.obj2 
(| is the “or” operator) evaluates to TRUE in every component where at least one of the 
compared elements of logical.obj1 and logical.obj2 is TRUE.  There are also 
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“sequential-and” and “sequential-or” operators && and || which have similar results 
but can be more efficient. 
 
There are several important functions which use and/or return logical arguments.  We 
have already seen the query functions is.matrix, is.character, etc., which return 
a scalar TRUE or FALSE.  Other important functions involving logical objects include 
all(), any(), all.equal() and identical().  For example, 

> all(logical.obj) 
evaluates to a scalar TRUE if and only if every component of logical.obj is TRUE. 
Similarly,  
 > any(logical.obj) 
evaluates to a scalar TRUE if and only if at least one component of logical.obj is 
TRUE.   If you would like comparisons involving missing values to be ignored, add the 
argument na.rm=T inside the parentheses.   
 
The function identical() compares any two R objects and returns a scalar TRUE if 
and only if they are identical in every respect (including structure, mode, etc).  For 
example, 
 > identical(1., as.integer(1))  
is FALSE because the second object is not a floating point numeric value; 
identical() will also signal false when comparing a matrix and a data frame, even if 
their values are identical when compared componentwise. 
 
The operator == and the function identical() may signal FALSE when comparing 
numeric objects which are equal up to roundoff error (i.e. equal up to machine precision); 
this can be undesirable.  The function all.equal() compares two objects testing for 
“near equality” - the tolerance for judging equality of numeric objects can be adjusted 
(see the help file).  If it finds no “real” differences, it returns a scalar TRUE; otherwise, it 
returns a character vector describing the differences found. 
 
One can use logical expressions in an if() clause to place a condition on execution of 
statements or groups of statements.  A generic if() clause might look like this: 
 > if(logical.condition) { 
   statement1 
   statement2 
   } 
  else { 
   statement3 
   statement4 
   } 
Here, if logical.condition is TRUE, the statements in the first group of brackets 
are executed; otherwise, the statements in the second group of brackets are executed.  If 
there is only one statement in a group, the brackets are not necessary.  The else clause 
is not required if action is only to be taken when logical.condition is TRUE. 
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The logical.condition should evaluate to a scalar TRUE or FALSE; if it 
evaluates to a logical vector or matrix, only the first element will be checked to decide if 
the condition holds (mercifully, with a warning message).  For example, if you would 
like to execute an if() clause only if all elements of the numeric vector testvec are 
zero (within machine epsilon), these are all bad ways to do it: 
 > if(test.vec == 0) …  (condition evaluates to a vector) 
 > if(all(test.vec == 0)) … (tiny roundoff error causes FALSE ) 
 > if(all.equal(test.vec,0)) … (all.equal can return char. vec.) 
The recommended technique for this sort of conditional execution is to nest all.equal 
with identical: 
 > if(identical(all.equal(test.vec,0), TRUE)) … 
 
The ifelse() function conducts mass-production conditional execution over a vector 
or array, making it one of the most commonly used functions - absolutely invaluable to 
avoid looping.  A typical call looks like 
       > new.object<-ifelse(logical.obj,expression1,expression2) 
where logical.obj can be a vector or matrix of TRUEs and FALSEs, or an 
expression that evaluates to one.  The created new.object is an object of the same 
length/dimension as logical.obj with the result of expression1 found wherever  
logical.obj is TRUE; otherwise the result of expression2.  If the expressions do 
not generate objects of the same size as logical.obj, they are repeated cyclically.   
Here is a useful example, a command to replace missing values in a numeric object 
my.object with zeros: 

> my.object<-ifelse(is.na(my.object),0,my.object) 
Here is another example which creates a “truncated” mpg vector, replacing mpg values 
greater than 20 with the value 20: 

> mmp.truncated <-ifelse(mtcars$mpg>20,20,mtcars$mpg) 
 
Logical objects can also be used in arithmetic expressions: the numeric value 1 replaces 
TRUE and 0 replaces FALSE.  For all details on logical objects and operators, reading the 
help(Syntax) and help(Logic) files is highly recommended! 
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9. SUBSETTING, SORTING, AND SO ON… 
 
In Chapter 2 on objects we introduced a few simple ways to subset vectors and matrices 
(and data frames, and arrays…) using brackets [ ] with names or index numbers 
inserted to extract a vector element or a row or column from a matrix.  This technique can 
be generalized considerably.  Suppose we want to select some of the elements of an 
existing vector oldvec, and suppose index.vec is a vector giving the indices 
(numeric positions) of desired elements to extract.  The following statement 
 > newvec <- oldvec[index.vec] 
Will extract and store the desired elements in newvec in the order that they occur in 
index.vec.  For example, load the state data set again: 
 > data(state) 
and extract the last five states in reverse alphabetical order: 
 > tryit <- state.name[50:46] 
 > tryit 
 
A minus sign on an index indicates that this element is not to be extracted from the 
vector.  For example,  
 > state.name[-(31:40)] 
is all the states except those numbered 31 through 40 (so, e.g. South Carolina, number 40, 
would not be included in the extracted vector).   
 
These indexing tricks can be used to easily drop rows or columns, or extract submatrices 
from larger matrices, e.g. 
 > newmat <- bigmat[-1,] 
is everything but the first row of bigmat, 
 > newmat <- bigmat[,2:10] 
is columns 2 through ten of bigmat, and 
 > newmat <- bigmat[1:3,1:3] 
is the upper-left 3x3 submatrix of bigmat. 
 
We can also use names to extract certain elements of named vectors, matrices, and data 
frames, though this is less handy when we want to extract more than one index.  For 
example, to study data for only the Carolinas and Georgia, we might subset the matrix 
state.x77 selecting three rows as follows: 

> tristate.region <- state.x77[c(“South Carolina”, 
    ”Georgia”, ”North Carolina”),] 

> tristate.region 
Though cumbersome, using names instead of index numbers can be a safer way to extract 
values when there are missing values in the data.  For example, to do certain calculations, 
missing values will need to be removed, but after doing this the remaining data items may 
not be numbered in the way you expect! 
 
A third way to extract elements, rows, and columns is through the use of logical vectors.  
The command 
 > newvec <- oldvec[logical.vec] 
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will extract the elements of oldvec only in components for which logical.vec is 
TRUE, in the order in which TRUEs are encountered.  For example,  
 > newvec <- oldvec[oldvec>0] 
extracts the positive elements of oldvec in the order they appear and stores them in 
newvec.  Let’s try to extract the rows of state.x77 corresponding to the defined 
level SOUTH in state.region:  

> south.region <- state.x77[state.region==”South”,] 
> south.region 

Is Delaware really part of the South?  Notice that when you print the object 
state.region to the screen, the levels South, North Central, etc. do not 
appear in quotes (state.region is not a character vector – it’s a factor), but the above 
logical statement does not work properly without quotes. 
 
A number of functions can be useful in generating the information needed to generate 
index vectors, or to directly subset vectors and matrices.  See for example the help files 
for  match(), split(), sample(), unique(), cut(), table(), 
category(), tabulate(), grep(), and  charmatch(). 
 
 
The index-vector extraction technique is actually the basis for sorting of vectors, 
matrices, and data frames via the order() function: let 

> ord <- order(sortvec) 
Then ord is an index vector which maps the elements of sortvec to their locations in a 
sorted version (i.e., ord is a permutation vector).  This is easier to understand with an 
example: 

> ord <- order(state.area) 
> ord 

and we see: 
 [1] 39  8  7 11 30 21 29 45 20 48 40 19 14 17 46 35 … 
which means that the smallest state in area is the state in position 39 in state.area, 
the second smallest state is the state in position 8, and so on.   Since these are indices,   
we can use the created ord vector to create sorted versions of objects.  Try this: 

> state.name[ord] 
and we find out Rhode Island is indeed the smallest state in area.  If you want to list the 
objects in reverse order of area, try 

> ord <- rev(order(state.area)) 
> state.name[ord] 

and we discover that it is indeed true that California is the third largest state behind  
Alaska and Texas.  Instead of using the rev() function, we could have done this: 

> ord <- order(-state.area) 
 
We can use the order() function to sort an entire matrix or data frame by the elements 
of a given column or other vector of the same length.  To sort the rows of state.x77  
in order of decreasing population, we could try this: 

> Population <- state.x77[,”Population”] 
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> ord <- rev(order(Population)) 
> state.x77.popsorted <- state.x77[ord,] 
> state.x77.popsorted 

 
The function order() accepts any number of vector arguments of the same length, of 
possibly different modes, as long as each vector can be ordered by its values.  If several 
vectors are passed to order(), the output index vector is the permutation required to 
perform a nested sort.  For example, 

> ord <- order(as.character(state.region), 
(-Population)) 

is the permutation vector required to sort first by region (alphabetically), and then within 
region by decreasing Population.  Try it: 

> state.dfr <- 
  data.frame(state.name,state.region,state.x77) 
> ord <- order(as.character(state.region), 

(-Population)) 
> state.dfr<-state.dfr[ord,] 
> state.dfr 

Note that we need the as.character() function here, since the factor object 
state.region has an implied order by levels which may not be alphabetical.   
 
There is also a sort() function that accepts only a single vector argument, returning 
the sorted version.  It does not seem to have the same breadth of application as the 
order() function. 
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10.  ITERATION 
 
Recall that R was built from the AT&T package S, which is in the public domain.  The 
commercial package Splus, also built from S, existed long before R; its greatest weakness 
(besides its cost) is that it does not loop efficiently.  R is reputed to be more efficient than 
Splus for looping, but nonetheless we will try whenever we can to avoid looping, since R 
has so many built-in iterative capabilities. 
 
This will be more a matter of breaking old programming habits than anything else.  Many 
tasks traditionally done in loops can be accomplished in R with a single statement, e.g. 
squaring every element of a 1000x200 matrix A can be accomplished by the statement 
A^2 instead of two nested loops!  Most standard functions operate elementwise on 
vectors, matrices, and arrays, e.g. sin(A),exp(A) etc. producing objects of like size 
and structure.  With some thought, you can often determine a combination of functions 
that will do mass-production calculations without looping.  For example, to generate a 
matrix of random numbers, generate a large vector and shape it into a matrix using the 
matrix() function.  The kronecker() function is another useful mass-production 
function for matrix operations.  Be creative. 
 
Occasionally, a function cannot operate on entire matrices, or we would like to apply it 
repetitively, say, to the rows of a matrix.  For these instances, the apply() function will 
allow its application somewhat more efficiently than loops: 

> new.obj <- apply(array, indices, fctname, …) 
Here, the function whose name is given by fctname is to be applied to array 
(considering vectors and matrices as one- and two-dimensional arrays) over the indices 
specified in indices: rows=1, columns=2, etc.  If indices is not mentioned, the 
function is applied elementwise over the entire array.  The notation “…” in the argument 
list refers to the fact that apply will also accept as arguments any arguments that 
fctname needs. 
 
Here are some examples:  Suppose myfct can operate only on scalars: 

> newmat <- apply(oldmat,myfct) 
applies myfct separately to every element in oldmat; the results are stored in the 
matrix newmat, which has the same dimensions as oldmat.  A common task is to find 
the maximum of each row of a matrix; the command 

> max(mymat) 
will not do this, as it will find the single maximum value of the entire matrix.  To find a 
vector containing the maximum value in each row,  

> rowmaxes <- apply(mymat,1,max) 
Since the max function will by default deliver a missing value NA if it finds any missing 
values in its argument, you may want to add the max argument na.rm=T to the list: 

> rowmaxes <- apply(mymat,1,max,na.rm=T) 
Now the function will produce a vector containing the row-wise maxima in mymat, 
ignoring missing values. 
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Another frequent task is to apply a function to groups in the data, the sort of thing we use 
a BY statement for in SAS.  The tapply() function can do this, to some extent: 

> newobj <- tapply(myvec,groups,fctname, …) 
Here, groups is a factor, vector, or list of these, each the same length as myvec whose 
values or combinations of values specify subgroups for the elements of myvec.  The 
function fctname is a function that can operate on these subgroups of myvec, and “….” 
again refers to optional arguments for fctname.  An example: 

> Income <-state.x77[,”Income”] 
> medinc.byreg <- tapply(Income,state.region,median) 
> medinc.byreg 

This computes median state income by region.  There are two other apply–like 
functions, sapply() and lapply(), which can apply functions to each element of a 
list. 
 
If you MUST loop, try to keep the loop size as small as possible, and definitely try to 
avoid nested loops.  Tacking new rows onto matrices in each loop, or new elements onto 
a list, tends to be slow in Splus, so possibly so in R as well.  The syntax for looping uses 
either a for or while clause, usually something like this (e.g. to carry out a number of 
operations over each column of a matrix mymat): 

> for (j in 1:ncol(mymat)) { 
 multiple statements on, e.g. mymat[,j] 

} 
or similarly using while(logical.condition) to determine entry to, and exit 
from, the loop.  See help(Logic). 
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11.  AN INTRODUCTION TO GRAPHICS IN R 
 
One of R’s strongest virtues is its integrated graphical capabilities.  This primer will 
hardly scratch the surface on this topic, though.  For a quick tour, try  

> demo(graphics) 
> demo(image) 

 
Several graphics devices (window types) are available. The command 

> windows() 
opens the default style device.  You can open as many of these windows as you need 
(subject only to available RAM); graphical commands are by default sent to the “current 
window”, usually the most recently opened one.  If you make a mistake or for any other 
reason want to erase whatever is in the current window, entering frame() will do it.  
The command dev.off() will close all graphics windows.  Let’s plot something for 
the sake of discussion: a plot of 100 generated standard Normal deviates in the order they 
are generated: 

> zvars<-rnorm(100) 
> plot(zvars) 

 
If it is not already active, activate your window by clicking anywhere in its frame, or by 
choosing it under the Windows menu.  Once a graphics window is activated, a different 
set of menus is available at upper left.  The most important options available there are 
under the File menu; they include 

• Save As:  this allows the graph to be saved as a graphics file in any of several 
standard formats.  I generally save graphs in Metafile format for easy insertion 
into MicroSoft documents later. 

• Copy to the Clipboard: this is an attractive option if you will paste the graph 
immediately into another document.  Again, I generally use Metafile format. 

• Print: self-explanatory; the Properties button will allow for some flexibility in the 
printing, especially to allow printing to be done in either portrait or landscape 
mode. 

 
R has standard ways of formatting graphics, e.g. the font styles, colors, box around the 
plot, etc, which you can modify.  The current choices for an active graphics device can be 
viewed and/or modified with a call to the function par().  Let’s look at the default 
values: 

> par() 
As you see, there are many of these graphical parameters; unfortunately their names are 
not in every case intuitive.  To gain complete expertise in using R’s graphics, one finds 
himself reading (and rereading, and rereading) the help file for par()!  The default 
choice of parameters can be changed by a call to par(), e.g. (don’t do this please): 

> par(pty=”s”,bty=”l”,lwd=2,pin=c(3,3),las=1) 
will force all plots made on the graphics device to be square, and to have an “L” shaped 
box instead of a box completely around the plot, and to have line widths doubled over the 
default width, and to have a plot which is 3”x3” in size, and to have axis labels which are 
horizontal rather than perpendicular to the axes (the default).  A given set of parameters 
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can be saved as a list with a name and recalled later R.  Also, whatever choice is stored 
there can generally be overridden in the creation of any given plot using keywords and 
new values. 
 
 
11.1 Single Variable Graphical Descriptives 
 
Let’s do a little exploring using the state.dfr data frame: 

> data(state) 
> state.dfr <- 
  data.frame(I(state.abb),state.region,state.x77) 
> attach(state.dfr) 

We will start with quick-n-dirty draft graphics for describing data distributions.  A 
histogram of the state populations can be obtained easily: 

> hist(Population) 
The default title can be changed through the argument main: 

> hist(Population,  
main=”Population in 10,000s by State, 1977”) 

A fancier “smoothed” histogram or density plot is available with only a little more work: 
> plot((density(Population)) 

The call to density actually creates a list which includes a grid of x-values (for the 
horizontal axis) and the values of the density estimate (y) over each of these.  See the 
help file for density to learn how to vary (e.g.) the bandwidth for calculatring the 
smoothed histogram.  The function plot notices the structure of its argument and 
responds by plotting points with no plotting symbols, connected by lines, to form a 
smooth curve.  This is another good example of the fact that plot is a generic function.   
Try to construct a smoothed histogram of the zvars data. 
 
A great number of other single-variable graphical descriptives are available.  See the help 
files for boxplot(),barplot(), pie(), and stem(), for example. 
 
 
11.2 Scatter Plots and Function Plots 
 
For a simple scatter plot of two variables, specify the variables in a call to plot() 
(horizontal axis variable first).  For example, 

> plot(Illiteracy,Murder) 
We can attempt to make the graph more attractive with some options: 

> plot(Illiteracy,Murder,las=1,lwd=2,cex=1.2,pch=19, 
  xlab=”Percent Illiterate”,ylab=””) 
> title(“Murders per 100,000 vs. Percent Illiterate”) 
> text(2,4,”The 50 States”,cex=1.2, adj=0, col=2) 

The graphical parameters las and lwd controlling axis-label style and line widths have 
been mentioned already.  The choice pch=19 calls for a solid-circle plotting symbol.  
The cex argument changes font size (“character expansion”): if less than 1, it shrinks the 
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characters; if greater than 1, it expands them.  The axis labels (or lack thereof) are 
specified by xlab and ylab.   
 
The title and text commands add to the existing plot.  There are a great number of 
other functions that add to plots: see the help files for points(), lines(), 
symbols(), arrows(), segments(), mtext(), polygon(), 
legend(), and axis().  For most of these, the first two arguments are x,y 
coordinates (possibly vectors of these) of the location(s) on the plot where text, points, 
etc. are to be added, using the current axis system set up on the active plot (note these 
values may at times differ from the labels shown on the axes).  For example, in the text 
statement above, the values 2,4 specify that the provided text string is to be located at 
those coordinates;  adj=0 means that the string will be left-justified at that spot 
(adj=0.5, the default, will center text, and adj=1 will right-justify text, at the 
supplied coordinates).  The col=2 argument specifies a color number from the current 
color scheme.  Alternately, you may specify a color with a character string (see 
help(colors)). 
 
The locations of add-on text and symbols can also be determined interactively with the 
locator() function.  For example, enter the following command: 

> text(locator(1),”1977”,cex=1.2, adj=0, col=2) 
After entering this, click (with the left mouse button) on the plot at the point you would 
like this left-justified text string “1977” to begin. 
 
A common task in the Statistics business is to plot a smooth function f(x) versus some 
values x.  Often this smooth curve is superimposed on a scatter plot of points.  If the 
values in a vector xgrid have been sorted, and yhat is the corresponding vector of 
function values f(x), then  

> plot(xgrid,yhat,type=”l”) 
will create a basic lineplot for these values.  If we are adding to an existing plot, 

> lines(xgrid,yhat) 
will do the job, as long as the existing plot’s axes are matched up well to the values in 
xgrid and yhat.   
 
As a simple example, let’s fit a quadratic function to the Murder vs. Illiteracy data by 
least squares, and superimpose the fitted curve on the scatter plot.  Without getting 
bogged down in how to fit the regression… 

> Illiteracy2 <- Illiteracy^2 
> lm(Murder ~ Illiteracy + Illiteracy2) 

This fits the quadratic regression model and (since we have not assigned a name to the 
results) prints a summary on the screen.  From this fitted model we can generate a grid of 
values for the x (Illiteracy) axis, Illgrid, and a vector of fitted values Murderhat 
evaluated on this grid (there are easier, but more confusing, ways to do this): 

> Illgrid <- pretty(Illiteracy,50) 
> Murderhat <- 1.6627+5.5642*Illgrid–0.4586*Illgrid^2 

Finally, we can add the curve to the plot: 
> lines(Illgrid,Murderhat,lty=2,lwd=2,col=2) 
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> text(0.5,14,”With Fitted Quadratic”, adj=0, col=2) 
Not really an excellent fit…maybe we should try a different model…. 
 
Presentation-quality and publication-quality graphics often require a high degree of user 
control over the plotting package.  This can be managed in R by putting your plot 
together piece by piece.  You will probably want to write a function (see Chapter 12) to 
do this, since the function can be changed easily and re-called to reconstruct the graphic 
when your teacher (or your co-author, or the journal editor, or the Grad School 
office…etc) suggests changes. 
 
The first step in a plot put together piece-by-piece is construction of an “empty plot”, one 
which exists only to set up an axis system to locate add-ons: 

> plot(xvec,yvec, 
 type=”n”,xaxt=”n”,xlab=””,yaxt=”n”,ylab=””) 

This statement seems to create an empty box (you can opt not to have the box, too) but 
sets up a coordinate system necessary to include the values contained in xvec and 
yvec.  The default x-axis and its label are suppressed by the options xaxt=”n”, 
xlab=””; these can be added after-the-fact with (e.g.) an axis() statement. 
After an “empty plot” statement like the above, you can add points, curves, line 
segments, symbols, arrows, text strings, and so on to your heart’s content.   
 
This “empty plot” stepwise technique is what I prefer to make plots with multiple curves 
and/or scattered points.  There is also a function matplot() that can superimpose 
multiple curves and/or scatter plots by plotting all columns of a matrix, but it seems less 
flexible than what is often needed. 
 
 
11.3 Multiple Plots on a Page 
 
One can accomplish this with a very good degree of control using par() and a lot of 
care; I have examples.  To do this very well is often a lot of work, though.  The easy way 
to construct multiple plots an a single page is through the mfrow and/or mfcol 
parameters in par().  For example, suppose we desire two plots side-by-side on a page 
(i.e. in 1 row, with 2 columns).  After opening a graphics window, set  

> par(mfrow=c(1,2)) 
Then proceed with both of your plots.  When R encounters the second plot statement, it 
assumes the first plot is finished; any additions after that point will be made to the second 
plot.  If  you would like 6 plots laid out in two rows of three plots each, use 
par(mfrow=c(2,3)) or par(mfcol=c(2,3)).  The difference between these 
two choices is the order in which plots are created (by row for mfrow, by column for 
mfcol).  Below is a slightly complicated example that also demonstrates for loops and 
yields a useful souvenir.  Type these commands very carefully, exactly as shown.  The 
result is shown below the code.  You may want to make a hard copy of this figure for 
future reference, if you have a printer handy. 
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> windows() 
> par(mfrow=c(1,2),pty=”s”) 
> plot(1:25,1:25,type=”n”) 
> for (i in 1:25) points(i,i,pch=i,cex=0.7) 
> title(“25 pch symbols”) 
> plot(1:6,1:6,type=”n”) 
> for (i in 1:6) lines(c(1,6),c(i,i),lty=i,lwd=2) 
> title(“6 lty line types”) 
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11.4 Three-D plots 
 
Three-D plots represent the values of a numeric matrix as a third dimension, with the row 
and column indices (or numeric vectors of the same lengths) representing the first two 
dimensions.  There are at least four types in R:  contour(),filled.contour(), 
persp() and image().  The most basic call is of the form (e.g. for contour) 

> contour(zmatrix) 
 
Let’s try this for the built-in numeric matrix of approximate topographic information on 
the Maunga Whau volcano in Auckland, New Zealand: 

> data(volcano) 
> contour(volcano) 

Try the filled.contour(), persp() and image()  plots on this data, too.  To 
modify colors used, see the help file for the heat.colors(), topo.colors(), 
terrain.colors(), and/or palette() functions.   
 
Unless more meaningful values are provided, these functions use the row and column 
indices to determine the x- and y-values, scaling these to lie between 0 and 1.  If 
meaningful x- and y-values are available (e.g. latitude and longitude values, or so-called 
“easting” and “northing” values, these can be provided in the call, something like this: 
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> contour(xvec, yvec, zmatrix) 
All of these functions, of course, accept graphical parameters to “pretty them up”; all can 
be enhanced using the created x-y coordinate system and adding text, symbols, etc.  The  
contour function can output a list of contour-curve coordinates which might be useful. 
Contours can also be added to an existing plot. 
 
 
11.5 Interactive Graphics and Exploratory Data Analysis 
 
Close all plots now by entering graphics.off() as many times as needed.  Then 
reconstruct the basic plot of Murder vs. Illiteracy: 

> plot(Illiteracy,Murder) 
R offers some capability to interact with plots; for example, if we are curious about an 
unusual point on a plot, we may be able to identify it.  Suppose the plot’s points are given 
by vectors xvec and yvec, and there is another vector of labels for these points (of 
exactly the same length; all three vectors must be sorted in the same way – be careful!).  
A generic call to the identify() function, after the scatter plot has been constructed, 
looks like: 

> weirdos <- identify(xvec,yvec,labels) 
After entering this command, using the leftmost mouse button, click on a point on the 
plot and its label should appear near the point.  You may identify as many points as you 
like in this way.  When finished, click the right mouse button and choose Stop.  The 
created object, here called weirdos, is a vector containing the indices of the identified 
points, in the order identified.  These indices could be used to extract these points from 
xvec and yvec or a data frame or matrix having the same number of rows as labels. 
 
For example, suppose we are curious which state has the highest murder rate.  Let’s find 
out.   

> mypoints <- identify(Illiteracy,Murder,state.abb) 
Now click under the point with the highest murder rate.  Continue clicking as long as 
your curiosity drives you.  When finished, click the right mouse button and choose Stop.  
Now investigate the created object mypoints : 

> mypoints 
> state.abb[mypoints] 

 
The capability to interactively identify points on scatter plots is one of the basic tools of 
EDA (Exploratory Data Analysis), credited largely to John Tukey.  Another EDA tool is 
the scatter plot matrix, whose generic call is something like this: 

> pairs(num.matrix) 
Try it on four of the yvec variables to explore relationships between education, murder 
rate, and life expectancy: 

> pairs(state.x77[,3:6]) 
Crowded as it is, this plot allows us to quickly examine every pairwise relationship.   
 
Another graphical technique related to the scatterplot matrix is the conditioning plot or 
“coplot”.  In a coplot, a variable y would be plotted against another variable x, separately 
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for each value of a grouping variable.  It has a somewhat unusual syntax.  Here is a call 
for the Murder vs. Illiteracy data, conditioning on state.region: 

> coplot( Murder ~ Illiteracy | state.region) 
A data frame containing the variables must usually be attached, or can be referenced as 
part of the function call using the data= argument. 
 
The original S package had even more built-in interactive capabilities, and Splus has 
retained these, but R (as part of the base package) unfortunately has not.  These include 
“brushing” and “spinning”.  In brushing, a scatter plot matrix is first constructed, and 
then points on any given plot are identified using the mouse.  As they are identified on 
any one plot, the same points are highlighted on every plot.  In spinning, three variables 
are plotted on x-y-z axes, and using the mouse the user is capable of spinning the axes to 
give the illusion of a three-dimensional point cloud.  What actually happens is that 2-
dimensional projections of the three-tuples are computed quickly and plotted, then 
recomputed and replotted, and the viewer “fills in” the illusion of three-dimensional form 
in a fashion similar to what happens with 3-D glasses.  These capabilities have been 
removed from the base package for R, but can be added as optional packages.   
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12.  AN INTRODUCTION TO FUNCTION WRITING 
 
R will be most useful to you when you become comfortable writing your own functions.  
As an example, the next page shows a text file which is a home-written function to 
perform a two-sample t-test and confidence interval for a difference of population means 
(this is the t-procedure that assumes independent samples and uses the pooled sample 
variance).  We will get this into R in three steps: 
 
1. Write the function commands carefully in a text file.  Note that the function begins 

with the word function followed by parentheses containing argument names and, 
if desired, their default value assignments.  For example, in this case, the default 
value for alpha is 0.05, and for header (the plot title) is a blank.  Immediately 
following the closing parenthesis after the argument list is a left brace (“curly 
bracket”).  All actual function statements must lie between this brace and its closing 
right brace.  The first few lines of the function should be documentation comments, 
statements starting with # signs, explaining briefly what the function does, what it 
accepts as its input arguments, and what kind of object, if any, it returns.  When you 
are fairly sure that the function is correctly written, select the text and copy it to the 
clipboard. 

 
2. Use the fix() function to create an “empty” function with the appropriate name (I 

try to use verbs in function names to help find them in the workspace…or an 
extension like “myfct”): 

> fix(twosamp.myfct) 
This opens a text editor window.  At this point should only be the words  
“function() {}”; delete these (without copying them to the clipboard) and  
paste your own function text there in their place.  Then go to File, Save, and Exit.   

 
3. (a)  If you then return to the R prompt with no error messages, your function has, as 

far as R can tell, no obvious syntax errors and now resides in your workspace.  Check 
it by issuing the ls() command or typing its name at the prompt (e.g.): 

> twosamp.myfct 
(b)  If, however, when you quit your fix() session, you receive an error message 
similar to this one: 

Error in edit(name, file, editor) : An error occurred… 
(etc etc some sketchy details will be provided) 
use a command like 
 x <- edit() 
 to recover 

This means that the R syntax-checker has found fault with what you wrote - for 
example, there may be left parentheses or braces without matching right parentheses 
or braces.  The original function (in this case twosamp.myfct) has not been placed 
in the workspace yet.  If you have a text file containing the function as it was pasted 
in, it may be best to go back to that text file, modify it as best you can in response to 
the error messages, save it and copy it to the clipboard, and then repeat step 2 above.  
If you do not have a text file version of the function as you modified it, be very 
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careful at this step or you will lose the work you did during the most recent fix() 
session.  To get back to the text file you were just working on, issue the command 
(e.g. if the function name is twosamp.myfct) 

> twosamp.myfct <- edit() 
If you make more changes, you might want to save the results as a text file, using File 
⇒ Save As, in case you can’t find your syntax errors during this R session. 

 
As an exercise, at this point you should create a text file twosamp.myfct.txt from 
the code shown below, and try to get it into R as a function.  Try to understand what each 
command of the function is accomplishing. 
 
 
function(yvec,trtvec,alpha=0.05,header="") { 
################################################# 
# A function to compute a two-sample t-test and confidence 
# interval (equal-variance, independent samples).  yvec is 
# a numeric vector containing both samples' data.  trtvec  
# is a vector, same length as yvec, of treatment 
# identifiers for the data in yvec.  A boxplot comparing 
# the treatments' data is constructed.  Output is a one-row 
# data frame reporting the results of the test and  
# confidence interval 
################################################## 
trtvec<-as.factor(trtvec) 
boxplot(split(yvec,trtvec)) 
title(header) 
ybar<-tapply(yvec,trtvec,mean) 
varvec<-tapply(yvec,trtvec,var) 
nvec<-table(trtvec) 
error.df<-nvec[1]+nvec[2]-2 
pooled.var<-((nvec[1]-1)*varvec[1]+(nvec[2]-
1)*varvec[2])/error.df 
diff12estimate<-ybar[1]-ybar[2] 
stderr<-sqrt(pooled.var*((1/nvec[1])+(1/nvec[2]))) 
tratio<-diff12estimate/stderr 
twosidedP<-2*(1-pt(abs(tratio),error.df)) 
tcrit<-qt(1-alpha/2,error.df) 
lower<-diff12estimate-tcrit*stderr 
upper<-diff12estimate+tcrit*stderr 
out<-
data.frame(diff12estimate,stderr,tratio,twosidedP,lower,upp
er,alpha) 
out 
} 
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As another exercise, open your function as though you wish to modify it further: 
> fix(twosamp.myfct) 

Now, remove a parenthesis or a brace somewhere, Save, and Exit.  This should cause you 
to be in case 3b above.  Try to get back to your function using the edit()command as 
discussed earlier, and replace the missing brace / parenthesis. 
 
Some general rules and comments about functions: 
• If the function will return anything to the calling program, it can return one and only 

one object, though this object may be a list.  This one object is simply named in the 
last statement of the function, before the closing “}” brace.   

• The function statements can operate on data passed as arguments (using the 
function’s argument names, not the names of the same objects as they exist outside 
the function), or on objects it creates, or on objects that already existed outside the 
function in the workspace or search list before the function was called.  Any objects 
created by the function will not be saved when the function terminates, unless they 
are passed back in the final statement.  However, changes to the search list seem to be 
preserved even after the function terminates (e.g. if the function creates and attaches a 
data frame, that data frame seems to still be present when the function terminates). 

 
To test out our new function for doing two-sample t-tests, what better data set to use than 
the one used by W.S. Gossett (“Student”) in his 1908 article on the t-distribution?  Load 
the data: 

> data(sleep) 
By entering help(sleep)we find that this is a 20-row data frame containing two 
columns; the second column identifies a “soporific treatment” applied to a subject.  This 
column group is a factor object with levels “1” and “2”.  The first column extra gives 
the extra sleep in hours over some baseline amount for that subject.  Before calling 
twosamp.myfct, check the workspace contents.  Then call it as follows: 

> results <- twosamp.myfct(sleep$extra, sleep$group) 
We see the created boxplots of the two groups’ data.  We can view our numerical output 
by naming the created object: 

> results 
Of course, if we had not assigned the function output to an object name, these results 
would have been printed on the screen without being saved in the workspace. 
 
Once your function is into R, you are not necessarily home free.  There may be syntax 
errors which cannot be caught until run time, and then there are always those wonderful 
logical errors under which the function will run just fine but produce erroneous output.  R 
has a terrific tool for debugging functions known as the browser.  To use it, simply edit 
your dysfunctional function with, e.g.  

> fix(my.fct) 
and insert the command  

browser() 
at a strategic spot; perhaps the spot just before the trouble seems to occur, if you have any 
clue.  Save and quit the function; then try to run it again.  This time, the browser will 
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stop the function at exactly the spot you inserted it, and give you a browser prompt, 
something like this: 

Browse[1]> 
From this prompt, you can issue commands to examine all the objects that the function 
has created up to this point.  If you don’t remember what your own buggy function looks 
like, enter its name and it’ll appear on screen (including the browser command).  
Usually a quick inspection of objects created just before this spot and/or their attributes or 
dimensions, etc., or a plot or two, will reveal the problem(s).  Or, you can copy and paste 
statements from the function code following the browser command and see where the 
crash actually occurs.  At any rate, when you are finished browsing around and want to 
continue executing the function, enter “c” at the browser prompt, 

Browse[1]> c 
and the function will resume execution at the next command.  Or, if you prefer, enter Q, 

Browse[1]> Q 
and R will quit executing the function altogether (note the capital Q).  Or, enter n, 

Browse[1]> n 
and this will bring up the next command after the browser() command inside the function 
for your inspection. 
 
When you are finished investigating your buggy function, enter Q and re-edit the function 
with, e.g.  

> fix(my.fct) 
and make the changes.  You may want to remove the browser() command now, or 
move it further down the function code if you expect more errors. 
 
Once you get your function running, don’t forget to make a text file copy.  You are 
required to give me $1 every time you do this and forget to remove the browser() 
command.  
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