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Learning Objectives

» Understanding the different steps in a differential expression
analysis in the context of DESeq?2

» Building results tables for comparison of different sample
classes

» Summarizing significant differentially expressed genes for each
comparison



Differential expression analysis with DESeq2:
model fitting and hypothesis testing



Generalized Linear Model fit for each gene

Negative Binomial Model

The mean is taken as “normalized
counts” scaled by a normalization

raw count for gene i, sample factor

/ one dispersion per gene
K ij ™ NB (Sija (87 )
normalized counts for gene i, sample j log2 fold change between conditions
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The coefficents are the estimates for the log2 foldchanges for each
sample group.
log 2 (normalized_counts_groupl / normalized_counts_group?2)



Shrunken log2 foldchanges (LFC)

To generate more accurate log2 foldchange estimates, DESeq2 allows for
the shrinkage of the LFC estimates toward zero when the information
for a gene is low, which could include:

» Low counts
» High dispersion values

As with the shrinkage of dispersion estimates, LFC shrinkage uses
information from all genes to generate more accurate estimates.
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Hypothesis testing using the Wald test

The first step in hypothesis testing is to set up a null hypothesis
for each gene. In our case is, the null hypothesis is that there is no
differential expression across the two sample groups (LFC ==

0).

A Wald test statistic is computed along with a probability that a
test statistic at least as extreme as the observed value were selected
at random. This probability is called the p-value of the test. If the
p-value is small we reject the null hypothesis and state that there is
evidence against the null (i.e. the gene is differentially expressed).



Contrast and Wald Tests

MOV10 DE analysis: contrasts and Wald tests

We have three sample classes so we can make three possible
pairwise comparisons:

1. Control vs. primary colorectal cancer

2. Control vs. normal-looking surrounding colonic epithelium
Using the design formula we provided ~ sampletype, indicating
that this is our main factor of interest.



Contrast and Wald Tests

Building the results table

To build our results table we will use the results() function.
## Define contrasts, extract results table,
## and shrink the log2 fold changes

contrast_oe <- c("tissueype", "primary", "normal")
res_tableOE_unshrunken <- results(dds, contrast=contrast_oe, alpha = 0.05)
res_tableOE <- 1fcShrink(dds, contrast=contrast_oe, res=res_table0OE_unshrunken)

The order of the names determines the direction of fold change that is reported. The
name provided in the second element is the level that is used as baseline.



MA Plot

The MA plot shows the mean of the normalized counts versus the
log2 foldchanges for all genes tested. The genes that are
significantly DE are colored to be easily identified.

Let’s start with the unshrunken results:
plotMA(res_tableOE_unshrunken, ylim=c(-2,2))

And now the shrunken results:

plotMA(res_tableQE, ylim=c(-2,2))



MA plots

M = log Ry — log R>
A= (log Ry + log R>)/2



Volcano Plot

e A diagnostic plot to visualize the test results

e Scatter plot of statistical significance ( log p values) versus
biological significance (log fold-changes)

e |deally the two should agree with each other



MA and Volcano Plots
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Volcano Plots: Bad Versus Good
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When sample size is small, SD estimates in t-test are unstable.



Volcano Plots: unshrunken vs. shrunken
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Multiple Comparisons

There are a few common approaches:

> Bonferroni: The adjusted p-value is calculated by: p-value * m (m = total
number of tests). This is a very conservative approach with a high probability
of false negatives, so is generally not recommended.

> FDR/Benjamini-Hochberg: Benjamini and Hochberg (1995) defined the concept
of FDR and created an algorithm to control the expected FDR below a specified
level given a list of independent p-values. An interpretation of the BH method
for controlling the FDR is implemented in DESeq2 in which we rank the genes
by p-value, then multiply each ranked p-value by m/rank.

» Q-value / Storey method: The minimum FDR that can be attained when calling
that feature significant. For example, if gene X has a g-value of 0.013 it means
that 1.3% of genes that show p-values at least as small as gene X are false
positives
So what does FDR < 0.05 mean? By setting the FDR cutoff to < 0.05,
we're saying that the proportion of false positives we expect amongst our
differentially expressed genes is 5%. For example, if you call 500 genes as
differentially expressed with an FDR cutoff of 0.05, you expect 25 of them
to be false positives.

More about multiple comparisons to come ...
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