Modeling Dynamic Dependence Structure in Zero-Inflated Bivariate Count Data with Application to Single-Cell RNA Sequencing Data

Yen-Yi Ho

Department of Statistics, College of Arts and Sciences University of South Carolina

Outline

- Motivating Example
- The Data
- The ZENCO model
- Search Strategies
- Simulation Analyses
- Experimental Data Analysis

<ロト <回ト < 国ト < 国ト < 国ト 三 国

Conclusion

Introduction and motivations

- Routine differential gene expression approaches ignore interactions between genes.
- Gene Co-expression analysis addresses this issue by evaluating whether there are correlated changes between pairs of genes across different modulating conditions.
- Genetic co-expression pattern can change dynamically in response to internal cellular signals or external stimuli.

Dynamic Coexpression

Dynamic coexpression changes: the coexpression of two genes, X_1 and X_2 can be mediated by a third variable, X_3 .

Figure: Simulated example of dynamic coexpression changes

- Single-cell RNA sequencing (scRNA-seq) data are count-based
- Zero-inflation

Motivating Example

 Biological pathways are highly dynamic. Cancer cells can acquire drug resistance by establishing alternative bypass signaling pathways after exposure to therapeutic agents.

ヘロト ヘ戸ト ヘヨト ヘヨト

-

Figure adapted from [?]

scRNA-seq Data

- BRAF mutant patient-derived xenograft (PDX) melanoma cohorts [?].
- Once the PDX tumors grew to comparable size, mice were treated with concurrent RAF/MEK-inhibition
- The data contain information for 57,445 transcripts from 675 melanoma cells from all phases.
- The three phases are: drug-sensitive, minimum residual disease (MRD). drug-resistance

The ZEro-inflated Negative binomial dynamic COrrelation (ZENCO) model

Let X_{ij} denote the transcript counts for the *i*-th gene in the *j*-th cell and X_i represents the gene expression count for the *i*-th gene. The distribution of X_i is modelled as:

$$\mathbf{X}_i \sim \begin{cases} Poisson(\lambda_0), & \text{with probability } p_i; \\ NB(\mu_i, \phi_i), & \text{with probability } 1 - p_i. \end{cases}$$

• p_i is the dropout rate of \mathbf{X}_i and is modelled as a function of μ_i : $p = \frac{e^{(b_0+b_1\mu)}}{1+e^{(b_0+b_1\mu)}}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Poisson-Gamma mixture with random effects

- The correlation of a gene pair: X₁ and X₂ can be observed when both genes are observed in the *j*-th cell.
- Poisson-Gamma mixture

$$X_{ij} \sim Poisson(u_{ij}\mu_i), u_{ij} \sim Gamma(lpha_i, lpha_i).$$

- Integrate out u_{ij} , $X_{ij} \sim NB(\mu_i, \phi_i = \frac{1}{\alpha_i})$
- *u_{ij}* can be considered as the cell-specific random effect

Modeling correlation structure in count data

• Let the latent variable $\mathbf{Z}_{\mathbf{j}} = (Z_{1j}, Z_{2j})'$ be a bivariate normal variable that

$$\mathbf{Z}_{\mathbf{j}} \sim N_{2} \Big(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{1} & \rho_{j} \\ \rho_{j} & \mathbf{1} \end{bmatrix} \Big).$$

• The correlation, ρ_j , of (Z_{1j}, Z_{2j}) is specified as

$$\log(\frac{1+\rho_j}{1-\rho_j})=\tau_0+\tau_1X_{3j}.$$

Plug-in Z_j into u_{ij}, we have

$$X_{ij} \sim Poisson[F_{\alpha_i}^{-1}\{\Phi(Z_{ij})\}\mu_i],$$

where $F_{\alpha_i}(\cdot)$ is the cumulative distribution function of a $Gamma(\alpha_i, \alpha_i)$ distribution with $\alpha_i = 1/\phi_i$ and $\Phi(\cdot)$ is the cumulative distribution function of a standard normal distribution.

• The joint distribution of **X**₁ and **X**₂ can be specified using:

 $x_{ij} \sim \begin{cases} Poisson(\lambda_0), & \text{with probability } p_i; \\ Poisson[F_{1/\phi_i}^{-1} \{\Phi(z_{ij})\}\mu_i], & \text{with probability } 1 - p_i. \end{cases}$

- ロト・日本・日本・日本・日本・日本

Search Strategies

- For a given pair of genes (X₁, X₂), screen the whole-genome to identify a third modulator gene.
- For a given modulator variable (X₃), screen the whole-genome to identify a pair of genes that are modulated by X₃ (^m₂), m is the total number of genes).
- If no prior information about X₃ or (X₁, X₂) is available, screen the relevant pathways or the whole genome to identify potential gene triplets (^m₃).
- When the number of genes under considerations is large (for example ≈ 20,000). Pre-screening is beneficent such as [?] or the screening statistic (ζ) introduced in [?].

Simulation Analyses

$$\log(\frac{1+\rho_j}{1-\rho_j})=\tau_0+\tau_1 X_{3j}.$$

• Under the hypotheses:

$$H_0: \tau_1 = 0$$
 versus $H_1: \tau_1 \neq 0$,

Table: Coverage probability (CP) of 95% credible interval (CI) and interval lengths based on 1,000 MCMC simulations ($\tau_0 = 0.01, \tau_1 = 0.05$)

		Without Zero-inflation		With Zero-inflation	
	Parameter	CP	CI length	CP	CI length
N = 200	$ au_0$	0.997	0.455	1.000	0.541
	$ au_1$	0.170	0.042	0.942	0.111
N = 500	$ au_0$	0.985	0.288	1.000	0.342
	$ au_1$	0.009	0.022	0.950	0.064
<i>N</i> = 1,000	$ au_0$	0.955	0.204	1.000	0.242
	$ au_1$	0.000	0.014	0.951	0.043
-					

Table: Mean square errors (MSE) and mean bias errors (MBE) based on 1,000 MCMC simulations ($\tau_0 = 0.01$, $\tau_1 = 0.05$). MBE= $\frac{1}{N}\sum_{i=1}^{N} (\hat{\beta}_i - \beta)$.

		Without Zero-inflation		With Zero-inflation	
	Parameter	MSE	MBE	MSE	MBE
N = 200	$ au_0$	0.008	0.044	0.001	-0.008
	$ au_1$	0.002	-0.039	0.001	-0.001
N = 500	$ au_0$	0.006	0.051	0.000	-0.008
	$ au_1$	0.002	-0.040	0.000	0.001
<i>N</i> = 1,000	$ au_0$	0.005	0.051	0.000	-0.009
	$ au_1$	0.002	-0.041	0.000	0.001

Power Comparison to existing methods

Figure: Power curves comparing various methods. Both TLA and CNM-Full approaches are Gaussian-based models [?, ?].

WGCNA

 We use BRAF gene expression count as X₃ and screen all gene-pair combinations in the KEGG melanoma pathway.

Table: Top table of dynamic correlations differences. $\Delta \tau_1$ is the difference between τ_1 estimates in Phase 3 (P3) and Phase 1 (P1).

Gene 1	Gene 2	τ ₁ (<i>P</i> 1)	τ ₁ (<i>P</i> 3)	$\Delta \tau_1$
PDGFC	FGFR1	0.084 (0.045,0.120)	0.000 (-0.006,0.007)	-0.084
BAX	POLK	0.053 (0.023,0.085)	0.000 (-0.007,0.005)	-0.054
AKT1	ARAF	-0.024 (-0.046,-0.004)	0.019 (0.000,0.039)	0.043
AKT1	MAPK1	0.004 (-0.008,0.015)	0.043 (0.020,0.060)	0.039
AKT3	MAP2K2	0.033 (0.017,0.048)	-0.003 (-0.010,0.002)	-0.037
AKT1	BAK1	-0.027 (-0.053,-0.004)	0.008 (-0.003,0.030)	0.035
MAP2K2	FGFR1	0.031 (-0.001,0.081)	-0.003 (-0.009,0.003)	-0.033
BAX	MDM2	0.032 (0.005,0.059)	-0.001 (-0.007,0.005)	-0.033
AKT1	AKT2	0.003 (-0.009,0.014)	0.031 (0.003,0.050)	0.029
MAP2K2	BAX	0.035 (-0.006,0.075)	0.006 (-0.003,0.016)	-0.029

Conclusion

- The results from the simulation analysis indicates that our proposed ZENCO model outperforms other existing Gaussian-based approaches due to the fact our model accounts for zero-inflation, over-dispersion in scRNAseq data
- We used the expression level of BRAF as the modulator variable X₃. In other applications, X₃ can be easily modified to represent other conditions such as tumor status, degree of inflammation, or cell types, ...etc.
- In this work, our focus is on the change of co-expression patterns between a gene pair. It's plausible that higher-order interactions between genes exist, a generalization of our approach to higher dimension is feasible. However, special treatments need to be consider to ensure the positive definiteness of the variance covariance matrix in higher-dimension.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

References I

17/17