Modeling Dynamic Dependence Structure in Zero-Inflated Bivariate Count Data with Application to Single-Cell RNA Sequencing Data

Yen-Yi Ho

Department of Statistics, College of Arts and Sciences University of South Carolina

K ロ ▶ (K @) | K 글) | K 글) | [글

 299

Outline

- Motivating Example
- **•** The Data
- The ZENCO model
- **•** Search Strategies
- **•** Simulation Analyses
- Experimental Data Analysis

★ ロ ▶ → 御 ▶ → 결 ▶ → 결 ▶ │ 결

 $2Q$

• Conclusion

Introduction and motivations

- Routine differential gene expression approaches ignore interactions between genes.
- Gene Co-expression analysis addresses this issue by evaluating whether there are correlated changes between pairs of genes across different modulating conditions.
- Genetic co-expression pattern can change dynamically in response to internal cellular signals or external stimuli.

Dynamic Coexpression

Dynamic coexpression changes: the coexpression of two genes, X_1 and X_2 can be mediated by a third variable, X_3 .

Figure: Simulated example of dynamic coexpression changes

K ロ ⊁ K 伊 ⊁ K ヨ ⊁

 $2Q$

- Single-cell RNA sequencing (scRNA-seq) data are count-based
- Zero-inflation

Motivating Example

Biological pathways are highly dynamic. Cancer cells can acquire drug resistance by establishing alternative bypass signaling pathways after exposure to therapeutic agents.

イロメ (御) マミメマミメーヨ

 $2Q$

Figure adapted from [**?**]

scRNA-seq Data

- BRAF mutant patient-derived xenograft (PDX) melanoma cohorts [**?**].
- Once the PDX tumors grew to comparable size, mice were treated with concurrent RAF/MEK-inhibition
- The data contain information for 57,445 transcripts from 675 melanoma cells from all phases.
- The three phases are: drug-sensitive, minimum residual disease (MRD), drug-resistance

The ZEro-inflated Negative binomial dynamic COrrelation (ZENCO) model

Let *Xij* denote the transcript counts for the *i*-th gene in the *j-*th cell and \mathbf{X}_i represents the gene expression count for the *i*-th gene. The distribution of **Xⁱ** is modelled as:

$$
\mathbf{X}_i \sim \begin{cases} \text{Poisson}(\lambda_0), & \text{with probability } p_i; \\ \text{NB}(\mu_i, \phi_i), & \text{with probability } 1 - p_i. \end{cases}
$$

 ρ_i is the dropout rate of \mathbf{X}_i and is modelled as a function of μ_i : $p = \frac{e^{(b_0+b_1\mu)}}{1+e^{(b_0+b_1\mu)}}$ $\frac{e^{(\infty)}+e^{(\infty)}+b^{(\infty)}+$

KORKARK KERKER DRA

Poisson-Gamma mixture with random effects

- The correlation of a gene pair: X_1 and X_2 can be observed when both genes are observed in the *j*-th cell.
- **Poisson-Gamma mixture**

$$
X_{ij} \sim Poisson(u_{ij}\mu_i), u_{ij} \sim Gamma(\alpha_i, \alpha_i).
$$

- Integrate out u_{ij} , $X_{ij} \sim NB(\mu_i, \phi_i = \frac{1}{\alpha_i})$
- *uij* can be considered as the cell-specific random effect

Modeling correlation structure in count data

Let the latent variable $\textbf{Z}_{\textbf{j}}=(Z_{1j},Z_{2j})^{\prime}$ be a bivariate normal variable that

$$
\mathbf{Z}_{\mathbf{j}} \sim N_2 \Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho_j \\ \rho_j & 1 \end{bmatrix} \Big).
$$

The correlation, ρ_j , of (Z_{1j}, Z_{2j}) is specified as

$$
\log(\frac{1+\rho_j}{1-\rho_j})=\tau_0+\tau_1X_{3j}.
$$

Plug-in **Z^j** into *uij*, we have

$$
X_{ij} \sim Poisson[F_{\alpha_i}^{-1}\{\Phi(Z_{ij})\}\mu_i],
$$

where $F_{\alpha_i}(\cdot)$ is the cumulative distribution function of a $Gamma(\alpha_i,\alpha_i)$ distribution with $\alpha_i = 1/\phi_i$ and $\Phi(\cdot)$ is the cumulative distribution function of a standard normal distribution.

 \bullet The joint distribution of X_1 and X_2 can be specified using:

*x*_{*ij*} ∼ *{ Poisson*(λ_0), with probability *p_i*;
*x*_{*ij*} ∼ *{ Poisson*[*F*⁻¹ *f* ∂(z ∞)} *u*¹ with probability 1. $Poisson[F^{-1}_{1/\phi_i}\{\Phi(z_{ij})\}\mu_i],$ with probability 1 – $\rho_i.$

KID KA KERKER E 1990

Search Strategies

- For a given pair of genes (X_1, X_2) , screen the whole-genome to identify a third modulator gene.
- \bullet For a given modulator variable (X_3) , screen the whole-genome to identify a pair of genes that are modulated by \mathbf{X}_3 ($\binom{m}{2}$, m is the total number of genes).
- If no prior information about X_3 or (X_1, X_2) is available, screen the relevant pathways or the whole genome to identify potential gene triplets $\binom{m}{3}$.
- When the number of genes under considerations is large (for example \approx 20,000). Pre-screening is beneficent such as [**?**] or the screening statistic (ζ) introduced in [**?**].

Simulation Analyses

$$
\log(\frac{1+\rho_j}{1-\rho_j})=\tau_0+\tau_1X_{3j}.
$$

• Under the hypotheses:

$$
H_0: \tau_1 = 0 \text{ versus } H_1: \tau_1 \neq 0,
$$

Table: Coverage probability (CP) of 95% credible interval (CI) and interval lengths based on 1,000 MCMC simulations $(\tau_0 = 0.01, \tau_1 = 0.05)$

Table: Mean square errors (MSE) and mean bias errors (MBE) based on 1,000 MCMC simulations ($\tau_0 = 0.01$, $\tau_1 = 0.05$). MBE= $\frac{1}{N}\sum_{i=1}^{N}(\widehat{\beta}_{i}-\beta).$

Power Comparison to existing methods

Figure: Power curves comparing various methods. Both TLA and CNM-Full approaches are Gaussian-based models [**?**, **?**].

WGCNA

 299

• We use BRAF gene expression count as X_3 and screen all gene-pair combinations in the KEGG melanoma pathway.

Table: Top table of dynamic correlations differences. $\Delta \tau_1$ is the difference between τ_1 estimates in Phase 3 (P3) and Phase 1 (P1).

Conclusion

- The results from the simulation analysis indicates that our proposed ZENCO model outperforms other existing Gaussian-based approaches due to the fact our model accounts for zero-inflation, over-dispersion in scRNAseq data
- We used the expression level of BRAF as the modulator variable X_3 . In other applications, X_3 can be easily modified to represent other conditions such as tumor status, degree of inflammation, or cell types, ...etc.
- In this work, our focus is on the change of co-expression patterns between a gene pair. It's plausible that higher-order interactions between genes exist, a generalization of our approach to higher dimension is feasible. However, special treatments need to be consider to ensure the positive definiteness of the variance covariance matrix in higher-dimension.

KOD KOD KED KED E VAN

References I

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ │ 聖 │ 約 9 (9)

17/17