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We propose a data mining approach to predict humanwine taste preferences that is based on easily available
analytical tests at the certification step. A large dataset (when compared to other studies in this domain) is
considered, with white and red vinho verde samples (from Portugal). Three regression techniques were
applied, under a computationally efficient procedure that performs simultaneous variable and model
selection. The support vector machine achieved promising results, outperforming the multiple regression
and neural network methods. Such model is useful to support the oenologist wine tasting evaluations and
improve wine production. Furthermore, similar techniques can help in target marketing by modeling
consumer tastes from niche markets.
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1. Introduction
Once viewed as a luxury good, nowadays wine is increasingly
enjoyed by a wider range of consumers. Portugal is a top ten wine
exporting country, with 3.17% of the market share in 2005 [11].
Exports of its vinho verde wine (from the northwest region) have
increased by 36% from 1997 to 2007 [8]. To support its growth, the
wine industry is investing in new technologies for both wine making
and selling processes. Wine certification and quality assessment are
key elements within this context. Certification prevents the illegal
adulteration of wines (to safeguard human health) and assures quality
for the wine market. Quality evaluation is often part of the
certification process and can be used to improve wine making (by
identifying the most influential factors) and to stratify wines such as
premium brands (useful for setting prices).

Wine certification is generally assessed by physicochemical and
sensory tests [10]. Physicochemical laboratory tests routinely used to
characterize wine include determination of density, alcohol or pH
values, while sensory tests rely mainly on human experts. It should be
stressed that taste is the least understood of the human senses [25]
thus wine classification is a difficult task. Moreover, the relationships
between the physicochemical and sensory analysis are complex and
still not fully understood [20].

Advances in information technologies have made it possible to
collect, store and process massive, often highly complex datasets. All
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this data hold valuable information such as trends and patterns, which
can be used to improve decision making and optimize chances of
success [28]. Data mining (DM) techniques [33] aim at extracting
high-level knowledge from raw data. There are several DM algorithms,
each one with its own advantages. When modeling continuous data,
the linear/multiple regression (MR) is the classic approach. The
backpropagation algorithmwas first introduced in 1974 [32] and later
popularized in 1986 [23]. Since then, neural networks (NNs) have
become increasingly used. More recently, support vector machines
(SVMs) have also been proposed [4,26]. Due to their higher flexibility
and nonlinear learning capabilities, both NNs and SVMs are gaining an
attention within the DM field, often attaining high predictive
performances [16,17]. SVMs present theoretical advantages over
NNs, such as the absence of local minima in the learning phase. In
effect, the SVM was recently considered one of the most influential
DM algorithms [34].While theMRmodel is easier to interpret, it is still
possible to extract knowledge from NNs and SVMs, given in terms of
input variable importance [18,7].

When applying these DM methods, variable and model selection
are critical issues. Variable selection [14] is useful to discard irrelevant
inputs, leading to simpler models that are easier to interpret and that
usually give better performances. Complex models may overfit the
data, losing the capability to generalize, while a model that is too
simple will present limited learning capabilities. Indeed, both NN and
SVM have hyperparameters that need to be adjusted [16], such as the
number of NN hidden nodes or the SVM kernel parameter, in order to
get good predictive accuracy (see Section 2.3).

The use of decision support systems by thewine industry is mainly
focused on the wine production phase [12]. Despite the potential of
DM techniques to predict wine quality based on physicochemical data,
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1 The datasets are available at: http://www3.dsi.uminho.pt/pcortez/wine/.
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their use is rather scarce and mostly considers small datasets. For
example, in 1991 the “Wine” dataset was donated into the UCI
repository [1]. The data contain 178 examples with measurements of
13 chemical constituents (e.g. alcohol, Mg) and the goal is to classify
three cultivars from Italy. This dataset is very easy to discriminate and
has been mainly used as a benchmark for new DM classifiers. In 1997
[27], a NN fed with 15 input variables (e.g. Zn andMg levels) was used
to predict six geographic wine origins. The data included 170 samples
from Germany and a 100% predictive rate was reported. In 2001 [30],
NNs were used to classify three sensory attributes (e.g. sweetness) of
Californianwine, based on grapematurity levels and chemical analysis
(e.g. titrable acidity). Only 36 examples were used and a 6% error was
achieved. Several physicochemical parameters (e.g. alcohol, density)
were used in [20] to characterize 56 samples of Italian wine. Yet, the
authors argued that mapping these parameters with a sensory taste
panel is a very difficult task and instead they used a NN fed with data
taken from an electronic tongue. More recently, mineral characteriza-
tion (e.g. Zn and Mg) was used to discriminate 54 samples into two
red wine classes [21]. A probabilistic NN was adopted, attaining 95%
accuracy. As a powerful learning tool, SVM has outperformed NN in
several applications, such as predicting meat preferences [7]. Yet, in
the field of wine quality only one application has been reported,
where spectral measurements from 147 bottles were successfully used
to predict 3 categories of rice wine age [35].

In this paper, we present a case study for modeling taste
preferences based on analytical data that are easily available at the
wine certification step. Building such model is valuable not only for
certification entities but also wine producers and even consumers. It
can be used to support the oenologist's wine evaluations, potentially
improving the quality and speed of their decisions. Moreover,
measuring the impact of the physicochemical tests in the final wine
quality is useful for improving the production process. Furthermore, it
can help in target marketing [24], i.e. by applying similar techniques to
model the consumer's preferences of niche and/or profitable markets.

The main contributions of this work are:

• We present a novel method that performs simultaneous variable
and model selection for NN and SVM techniques. The variable
selection is based on sensitivity analysis [18], which is a computa-
tionally efficient method that measures input relevance and guides
the variable selection process. Also, we propose a parsimony search
method to select the best SVM kernel parameter with a low
computational effort.

• We test such approach in a real-world application, the prediction of
vinho verde wine (from the Minho region of Portugal) taste
preferences, showing its impact in this domain. In contrast with
previous studies, a large dataset is considered, with a total of 4898
white and 1599 red samples. Wine preferences are modeled under a
regression approach, which preserves the order of the grades, and
we show how the definition of the tolerance concept is useful for
accessing different performance levels. We believe that this
integrated approach is valuable to support applications where
ranked sensory preferences are required, for example in wine or
meat quality assurance.

The paper is organized as follows: Section 2 presents the wine
data, DM models and variable selection approach; in Section 3, the
experimental design is described and the obtained results are
analyzed; finally, conclusions are drawn in Section 4.

2. Materials and methods

2.1. Wine data

This study will consider vinho verde, a unique product from the
Minho (northwest) region of Portugal. Medium in alcohol, is it
particularly appreciated due to its freshness (specially in the
summer). This wine accounts for 15% of the total Portuguese
production [8], and around 10% is exported, mostly white wine. In
this work, we will analyze the two most common variants, white and
red (rosé is also produced), from the demarcated region of vinho
verde. The datawere collected fromMay/2004 to February/2007 using
only protected designation of origin samples that were tested at the
official certification entity (CVRVV). The CVRVV is an inter-profes-
sional organization with the goal of improving the quality and
marketing of vinho verde. The data were recorded by a computerized
system (iLab), which automatically manages the process of wine
sample testing from producer requests to laboratory and sensory
analysis. Each entry denotes a given test (analytical or sensory) and
the final database was exported into a single sheet (.csv).

During the preprocessing stage, the database was transformed in
order to include a distinct wine sample (with all tests) per row. To
avoid discarding examples, only the most common physicochemical
tests were selected. Since the red and white tastes are quite different,
the analysis will be performed separately, thus two datasets1 were
built with 1599 red and 4898 white examples. Table 1 presents the
physicochemical statistics per dataset. Regarding the preferences,
each sample was evaluated by a minimum of three sensory assessors
(using blind tastes), which graded thewine in a scale that ranges from
0 (very bad) to 10 (excellent). The final sensory score is given by the
median of these evaluations. Fig. 1 plots the histograms of the target
variables, denoting a typical normal shape distribution (i.e. with more
normal grades that extreme ones).

2.2. Data mining approach and evaluation

Wewill adopt a regression approach, which preserves the order of
the preferences. For instance, if the true grade is 3, then a model that
predicts 4 is better than one that predicts 7. A regression dataset D is
made up of k {1,…, N} examples, each mapping an input vector with I
input variables (x1k,…, xI

k) to a given target yk. The regression
performance is commonly measured by an error metric, such as the
mean absolute deviation (MAD) [33]:

MAD =
XN

i = 1
jyi − yˆ i j =N ð1Þ

where ŷk is the predicted value for the k input pattern. The regression
error characteristic (REC) curve [2] is also used to compare regression
models, with the ideal model presenting an area of 1.0. The curve plots
the absolute error tolerance T (x-axis), versus the percentage of points
correctly predicted (the accuracy) within the tolerance (y-axis).

The confusion matrix is often used for classification analysis,
where a C×C matrix (C is the number of classes) is created by
matching the predicted values (in columns) with the desired classes
(in rows). For an ordered output, the predicted class is given by pi=yi,
if |yi− ŷi|≤T, else pi=yi′, where yi′ denotes the closest class to ŷi, given
that yi′≠yi. From the matrix, several metrics can be used to access the
overall classification performance, such as the accuracy and precision
(i.e. the predicted column accuracies) [33].

The holdout validation is commonly used to estimate the general-
ization capability of a model [19]. This method randomly partitions
the data into training and test subsets. The former subset is used to fit
the model (typically with 2/3 of the data), while the latter (with the
remaining 1/3) is used to compute the estimate. A more robust
estimation procedure is the k-fold cross-validation [9], where the data
is divided into k partitions of equal size. One subset is tested each time
and the remaining data are used for fitting the model. The process is
repeated sequentially until all subsets have been tested. Therefore,

http://www3.dsi.uminho.pt/pcortez/wine/


Table 1
The physicochemical data statistics per wine type.

Attribute
(units)

Red wine White wine

Min Max Mean Min Max Mean

Fixed acidity (g(tartaric acid)/dm3) 4.6 15.9 8.3 3.8 14.2 6.9
Volatile acidity (g(acetic acid)/dm3) 0.1 1.6 0.5 0.1 1.1 0.3
Citric acid (g/dm3) 0.0 1.0 0.3 0.0 1.7 0.3
Residual sugar (g/dm3) 0.9 15.5 2.5 0.6 65.8 6.4
Chlorides (g(sodium chloride)/dm3) 0.01 0.61 0.08 0.01 0.35 0.05
Free sulfur dioxide (mg/dm3) 1 72 14 2 289 35
Total sulfur dioxide (mg/dm3) 6 289 46 9 440 138
Density (g/cm3) 0.990 1.004 0.996 0.987 1.039 0.994
pH 2.7 4.0 3.3 2.7 3.8 3.1
Sulphates (g(potassium sulphate)/dm3) 0.3 2.0 0.7 0.2 1.1 0.5
Alcohol (vol.%) 8.4 14.9 10.4 8.0 14.2 10.4
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under this scheme, all data are used for training and testing. However,
this method requires around k times more computation, since k
models are fitted.

2.3. Data mining methods

We will adopt the most common NN type, the multilayer
perceptron, where neurons are grouped into layers and connected
by feedforward links [3]. For regression tasks, this NN architecture is
often based on one hidden layer of H hidden nodes with a logistic
activation and one output node with a linear function [16]:

ŷ = wo;0 +
Xo−1

j= I + 1

1

1 + exp −PI
i = 1 xiwj;i − wj;0

� � �wo;i ð2Þ

where wi,j denotes the weight of the connection from node j to i and
o the output node. The performance is sensitive to the topology
choice (H). A NN with H=0 is equivalent to the MR model. By
increasing H, more complex mappings can be performed, yet an
excess value of H will overfit the data, leading to generalization loss.
A computationally efficient method to set H is to search through the
range {0, 1, 2, 3,…, Hmax} (i.e. from the simplest NN to more complex
ones). For each H value, a NN is trained and its generalization
estimate is measured (e.g. over a validation sample). The process is
stopped when the generalization decreases or when H reaches the
maximum value (Hmax).

In SVM regression [26], the input xaRI is transformed into a high
m-dimensional feature space, by using a nonlinear mapping (ϕ) that
does not need to be explicitly known but that depends of a kernel
function (K). The aim of a SVM is to find the best linear separating
Fig. 1. The histograms for the red a
hyperplane, tolerating a small error (ε) when fitting the data, in the
feature space:

ŷ = w0 +
Xm

i=1

wi/i xð Þ ð3Þ

The ε-insensitive loss function sets an insensitive tube around the
residuals and the tiny errors within the tube are discarded (Fig. 2).

We will adopt the popular Gaussian kernel, which presents less
parameters than other kernels (e.g. polynomial) [31]: K(x, x′)=
exp(−γ||x−x′||2), γN0. Under this setup, the SVM performance is
affected by three parameters: γ, ε and C (a trade-off between fitting
the errors and the flatness of the mapping). To reduce the search space,
the first two values will be set using the heuristics [5]: C=3 (for a
standardized output) and e = σ̂ =

ffiffiffiffi
N

p
, where σ̂=1.5/N×∑i=1

N (yi−ŷi)2

and ŷ is the value predicted by a 3-nearest neighbor algorithm. The
kernel parameter (γ) produces the highest impact in the SVM
performance, with values that are too large or too small leading to
poor predictions. A practical method to set γ is to start the search from
one of the extremes and then search towards the middle of the range
while the predictive estimate increases [31].

2.4. Variable and model selection

Sensitivity analysis [18] is a simple procedure that is applied after
the training phase and analyzes the model responses when the inputs
are changed. Originally proposed for NNs, this sensitivity method can
also be applied to other algorithms, such as SVM [7]. Let ŷaj denote the
output obtained by holding all input variables at their average values
except xa, which varies through its entire range with j∈{1,…, L}
levels. If a given input variable (xa∈{x1,…, xI}) is relevant then it
nd white sensory preferences.



Fig. 2. Example of a linear SVM regression and the ε-insensitive loss function (adapted
from [26]).
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should produce a high variance (Va). Thus, its relative importance (Ra)
can be given by:

Va =
PL

j = 1 ŷaj −ŷaj

� �2
= L − 1ð Þ

Ra = Va =
PI

i = 1 Vi × 100 kð Þ
ð4Þ

In this work, the Ra values will be used to measure the importance
of the inputs and also to discard irrelevant inputs, guiding the variable
selection algorithm. We will adopt the popular backward selection,
which starts with all variables and iteratively deletes one input until a
stopping criterion is met [14]. Yet, we guide the variable deletion (at
each step) by the sensitivity analysis, in a variant that allows a
reduction of the computational effort by a factor of I (when compared
to the standard backward procedure) and that in [18] has out-
performed other methods (e.g. backward and genetic algorithms).
Similarly to [36], the variable and model selection will be performed
simultaneously, i.e. in each backward iteration several models are
searched, with the one that presents the best generalization estimate
selected. For a given DM method, the overall procedure is depicted
bellow:

(1) Start with all F={x1,…, xI} input variables.
(2) If there is a hyperparameter P∈ {P1,…, Pk} to tune (e.g. NN or

SVM), start with P1 and go through the remaining range until
the generalization estimate decreases. Compute the general-
ization estimate of the model by using an internal validation
method. For instance, if the holdout method is used, the
available data are further split into training (to fit the model)
and validation sets (to get the predictive estimate).

(3) After fitting the model, compute the relative importances (Ri)
of all xi∈F variables and delete from F the least relevant input.
Go to step 4 if the stopping criterion is met, otherwise return to
step 2.

(4) Select the best F (and P in case of NN or SVM) values, i.e., the
input variables and model that provide the best predictive
estimates. Finally, retrain this configuration with all available
data.
Table 2
The wine modeling results (test set errors and selected models; best values in bold).

Red wine

MR NN SVM

MAD 0.50±0.00 0.51±0.00 0.46
AccuracyT=0.25 (%) 31.2±0.2 31.1±0.7 43.2
AccuracyT=0.50 (%) 59.1±0.1 59.1±0.3 62.4
AccuracyT=1.00 (%) 88.6±0.1 88.8±0.2 89.0
KappaT=0.5 (%) 32.2±0.3 32.5±0.6 38.7
Inputs (I

_
) 9.2 9.3 9.8

Model – H
―

=1 γ―=
Time (s) 518 847 5589

a Statistically significant under a pairwise comparison with MR and NN.
b Statistically significant under a pairwise comparison with MR.
3. Empirical results

The R environment [22] is an open source, multiple platform (e.g.
Windows, Linux) and high-level matrix programming language for
statistical and data analysis. All experiments reported in this work
were written in R and conducted in a Linux server, with an Intel dual
core processor. In particular, we adopted the RMiner [6], a library for
the R tool that facilitates the use of DM techniques in classification and
regression tasks.

Before fitting the models, the data was first standardized to a zero
mean and one standard deviation [16]. RMiner uses the efficient BFGS
algorithm to train the NNs (nnet R package), while the SVM fit is based
on the Sequential Minimal Optimization implementation provided by
LIBSVM (kernlab package). We adopted the default R suggestions [29].
The only exception are the hyperparameters (H andγ),whichwill be set
using the procedure described in the previous section and with the
search ranges ofH∈{0,1,…, 11} [36] and γ∈{23, 21,…, 2−15} [31].While
the maximum number of searches is 12/10, in practice the parsimony
approach (step 2 of Section 4) will reduce this number substantially.

Regarding the variable selection, we set the estimation metric to the
MAD value (Eq. (1)), as advised in [31]. To reduce the computational
effort, we adopted the simpler 2/3 and 1/3 holdout split as the internal
validation method. The sensitivity analysis parameter was set to L=5,
i.e. xa∈{−1.0, −0.5,…,1.0} for a standardized input. As a reasonable
balance between the pressure towards simpler models and the increase
of computational search, the stopping criterion was set to 2 iterations
without any improvement or when only one input is available.

To evaluate the selected models, we adopted 20 runs of the more
robust 5-fold cross-validation, in a total of 20×5=100 experiments
for each tested configuration. Statistical confidence will be given by the
t-student test at the 95% confidence level [13]. The results are
summarized in Table 2. The test set errors are shown in terms of the
mean and confidence intervals. Three metrics are present: MAD, the
classification accuracy for different tolerances (i.e. T=0.25, 0.5 and 1.0)
and Kappa (T=0.5). The selected models are described in terms of the
average number of inputs ( I

_
) and hyperparameter value (H

_
or γ

_
). The

last row shows the total computational time required in seconds.
For both tasks and all error metrics, the SVM is the best choice. The

differences are higher for small tolerances and in particular for the
white wine (e.g. for T=0.25, the SVM accuracy is almost two times
better when compared to other methods). This effect is clearly visible
when plotting the full REC curves (Fig. 3). The Kappa statistic [33]
measures the accuracy when compared with a random classifier
(which presents a Kappa value of 0%). The higher the statistics, the
more accurate the result. The most practical tolerance values are
T=0.5 and T=1.0. The former tolerance rounds the regression
response into the nearest class, while the latter accepts a response that
is correct within one of the two closest classes (e.g. a 3.1 value can be
interpreted as grade 3 or 4 but not 2 or 5). For T=0.5, the SVM
accuracy improvement is 3.3 pp for red wine (6.2 pp for Kappa), a
value that increases to 12.0 pp for the white task (20.4 pp for Kappa).
White wine

MR NN SVM

±0.00a 0.59±0.00 0.58±0.00 0.45±0.00a

±0.6a 25.6±0.1 26.5±0.3 50.3±1.1a

±0.4a 51.7±0.1 52.6±0.3 64.6±0.4a

±0.2b 84.3±0.1 84.7±0.1 86.8±0.2a

±0.7a 20.9±0.1 23.5±0.6 43.9±0.4a

9.6 9.3 10.1
20.19 – H

―
=2.1 γ―=21.55

551 1339 30674



Fig. 3. The red (left) and white (right) wine average test set REC curves (SVM — solid line, NN — gray line and MR — dashed line).
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The NN is quite similar to MR in the red wine modeling, thus similar
performances were achieved. For the white data, a more complex NN
model (H

_
=2.1) was selected, slightly outperforming the MR results.

Regarding the variable selection, the average number of deleted inputs
ranges from 0.9 to 1.8, showing that most of the physicochemical tests
used are relevant. In terms of computational effort, the SVM is the
most expensive method, particularly for the larger white dataset.

A detailed analysis of the SVM classification results is presented by
the average confusion matrixes for T=0.5 (Table 3). To simplify the
visualization, the 3 and 9 grade predictions were omitted, since these
were always empty. Most of the values are close to the diagonals (in
bold), denoting a good fit by the model. The true predictive accuracy
for each class is given by the precision metric (e.g. for the grade 4 and
white wine, precisionT=0.5=19/(19+7+4)=63.3%). This statistic
is important in practice, since in a real deployment setting the actual
values are unknown and all predictions within a given column would
be treated the same. For a tolerance of 0.5, the SVM red wine
accuracies are around 57.7 to 67.5% in the intermediate grades (5 to 7)
and very low (0%/20%) for the extreme classes (3, 8 and 4), which are
less frequent (Fig. 1). In general, the white data results are better:
60.3/63.3% for classes 6 and 4, 67.8/72.6% for grades 7 and 5, and a
surprising 85.5% for the class 8 (the exception are the 3 and 9
extremes with 0%, not shown in the table). When the tolerance is
increased (T=1.0), high accuracies ranging from 81.9 to 100% are
attained for both wine types and classes 4 to 8.

The average SVM relative importance plots (Ra values) of the
analytical tests are shown in Fig. 4. It should be noted that the whole
11 inputs are shown, since in each simulation different sets of
variables can be selected. In several cases, the obtained results confirm
the oenological theory. For instance, an increase in the alcohol (4th
Table 3
The average confusion matrixes (T=0.5) and precision values (T=0.5 and 1.0) for the
SVM model (bold values denote accurate predictions).

Actual class Red wine predictions White wine predictions

4 5 6 7 8 4 5 6 7 8

3 1 7 2 0 0 0 2 17 0 0
4 1 36 15 1 0 19 55 88 1 0
5 3 514 159 5 0 7 833 598 19 0
6 0 194 400 44 0 4 235 1812 144 3
7 0 10 107 82 1 0 18 414 441 7
8 0 0 10 8 0 0 3 71 43 59
9 0 1 3 2 0
PrecisionT=0.5

(%)
20.0 67.5 57.7 58.6 0.0 63.3 72.6 60.3 67.8 85.5

PrecisionT=1.0

(%)
93.8 90.9 86.6 90.2 100 90.0 93.3 81.9 90.3 96.2
and 2nd most relevant factor) tends to result in a higher quality wine.
Also, the rankings are different within each wine type. For instance,
the citric acid and residual sugar levels are more important in white
wine, where the equilibrium between the freshness and sweet taste is
more appreciated. Moreover, the volatile acidity has a negative
impact, since acetic acid is the key ingredient in vinegar. The most
intriguing result is the high importance of sulphates, ranked first for
both cases. Oenologically this result could be very interesting. An
increase in sulphates might be related to the fermenting nutrition,
which is very important to improve the wine aroma.

4. Conclusions and implications

In recent years, the interest in wine has increased, leading to
growth of the wine industry. As a consequence, companies are
investing in new technologies to improvewine production and selling.
Quality certification is a crucial step for both processes and is currently
largely dependent on wine tasting by human experts. This work aims
at the prediction of wine preferences from objective analytical tests
that are available at the certification step. A large dataset (with 4898
white and 1599 red entries) was considered, including vinho verde
samples from the northwest region of Portugal. This case study was
addressed by two regression tasks, where each wine type preference
is modeled in a continuous scale, from 0 (very bad) to 10 (excellent).
This approach preserves the order of the classes, allowing the
evaluation of distinct accuracies, according to the degree of error
tolerance (T) that is accepted.

Due to advances in the data mining (DM) field, it is possible to
extract knowledge from raw data. Indeed, powerful techniques such
as neural networks (NNs) and more recently support vector machines
(SVMs) are emerging. While being more flexible models (i.e. no a
priori restriction is imposed), the performance depends on a correct
setting of hyperparameters (e.g. number of hidden nodes of the NN
architecture or SVM kernel parameter). On the other hand, the
multiple regression (MR) is easier to interpret than NN/SVM, with
most of the NN/SVM applications considering their models as black
boxes. Another relevant aspect is variable selection, which leads to
simpler models while often improving the predictive performance. In
this study, we present an integrated and computationally efficient
approach to deal with these issues. Sensitivity analysis is used to
extract knowledge from the NN/SVM models, given in terms of
relative importance of the inputs. Simultaneous variable and model
selection scheme is also proposed, where the variable selection is
guided by sensitivity analysis and the model selection is based on
parsimony search that starts from a reasonable value and is stopped
when the generalization estimate decreases.

Encouraging results were achieved, with the SVMmodel providing
the best performances, outperforming the NN and MR techniques,



Fig. 4. The red (top) andwhite (bottom)wine input importances for the SVMmodel (in %).
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particularly for white vinho verde wine, which is the most common
type. When admitting only the correct classified classes (T=0.5), the
overall accuracies are 62.4% (red) and 64.6% (white). It should be
noted that the datasets contain six/seven classes (from 3 to 8/9).
These accuracies are much better than the ones expected by a random
classifier. The performance is substantially improved when the
tolerance is set to accept responses that are correct within the one
of the two nearest classes (T=1.0), obtaining a global accuracy of
89.0% (red) and 86.8% (white). In particular, for both tasks the
majority of the classes present an individual accuracy (precision)
higher than 90%.

The superiority of SVM over NN is probably due to the differences
in the training phase. The SVM algorithm guarantees an optimum fit,
while NN training may fall into a local minimum. Also, the SVM cost
function (Fig. 2) gives a linear penalty to large errors. In contrast, the
NN algorithm minimizes the sum of squared errors. Thus, the SVM is
expected to be less sensitive to outliers and this effect results in a
higher accuracy for low error tolerances. As argued in [15], it is difficult
to compare DM methods in a fair way, with data analysts tending to
favor models that they know better. We adopted the default
suggestions of the R tool [29], except for the hyperparameters
(which were set using a grid search). Since the default settings are
more commonly used, this seems a reasonable assumption for the
comparison. Nevertheless, different NN results could be achieved if
different hidden node and/or minimization cost functions were used.
Under the tested setup, the SVM algorithm provided the best results
while requiring more computation. Yet, the SVM fitting can still be
achieved within a reasonable time with current processors. For
example, one run of the 5-fold cross-validation testing takes around
26 min for the larger white dataset, which covers a three-year
collection period.

The result of this work is important for the wine industry. At the
certification phase and by Portuguese law, the sensory analysis has to
be performed by human tasters. Yet, the evaluations are based in the
experience and knowledge of the experts, which are prone to
subjective factors. The proposed data-driven approach is based on
objective tests and thus it can be integrated into a decision support
system, aiding the speed and quality of the oenologist performance.
For instance, the expert could repeat the tasting only if her/his grade is
far from the one predicted by the DM model. In effect, within this
domain the T=1.0 distance is accepted as a good quality control
process and, as shown in this study, high accuracies were achieved for
this tolerance. Themodel could also be used to improve the training of
oenology students. Furthermore, the relative importance of the inputs
brought interesting insights regarding the impact of the analytical
tests. Since some variables can be controlled in the production process
this information can be used to improve thewine quality. For instance,
alcohol concentration can be increased or decreased by monitoring
the grape sugar concentration prior to the harvest. Also, the residual
sugar in wine could be raised by suspending the sugar fermentation
carried out by yeasts. Moreover, the volatile acidity produced during
the malolactic fermentation in red wine depends on the lactic bacteria
control activity. Another interesting application is target marketing
[24]. Specific consumer preferences from niche and/or profitable
markets (e.g. for a particular country) could be measured during
promotion campaigns (e.g. free wine tastings at supermarkets) and
modeled using similar DM techniques, aiming at the design of brands
that match these market needs.
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