Sample Size & Power

Dr. Yen-Yi Ho

Department of Statistics, University of South Carolina
Making Mistakes

Type I error
(false positive)

Type II error
(false negative)

You’re pregnant

You’re not pregnant
Power

- Power is the probability of rejecting the null hypothesis when it is false.
- Hence, **power** (as its name would suggest) is a good thing; you want more power.
- A type II error (a bad thing, as its name would suggest) is failing to reject the null hypothesis when it’s false; the probability of a type II error is usually called β.
- Note power $= 1 - \beta$.
A respiratory disturbance index (RDI) of more than 30 is considered evidence of severe sleep disordered breathing.

Suppose that in a sample of 100 participants with other risk factors for sleep disordered breathing at a sleep clinic, the mean RDI was 32 with a standard deviation of 10.
We want to test the hypothesis that

- $H_0 : \mu = 30$
- $H_a : \mu > 30$

where μ is the population mean RDI.

The power is

$$P\left(\frac{X - 30}{s/\sqrt{n}} > t_{n-1}(1 - \alpha) | \mu = \mu_a \right)$$

Note that this is a function that depends on the specific value of μ_a!

Notice as μ_a approaches 30, the power approaches α.
Assume that n is large and that we know σ

\[
1 - \beta = P\left(\frac{\bar{X} - 30}{\sigma/\sqrt{n}} > z_{1-\alpha} \mid \mu = \mu_a\right)
\]

\[
= P\left(\frac{\bar{X} - \mu_a + \mu_a - 30}{\sigma/\sqrt{n}} > z_{1-\alpha} \mid \mu = \mu_a\right)
\]

\[
= P\left(\frac{\bar{X} - \mu_a}{\sigma/\sqrt{n}} > z_{1-\alpha} - \frac{\mu_a - 30}{\sigma/\sqrt{n}} \mid \mu = \mu_a\right)
\]

\[
= P\left(Z > z_{1-\alpha} - \frac{\mu_a - 30}{\sigma/\sqrt{n}} \mid \mu = \mu_a\right)
\]
Suppose that we wanted to detect an increase in mean RDI of at least 2 (above 30). Assume normality and that the sample in question will have a standard deviation of 4; what would be the power if we took a sample size of 16?

- \(Z_{1-\alpha} = 1.645 \) and \(\frac{\mu_a - 30}{\sigma/\sqrt{n}} = \frac{2}{(4/\sqrt{16})} = 2 \)
- \(P(Z > 1.645 - 2) = P(Z > -0.355) = 64\% \)
Example continued

- What n would be required to get a power of 80%
- i.e. we want

$$0.80 = P \left(Z > z_{1-\alpha} - \frac{\mu_a - 30}{\sigma / \sqrt{n}} \mid \mu = \mu_a \right)$$

- Set $z_{1-\alpha} - \frac{\mu_a - 30}{\sigma / \sqrt{n}} = z_{0.20}$ and solve for n
The calculation for $H_a : \mu < \mu_0$ is similar.

For $H_a : \mu \neq \mu_0$ calculate the one sided power using $\alpha/2$
(this is only approximately right, it excludes the probability of getting a large TS in the opposite direction of the truth)
• Power goes up as α gets larger
• Power of a one sided test is greater than the power of the associated two sided test
• Power goes up as μ_1 gets further away from μ_0
• Power goes up as n goes up
Let’s recalculate power for the previous example using the T distribution instead of the normal; here’s the easy way to do it. Let $\sigma = 4$ and $\mu_a - \mu_0 = 2$

```r
##the easy way
power.t.test(n = 16, delta = 2 / 4, 
              type = "one.sample",
              alt = "one.sided")
##result is 60%
```
1. Create a function to simulate data:
   ```r
   SimData <- function(mua, sd, n) {
     data <- rnorm(n = n, mean = mua, sd = sd)
     return(data)
   }
   ```

2. Create a function to calculate the p-value:
   ```r
   Calpvalue <- function(data, mu0, alt) {
     pvalue <- t.test(data, mu = mu0, alt = alt)$p.value
     return(pvalue)
   }
   ```

3. Generate p-values using Monte Carlo simulation:
   ```r
   nosim <- 10000
   mu0 <- 30
   mua <- 32
   sd <- 4
   n <- 16
   alt <- "greater"
   pvalues <- rep(NA, length = nosim)
   for (i in 1:nosim) {
     data <- SimData(mua = mua, sd = sd, n = n)
     pvalues[i] <- Calpvalue(data, mu0 = mu0, alt = alt)
   }
   power <- mean(pvalues < 0.05)
   ```

The result is 60%.
Notice that in both cases, power required a true mean and a true standard deviation.

However in this (and most linear models) the power depends only on the mean (or change in means) divided by the standard deviation (i.e., effect size $\frac{\mu_a - \mu_0}{\sigma}$).