Homework Assignment 3 Due Date: Friday, March 03, 2023 at 5PM

Total Points: 90

Please email your answer (compiled pdf file from R markdown) and R code to Anderson Bussing (ABUSSING@email.sc.edu). Please use the R markdown Homework template (Stat705_HWtemplate.Rmd) to write your homework solutions. You can hand-write Question 1 (a), 2, 4.

1 ROC Curves

(30 points) You are asked to evaluate the performance of two classification models, M_1 and M_2 . The test set you have chosen contains 10 covariates, labeled as $A_1, ..., A_{10}$. Table 1 below shows the posterior probability obtained by applying the models to the test set. Assume that we are mostly interested in detecting the positive samples.

Sample	True Class	$P(+ A_1, A_2,, A_{10}, M_1)$	$P(+ A_1, A_2,, A_{10}, M_2)$
1	+	0.73	0.61
2	+	0.69	0.03
3	-	0.44	0.68
4	-	0.55	0.31
5	+	0.67	0.45
6	+	0.47	0.09
7	-	0.08	0.38
8	-	0.15	0.05
9	+	0.45	0.01
10	-	0.35	0.04

Table 1: Table 1: Posterior probabilities by applying M_1 , and M_2 on the test set

(a) (10 points) Write R code to draw ROC curve for both M_1 and M_2 in the same graph. Which model do you think is better? Explain your reasons. Manually show the steps for drawing ROC curve for M_1 .

- (b) (10 points) For model M_1 , suppose you choose the cutoff threshold to be $P(+|A_1, A_2, ..., A_{10}, M_1) = 0.5$. In other words, any sample whose posterior probability is greater than 0.5 will be classified as a positive case. Compute the sensitivity and specificity.
- (c) (10 points) Repeat part (b) for Model M_1 using threshold $P(+|A_1, A_2, ..., A_{10}, M_1) = 0.1$. Which threshold do you prefer 0.5 or 0.5? Are the results consistent with what you expect from the ROC curves?

2 Hypothesis Testing (Bonus Question)

(Bonus: 30 points) There are three frequently occurring test statistics, the likelihood ratio test, the Wald test, and the score test. If **Y** has the probability density function $f(y|\beta)$ at $\mathbf{Y} = y$, where β is $p \times 1$, then hypothesis of interest are often of the form $H_0 : \mathbf{L}'\beta = \xi$ versus $H_1 : \mathbf{L}'\beta \neq \xi$, where \mathbf{L}' is $s \times p$ of rank s < p. Let

- $\widehat{\boldsymbol{\beta}}$ denotes the MLE of $\boldsymbol{\beta}$ under the full model.
- $\tilde{\boldsymbol{\beta}}$ denotes the MLE of $\boldsymbol{\beta}$ under the model assuming the null hypothesis is true,
- $\ell(\boldsymbol{\beta}) = \log [f(y|\boldsymbol{\beta})]$ denote the log likelihood function,
- $s(\boldsymbol{\beta})$ be the vector of score with j^{th} component, $s_j(\boldsymbol{\beta}) = \frac{\partial \ell(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}_j}$
- $I(\boldsymbol{\beta})$ be Fisher's information matrix which has j, k element equal to $-E[\frac{\partial^2 \ell(\boldsymbol{\beta})}{\partial^2 \boldsymbol{\beta}_{\cdot} \boldsymbol{\beta}_{\cdot}}]$.

The three test statistics in this case are:

- Likelihood ration test statistics: $-2[\ell(\tilde{\boldsymbol{\beta}}) \ell(\hat{\boldsymbol{\beta}})]$
- Wald test statistic: $(\mathbf{L}'\widehat{\boldsymbol{\beta}} \xi)' [\mathbf{L}'I(\widehat{\boldsymbol{\beta}})^{-1}\mathbf{L}]^{-1} (\mathbf{L}'\widehat{\boldsymbol{\beta}} \xi)$
- Score test statistic: $s'(\tilde{\boldsymbol{\beta}})I(\tilde{\boldsymbol{\beta}})^{-1}s(\tilde{\boldsymbol{\beta}})$

For the logistic regression model $Y \sim Bernoulli(\frac{e^{\mathbf{X}_1\beta_1+\mathbf{X}_2\beta_2}}{1+e^{\mathbf{X}_1\beta_1+\mathbf{X}_2\beta_2}})$, where \mathbf{X}_1 is $n \times q$ of rank q, \mathbf{X}_2 is $n \times (p-q)$, $\mathbf{X} = [\mathbf{X}_1, \mathbf{X}_2]$ is $n \times p$ of rank p. Derive the three test statistics for test $H_0: \boldsymbol{\beta}_2 = 0$ versus $H_1: \boldsymbol{\beta}_2 \neq 0$. Test statistics should be expressed in matrix form (e.g. written as a product of the matrices/vectors $\mathbf{X}, \mathbf{X}_1, \mathbf{X}_2$ and \mathbf{Y}) and reduced as much as possible. Comment.

3 IRLS Algorithm

(30 points) Write down a simple logistic regression model and

(a) Simulate data.

- (b) Write your own IRLS algorithm to produce the estimates of regression coefficients, standard error, test statistics for regression coefficients, and p-values.
- (c) Compare your result with output from \mathbf{R} . They should be the same.

4 Connection of logistic regression to 2×2 tables

(30 points) Use the Medical Expenditure Panel Survey (MEPS) dataset for the following analysis. The MEPS data is available at http://people.stat.sc.edu/hoyen/Stat704/ Data/h129.RData and the codebook at https://meps.ahrq.gov/mepsweb/data_stats/ download_data_files_codebook.jsp?PUFId=H129&sortBy=Start

- (a) Make a 2×2 table of mscd and smoking status. Calculate the log odds ration, its standard error and 95% CI using methods for 2×2 tables. To simplify the analysis, drop those people who have missing value of mscd and smoking status (this is to simplify the exercise but in practice is not generally a good strategy.
- (b) Logistic regress mscd (Y) on smoking status (X). Compare the regression coefficient and its standard error with he log odds ratio and standard error calculated in 3(a).
- (c) Logistic regress smoking status (Y) on mscd (X). Compare the regression coefficient and its standard error with he log odds ratio and standard error calculated in 3(a) and 3(b).
- (d) Review the paper by Prentice and Pyke (Biomtrika, 1979) and then state the invariance property of the log odds ratio estimate from a logistic regression in precise mathematical terms.

5 Reference

1. Prentice RL, Pyke R. Logistic disease incidence models and case-control studies. Biometrika 1979;66:403.