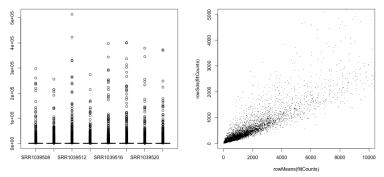
STAT718/BIOL703: Genomic Data Science Differential gene expression (DGE) analysis: Preprocessing

Dr. Yen-Yi Ho (hoyen@stat.sc.edu)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- - :

Learning Objectives


- RNAseq data preprocessing
- Explore different types of normalization methods
- Become familiar with the 'DESeqDataSet' object
- Understand how to normalize counts using DESeq2

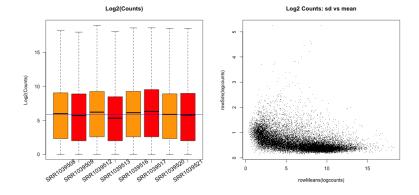
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Filter the Gene

- Filtering out non-significant genes to decrease the impact of multiple testing
- Very lowly expressed reads

Raw Count Distribution

Raw counts: sd vs mean

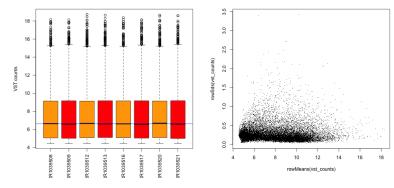

4/17

Data Transformation

log₂ transformation

Variance stabilizing transformation (VST)

\log_2 Transformation

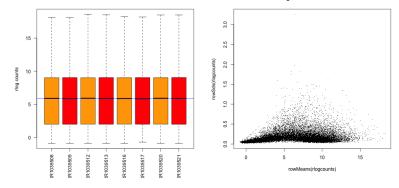


・ ロ ト ・ 同 ト ・ ヨ ト ・

문 🛌 🗄

500

VST Transformation



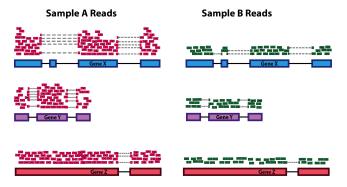
VST counts: sd vs mean

Image: A marked black

э

rlog Transformation

rlog counts: sd vs mean

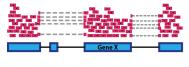

≣⊁ ≣

500

Normalization

Normalization is the process of scaling raw count values to account for the technical artifacts. In this way the expression levels are more comparable between and/or within samples. The main factors often considered during normalization are:

Sequencing depth: comparison between samples



Normalization

Normalization is the process of scaling raw count values to account for the technical artifacts. In this way the expression levels are more comparable between and/or within samples. The main factors often considered during normalization are:

- Sequencing depth : comparison between samples
- ▶ Gene length: between different genes within the same sample

Sample A Reads

Normalization

- Sequencing depth : comparison between samples
- Gene length: between different genes within the same sample
- RNA composition: a few highly differentially expressed genes between samples, differences in the number of genes expressed between samples, or presence of contamination can skew some types of normalization methods.

Common Normalization Methods

Normalization method	Description	Factors	Use
CPM (counts per million)	counts scaled	sequencing depth	NOT for within sample
	by total number of reads		comparisons or DE analysis
ТРМ	counts per length of transcript	sequencing depth	Within & Between samples
	(kb) per million reads mapped	and gene length	NOT for DE analysis
RPKM/FPKM	similar to TPM	sequencing depth	Between genes within a sample;
		and gene length	NOT for between sample
			or DE analysis
DESeq2's median	divid by size factor	sequencing depth	Between samples & DE analysis
of ratios		and composition	NOT for within sample
EdgeR's trimmed	weighted trimmed mean		Between samples & DE analysis
mean of M values		sequencing depth	NOT for within sample
(TMM)		and composition	

RPKM/FPKM (not recommended)

 Using RPKM/FPKM normalization, the total number of RPKM/FPKM normalized counts for each sample will be different.

Gene	Sample A	Sample B
XCR1	5.5	5.5
WASHC1	73.4	21.8
Total RPKM-normalized counts	10 ⁶	$1.5 imes10^{6}$

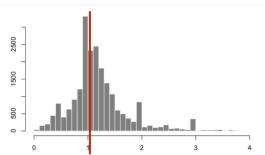
Table: RPKM-normalized count table

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Step 1: creates a pseudo-reference sample (row-wise geometric mean)

For each gene, a pseudo-reference sample is created that is equal to the geometric mean across all samples.

Gene	sample A	sample B	reference
EF2A	1489	906	$\sqrt{1489 * 906} = 1161.5$
ABCD1	22	13	$\sqrt{22*13} = 16.9$


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Step 2: calculates ratio of each sample to the reference

Gene	sample A	sample B	reference	ratio of sampleA/ref	ratio of sampleB/ref
EF2A	1489	906	1161.5	1489/1161.5 = 1.28	906/1161.5=0.78
ABCD1	22	13	16.9	22/16.9 = 1.30	13/16.9 = 0.77
MEFV	793	410	570.2	793/570.2 = 1.39	410/570.2 = 0.72
BAG1	76	42	56.5	76/56.5 = 1.35	42/56.5 = 0.74
MOV10	521	1196	883.7	521/883.7 = 0.590	1196/883.7 = 1.35

- -

 Step 3: calculate the normalization factor for each sample (size factor)

sample 1 / pseudo-reference sample

This method is robust to imbalance in up-/down-regulation and large numbers of differentially expressed genes. Usually these size factors are around 1.

Step 4: calculate the normalized count values using the normalization factor

Sample A median ratio=1.3 Sample B median ratio=0.7

Gene	sample A	sample B
EF2A	1489/1.3 =1145.39	906/0.77=1176.62
ABCD1	22/13.=16.92	13/0.77=16.88

Table: Normalized Counts

Count normalization using DESeq2 see R code posted on course website.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ