
- - :

STAT718/BIOL703: Genomic Data Science
Single-cell RNA-seq Quality Control Analysis

Yen-Yi Ho (hoyen@stat.sc.edu)

1/30

mailto:hoyen@stat.sc.edu

- - :

scRNA-seq Data Analysis Workflow

2/30

- - :

Exploring the dataset
We will use the data from Kang et al. In this paper, the authors present a
computational algorithm that harnesses genetic variation (eQTL) to
determine the genetic identity of each droplet containing a single cell
(singlet) and identify droplets containing two cells from different
individuals (doublets).

Image credit: Kang et al, 2017

3/30

https://www.nature.com/articles/nbt.4042

- - :

Raw Data

This dataset is available on GEO (GSE96583), however the available
counts matrix lacked mitochondrial reads. The BAM files from the SRA
(SRP102802) were downloaded. These BAM files were converted back to
FASTQ files, then run through Cell Ranger to obtain the count data that
we will be using. This count data is also freely available from 10X
Genomics.

4/30

- - :

MetaData
In addition to the raw data, we also need to collect information about
the data; this is known as metadata. Some relevant metadata for our
dataset
▶ The libraries were prepared using 10X Genomics version 2 chemistry
▶ The samples were sequenced on the Illumina NextSeq 500
▶ PBMC samples from eight individual lupus patients were separated

into two aliquots each: 1 treated with IFN-β (12,138) and 1 control
(12,167).

▶ Since the samples are PBMCs, we will expect immune cells, such as:
▶ B cells
▶ T cells
▶ NK cells
▶ monocytes
▶ macrophages
▶ possibly megakaryocytes

5/30

- - :

R codes

Now, we can load the necessary libraries:
Load libraries
library(SingleCellExperiment)
library(Seurat)
library(tidyverse)
library(Matrix)
library(scales)
library(cowplot)
library(RCurl)

6/30

- - :

Loading single-cell RNA-seq count data

Regardless of the technology or pipeline used to process your raw
single-cell RNA-seq sequence data, the output with quantified expression
will generally be the same. That is, for each individual sample you will
have the following three files:

1. a file with the cell IDs, representing all cells quantified

2. a file with the gene IDs, representing all genes quantified

3. a matrix of counts per gene for every cell

7/30

- - :

1. barcodes.tsv

This is a text file which contains all cellular barcodes present for that
sample. Barcodes are listed in the order of data presented in the matrix
file (i.e. these are the column names).

8/30

- - :

2. features.tsv

This is a text file which contains the identifiers of the quantified genes.
The source of the identifier can vary depending on what reference
(i.e. Ensembl, NCBI, UCSC) you use in the quantification methods, but
most often these are official gene symbols. The order of these genes
corresponds to the order of the rows in the matrix file (i.e. these are the
row names).

9/30

- - :

3. matrix.mtx
This is a text file which contains a matrix of count values. The rows are
associated with the gene IDs above and columns correspond to the cellular
barcodes. Note that there are many zero values in this matrix.

Loading this data into R requires us to use functions that allow us to
efficiently combine these three files into a single count matrix. However,
instead of creating a regular matrix data structure, the functions we will
use create a sparse matrix to reduce the amount of memory (RAM),
processing capacity (CPU) and storage required to work with our huge
count matrix.

10/30

- - :

Reading in scRNA-seq Data

Different methods for reading in data include:

1. readMM(): This function is from the Matrix package and will
convert our standard matrix into a sparse matrix. The ‘features.tsv‘
file and ‘barcodes.tsv‘ must first be individually loaded into R and
then they can be combined. For specific code and instructions on how
to do this please see SC2.R.

2. Read10X(): This function is from the Seurat package and will use
the Cell Ranger output directory as input, directly. With this method
individual files do not need to be loaded in, instead the function will
load and combine them into a sparse matrix.

11/30

- - :

Reading in a single sample
After processing 10X data using its proprietary software Cell Ranger, you
will have an outs directory (always). Within this directory you will find a
number of different files including the files listed below:
▶ web_summary.html: report that explores different QC metrics,

including the mapping metrics, filtering thresholds, estimated number
of cells after filtering, and information on the number of reads and
genes per cell after filtering.

▶ BAM alignment files: files used for visualization of the mapped reads
and for re-creation of FASTQ files, if needed

▶ filtered_feature_bc_matrix: folder containing all files needed to
construct the count matrix using data filtered by Cell Ranger

▶ raw_feature_bc_matrix: folder containing all files needed to
construct the count matrix using the raw unfiltered data

Most analyses start with raw_feature_bc_matrix folder to perform QC
and filtering to account for the biology of our experiment/biological
system.

12/30

- - :

Create a Seurat object

How to read in 10X data for a single sample (output is a sparse matrix)
ctrl_counts <- Read10X(data.dir = "single_cell_rnaseq/data/ctrl_raw_feature_bc_matrix")

Turn count matrix into a Seurat object (output is a Seurat object)
ctrl <- CreateSeuratObject(counts = ctrl_counts,

min.features = 100)

13/30

- - :

Read in Multiple Samples

Create a Seurat object for each sample
for (file in c("ctrl_raw_feature_bc_matrix", "stim_raw_feature_bc_matrix")){

seurat_data <- Read10X(data.dir = paste0("single_cell_rnaseq/data/", file))
seurat_obj <- CreateSeuratObject(counts = seurat_data,

min.features = 100,
project = file)

assign(file, seurat_obj)
}

14/30

- - :

Merge Multiple Samples

Create a merged Seurat object
merged_seurat <- merge(x = ctrl_raw_feature_bc_matrix,

y = stim_raw_feature_bc_matrix,
add.cell.id = c("ctrl", "stim"))

15/30

- - :

Single-Cell Quality Control

16/30

- - :

Quality Control Metric

▶ number of genes detected per UMI: this metric with give us an idea
of the complexity of our dataset (more genes detected per UMI, more
complex our data)

▶ mitochondrial ratio: this metric will give us a percentage of cell reads
originating from the mitochondrial genes

17/30

- - :

Novelty Score

This value is quite easy to calculate, as we take the log10 of the number
of genes detected per cell and the log10 of the number of UMIs per cell,
then divide the log10 number of genes by the log10 number of UMIs. The
score is related to the complexity of the RNA species.
Add number of genes per UMI for each cell to metadata
merged_seurat$log10GenesPerUMI <- log10(merged_seurat$nFeature_RNA) / log10(merged_seurat$nCount_RNA)

18/30

- - :

Mitochondrial Ratio

The PercentageFeatureSet() function takes in a pattern argument and
searches through all gene identifiers in the dataset for that pattern. We
are looking for any gene identifiers that begin with the pattern “MT-”.
Compute percent mito ratio
merged_seurat$mitoRatio <- PercentageFeatureSet(object = merged_seurat, pattern = "ˆMT-")
merged_seurat$mitoRatio <- merged_seurat@meta.data$mitoRatio / 100

19/30

- - :

Additional metadata columns

▶ cell IDs
▶ condition information

20/30

- - :

Final Metadata

21/30

- - :

Assessing the quality metrics

▶ Cell counts
▶ UMI counts per cell
▶ Genes detected per cell
▶ Complexity (novelty score)
▶ Mitochondrial counts ratio

22/30

- - :

Cell Counts
The cell numbers can also vary by protocol. There are over 15,000 cells
per sample, which is quite a bit more than the expected 12-13,000. It is
clear that we likely have some junk ‘cells’ present.

0

5000

10000

15000

ct
rl

st
im

sample

c
o

u
n

t

sample

ctrl

stim

NCells

23/30

- - :

UMI counts (transcripts) per cell
The UMI counts per cell should generally be above 500. If UMI counts are
between 500-1000 counts, it is usable but the cells probably should have
been sequenced more deeply.

0.0

0.5

1.0

1.5

2.0

100 1000 10000
nUMI

C
e

ll
d

e
n

s
it
y

sample

ctrl

stim

The majority of our cells in both samples have 1000 UMIs or greater,
which is great.

24/30

- - :

Genes Detected Per Cell
For high quality data, the proportional histogram should contain a single
large peak that represents cells that were encapsulated. Bimodel
distribution of the cells could indicate there are biologically different
types of cells

0

1

2

3

100 300 1000 3000
nGene

d
e

n
s
it
y sample

ctrl

stim

25/30

- - :

Complexity
Low complexity (low novelty) cells could represent a specific cell type
(i.e. red blood cells which lack a typical transcriptome), or could be due to
an artifact or contamination. Generally, we expect the novelty score to be
above 0.80 for good quality cells.

0

5

10

15

0.6 0.7 0.8 0.9
log10GenesPerUMI

d
e

n
s
it
y sample

ctrl

stim

26/30

- - :

Mitochondrial counts ratio

This metric can identify whether there is a large amount of mitochondrial
contamination from dead or dying cells. Poor quality samples for
mitochondrial counts as cells which surpass the 0.2 mitochondrial ratio
mark, unless of course it is expected in the samples.

0.0

0.5

1.0

1.5

2.0

0.001 0.010 0.100
mitoRatio

d
e

n
s
it
y sample

ctrl

stim

27/30

- - :

Joint filtering effects

Two metrics that are often evaluated together are the number of UMIs and
the number of genes detected per cell.

ctrl stim

100 1000 10000 100 1000 10000

100

300

1000

3000

nUMI

n
G

e
n

e

mitoRatio

0.0

0.1

0.2

0.3

28/30

- - :

Filtering: Cell Level Filter

▶ nUMI > 500
▶ nGene > 250
▶ log10GenesPerUMI > 0.8
▶ mitoRatio < 0.2

29/30

- - :

Filtering: Gene Level Filter

If a gene is only expressed in a handful of cells, it is not particularly
meaningful. Some routine analyses keep only genes which are expressed in
10 or more cells.

30/30

	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	year:
	month:
	day:
	hours:
	minutes:

