
STAT 540: Delwiche/Slaughter Chapter 7 Hitchcock

Chapter 7: Macros in SAS

• Macros provide for more flexible programming in SAS.

• Macros make SAS more “object-oriented,” like R.

• In some ways macros serve similar purposes as functions in R.

1. Can change a piece of a program and have that change be reflected throughout

the program.

2. Can write repeatable code that can be used in many places efficiently.

3. Can allow programs to be dependent on data values that may be unknown at the

time the program is written.

University of South Carolina Page 1

STAT 540: Delwiche/Slaughter Chapter 7 Hitchcock

• Macro statements consist of special code that SAS interprets and translates to stan-

dard SAS code before executing the program (this is done internally).

• Macros are subprograms that are placed in key positions in the main SAS program

simply by specifying the name of the macro in a special way.

• Macro variables are similar to SAS variables, but do not belong to a data set. They

are typically substituted into the program in key places.

University of South Carolina Page 2

STAT 540: Delwiche/Slaughter Chapter 7 Hitchcock

• Macros are specified with a % prefix:

%macroname;

• Macro variables are specified with a & prefix:

&mymacrovar

• If a macro variable is defined in a macro, it is local — it can only be used in that

macro.

• If a macro variable is defined in “open code” (outside any macros), it is global and

may be used anywhere.

University of South Carolina Page 3

STAT 540: Delwiche/Slaughter Chapter 7 Hitchcock

Defining Simple Macro Variables

• The simplest way to assign a value to a Macro variable is using a %LET statement.

%LET macrovarname = value;

%LET mypower = 3;

%LET powerword = cube;

Y = X**&mypower;

TITLE "Taking the &powerword of each X value";

(Note: Double quotes are needed, because SAS will not find macros inside single

quotes.)

University of South Carolina Page 4

STAT 540: Delwiche/Slaughter Chapter 7 Hitchcock

• Note that the macro variables are referenced with an ampersand symbol. When

SAS sees ¯ovarname it will replace this with the value that was assigned

to macrovarname in the %LET statement.

• This way, if the value needs to be changed, we can change it once (in the %LET

statement) rather than everywhere the variable is used.

• To make a macro variable global, simply define it (with a %LET statement) outside

of a macro.

University of South Carolina Page 5

STAT 540: Delwiche/Slaughter Chapter 7 Hitchcock

Macros as a repeatable set of SAS statements

• One important use of macros is packaging a piece of SAS code to be placed in

various places in the SAS program.

A macro has the syntax:

%MACRO macroname;

. . . Various

SAS statements . . .

%MEND macroname;

• This set of SAS statements that lies between the %MACRO and %MEND lines can

be placed anywhere in a program by “invoking” the macro:

%macroname

• This serves as a substitute for rewriting all those statements multiple times.

University of South Carolina Page 6

STAT 540: Delwiche/Slaughter Chapter 7 Hitchcock

Macros with Parameters

• Macros that, when invoked, simply repeat the same statements can be helpful but

not too flexible.

• Using parameters can add flexibility to macros.

• Parameters are macro variables whose values are set each time the macro is in-

voked.

• Parameters of macros are similar to arguments of R functions.

%MACROmacroname (param1 = _____, param2 = _____);

. . . Various

SAS statements . . .

%MEND macroname;

University of South Carolina Page 7

STAT 540: Delwiche/Slaughter Chapter 7 Hitchcock

• When invoking the macro, we also provide the values of the parameters.

%macroname(param1 = 7.5, param2 = January)

• Within the macro code, the parameter name is referred to with an ampersand:

Month = ¶m2;

University of South Carolina Page 8

STAT 540: Delwiche/Slaughter Chapter 7 Hitchcock

Conditional Logic in Macros

• Macro equivalent of conditional statements exists: %IF, %THEN, %ELSE,

%DO, %END.

• These are used in similar fashion as non-macro equivalents, except:

1. They can only be used within a macro.

2. They can contain entire DATA steps or PROC steps, unlike regular IF-THEN

statements which must appear within a DATA step.

• Automatic macro variables such as

&SYSDATE← gives current date in character form

&SYSDAY← gives current day of week

can be useful (with conditional logic) to run a SAS program that should do different

tasks depending on the date or on the day of the week.

University of South Carolina Page 9

STAT 540: Delwiche/Slaughter Chapter 7 Hitchcock

Using CALL SYMPUT to Assign a Value to a Macro Variable

The CALL SYMPUT statement assigns a value to a macro variable, typically on

the basis of data read in a previous DATA step.

CALL SYMPUT("macrovarname", value);

1. Read in variables (say, var1, var2, etc.) in a DATA step.

2. In a second DATA step, use CALL SYMPUT:

Example: IF var1 > var2 THEN

CALL SYMPUT("comparison", "greater");

ELSE CALL SYMPUT("comparison", "less");

or IF var1 > var2 THEN

CALL SYMPUT("comparison", var3);

3. Invoke the macro variable (&comparison) in a separate step (cannot invoke in

same DATA step).

University of South Carolina Page 10

STAT 540: Delwiche/Slaughter Chapter 7 Hitchcock

Looping in SAS: DO WHILE and DO UNTIL

• These loops execute a statement or set of statements while a logical condition is

met (or until it is not met).

• Example syntax:

DO WHILE (logical condition in parentheses);

Some SAS statements;

END;

• DO WHILE checks the condition at the beginning of each iteration of the loop.

• DO UNTIL checks the condition at the end of each iteration of the loop (so it

always runs at least one iteration).

University of South Carolina Page 11

