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Generalized additive model (GAM)

GAMs were originally invented by Hastie and Tibshirani in 1986 (1,
2). GAMs relax the restriction that the relationship must be a
simple weighted sum, and instead assume that the outcome can be
modelled by a sum of arbitrary functions of each covariate.

1 Hastie, Trevor and Tibshirani, Robert. (1990), Generalized Additive Models,
New York; Chapman and Hall.

2 Hastie, Trevor and Tibshirani, Robert. (1986), Generalized Additive Models,
Statistical Science, Vol. 1, No 3, 297-318.
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Generalized additive model

We have {(x;,yi)}!_;, where y1,...,y, are normal, Bernoulli, or
Poisson. The generalized additive model (GAM) is given by

h{E(Yi)} = Bo + g1(xi1) + - - + g(xik),

for p predictor variables. Y; is a member of an exponential family
such as binomial, Poisson, normal, etc. h is a link function.

Each of g1(x),. .., gp(x) are modeled via cubic smoothing splines,
each with their own smoothness parameters Ay, ..., A, either
specified as dfy, ..., df, or estimated through cross-validation. The

model can be fit iteratively.
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Generalized additive model

One example of this is through a basis expansion; for the jth
predictor the transformation is:

K;
g(x) = Opthju(x),
k=1

where {wjk(-)}szl are B-spline basis functions, or sines/cosines,
etc. This approach has gained more favor from Bayesians. Cubic
smoothing splines is also a popular choice.

vspace0.2in

This is an example of “nonparametric regression,” which ironically
connotes the inclusion of Jots of parameters rather than fewer.
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Choosing A

Hastie and Tibshirani (1986, 1990) point out that the meaning of
A depends on the units x; is measured in, but that A can be picked
to yield an “effective degrees of freedom” df or an “effective
number of parameters” being used in g(x). Then the complexity
of g(x) is equivalent to (df — 1)-degree polynomial, but with the
coefficients “spread out” more yielding a more flexible function
that fits data better.

A can be picked through cross validation, by minimizing

V(D) =Y (vi— & ' (x))
i—1
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Estimation: local scoring algorithm

p
n = 50+Zgi(xi)

Estimate gj(-) through backfitting algorithm. For example, for a
simple covariate Gaussian Y

o Initialization: o = E(Y),s{(-)=...=s3(:) =0,m=0

o Define Rj = Y — g — Y4y — Yh_;, 1, then fit
s = E(R;|X;).
o Until RSS = E[Y — o — Y_h_,]? fail to decrease
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Estimation: local likelihood

The main idea behind local likelihood is to locally fit parametric models
by maximum likelihood. For linear regression as an example:

ben(5) = — 2 log(2m0%) 53 S [¥i o~ Br(Xi—x) . oK) X).
i=1

Minimize the local likelihood w.r.t 3.
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Example: bike share data

> url<-"https://people.stat.sc.edu/hoyen/STAT705/Data/bike.csv"
> bikes<-read.csv(url)
> str(bikes)

’data.frame’: 731 obs.
$ season : chr
$ yr int
$ mnth chr
$ holiday chr
$ weekday chr
$ workingday chr
$ weathersit chr
$ temp num
$ hum num
$ windspeed num
$ cnt int
$

days_since_2011:

of 12 variables:
"WINTER" "WINTER" "WINTER" "WINTER"
2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 ...
"JAN" "JAN" "JAN" "JAN"
"NO HOLIDAY" "NO HOLIDAY" "NO HOLIDAY" "NO HOLIDAY"
"SAT" "SUN" "MON" "TUE" ..
"NO WORKING DAY" "NO WORKING DAY" "WORKING DAY" "WORKING DAY"
"MISTY" "MISTY" "GOOD" "GOOD"
8.18 9.08 1.23 1.4 2.67 ...
80.6 69.6 43.7 59 43.7 ...
10.7 16.7 16.6 10.7 12.5 ...
985 801 1349 1562 1600 1606 1510 959 822 1321
0123456789 ...
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Example: bike share data

v

DO W N

DO WN R

head(bikes)

season
WINTER
WINTER
WINTER
WINTER
WINTER
WINTER

yr
2011
2011
2011
2011
2011
2011

windspeed
10.749882
16.652113
16.636703 1
10.739832 1
12.522300 1

»

.000868 1

mnth
JAN N
JAN N
JAN NI
JAN NI
JAN NI
JAN NI

cnt days

985

801

349

562

600

606

oocooooo

holiday weekday

HOLIDAY
HOLIDAY
HOLIDAY
HOLIDAY
HOLIDAY
HOLIDAY
since_2011

TR WM RO

MON
TUE
WED
THU

workingday weathersit
SAT NO WORKING
SUN NO WORKING

WORKING
WORKING
WORKING
WORKING

DAY
DAY

MISTY
MISTY
GOOD
GOOD
GOOD
GOOD

temp
175849
083466
229108
400000
666979
604356

hum

.5833
.6087
L7273
.0435
.6957
.8261
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Explore the data
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Explore the data

Numeric variable exploration
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Temperature and weather

Effect of season and weather
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Temperature and weather
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7500

s000

2500

Effect of temperature and weather

7500

5000

2500

7500

5000

2500

Temp [C]
[ W
.
T — e
.
R o

GooD WISTY
Weather situation

‘RAINISNOWISTORM

13/18



GAM model

> library(mgcv)

> M2 = gam(cnt ~ season + weathersit + s(days_since_2011, bs ="cr", k = 70) +

+ s(temp, bs = "cr", by = season, k = 15), data = bikes, family=quasipoisson(link = "log"))
>

> summary (M2)

Family: quasipoisson

Link function: log

Formula:

cnt ~ season + weathersit + s(days_since_2011, bs = "cr", k = 70) +
s(temp, bs = "cr", by = season, k = 15)

Parametric coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 8.67573 0.06583 131.781 < 2e-16 ***
seasonSPRING -0.36329  0.08615 -4.217 2.81e-05 *x
seasonSUMMER 0.11888  0.11224  1.059 0.29
seasonWINTER -0.39112  0.08577 -4.560 6.05e-06 **x
weathersitMISTY -0.15401 0.01337 -11.521 < 2e-16 ***
0.05563 -15.677 < 2e-16 ***

weathersitRAIN/SNOW/STORM -0.87218
Signif. codes: 0 ‘xx*’ 0.001 ‘#*’ 0.01 ‘*> 0.05 “.” 0.1 ¢ > 1

Approximate significance of smooth terms:

edf Ref.df F p-value
s(days_since_2011)  25.280 31.496 48.287 < 2e-16 **x
s(temp) : seasonFALL 5.035 6.167 9.995 < 2e-16 *¥x*
s(temp) :seasonSPRING 2.751 3.487 14.882 < 2e-16 **x*
s(temp) :seasonSUMMER 2.098 2.647 18.589 7.19e-07 **x
s(temp) :seasonWINTER 1.000 1.001 104.113 < 2e-16 *x*x

Signif. codes: 0 ‘x> 0.001 ‘**’ 0.01 ‘x> 0.05 ¢.” 0.1 ¢ * 1

R-sq.(adj) = 0.88 Deviance explained = 87.5%
GCV = 128.74 Scale est. = 109.35 n = 731
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Checking K value and edf

> k.check(M2)

k’ edf k-index p-value
s(days_since_2011) 69 25.280111 0.7871581 0.0000
s(temp) :seasonFALL 14 5.034919 0.9175327 0.0075
s(temp) : seasonSPRING 14 2.751155 0.9175327 0.0250
s(temp) : seasonSUMMER 14 2.097587 0.9175327 0.0100
s(temp) : seasonWINTER 14 1.000275 0.9175327 0.0100
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s(days_since_2011)

Partial effect
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Results
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