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Introduction and motivations

• Routine differential gene expression approaches ignore
interactions between genes.

• Gene Co-expression analysis addresses this issue by
evaluating whether there are correlated changes between
pairs of genes across different modulating conditions.

• Genetic co-expression pattern can change dynamically in
response to internal cellular signals or external stimuli.
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Dynamic Coexpression

Dynamic coexpression changes: the coexpression of two
genes, X1 and X2 can be mediated by a third variable, X3.

Figure: Simulated example of dynamic coexpression changes

Single-cell RNA sequencing (scRNA-seq) data are
count-based
Zero-inflation
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Motivating Example

Biological pathways are highly dynamic. Cancer cells can
acquire drug resistance by establishing alternative bypass
signaling pathways after exposure to therapeutic agents.

Figure adapted from [?]
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scRNA-seq Data
BRAF mutant patient-derived xenograft (PDX) melanoma
cohorts [?].
Once the PDX tumors grew to comparable size, mice were
treated with concurrent RAF/MEK-inhibition
The data contain information for 57,445 transcripts from
675 melanoma cells from all phases.
The three phases are: drug-sensitive, minimum residual
disease (MRD), drug-resistance
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The ZEro-inflated Negative binomial dynamic
COrrelation (ZENCO) model

Let Xij denote the transcript counts for the i-th gene in the
j-th cell and Xi represents the gene expression count for
the i-th gene. The distribution of Xi is modelled as:

Xi ∼
{

Poisson(λ0), with probability pi ;
NB(µi , ϕi), with probability 1 − pi .

pi is the dropout rate of Xi and is modelled as a function of
µi : p = e(b0+b1µ)

1+e(b0+b1µ)
.
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Poisson-Gamma mixture with random effects

The correlation of a gene pair: X1 and X2 can be observed
when both genes are observed in the j-th cell.
Poisson-Gamma mixture

Xij ∼ Poisson(uijµi),uij ∼ Gamma(αi , αi).

Integrate out uij , Xij ∼ NB(µi , ϕi =
1
αi
)

uij can be considered as the cell-specific random effect
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Modeling correlation structure in count data

Let the latent variable Zj = (Z1j ,Z2j)
′ be a bivariate normal

variable that

Zj ∼ N2

([
0
0

]
,

[
1 ρj
ρj 1

])
.

The correlation, ρj , of (Z1j ,Z2j) is specified as

log(
1 + ρj

1 − ρj
) = τ0 + τ1X3j .

Plug-in Zj into uij , we have

Xij ∼ Poisson[F−1
αi

{Φ(Zij)}µi ],

where Fαi (·) is the cumulative distribution function of a Gamma(αi , αi )

distribution with αi = 1/ϕi and Φ(·) is the cumulative distribution function of a
standard normal distribution.

The joint distribution of X1 and X2 can be specified using:

xij ∼
{

Poisson(λ0), with probability pi ;

Poisson[F−1
1/ϕi

{Φ(zij)}µi ], with probability 1 − pi .
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Search Strategies

For a given pair of genes (X1, X2), screen the
whole-genome to identify a third modulator gene.
For a given modulator variable (X3), screen the
whole-genome to identify a pair of genes that are
modulated by X3 (

(m
2

)
, m is the total number of genes).

If no prior information about X3 or (X1, X2) is available,
screen the relevant pathways or the whole genome to
identify potential gene triplets

(m
3

)
.

When the number of genes under considerations is large
(for example ≈ 20,000). Pre-screening is beneficent such
as [?] or the screening statistic (ζ) introduced in [?].
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Simulation Analyses

log(
1 + ρj

1 − ρj
) = τ0 + τ1X3j .

Under the hypotheses:

H0 : τ1 = 0 versus H1 : τ1 ̸= 0,

Table: Coverage probability (CP) of 95% credible interval (CI)
and interval lengths based on 1,000 MCMC simulations
(τ0 = 0.01, τ1 = 0.05)

Without Zero-inflation With Zero-inflation
Parameter CP CI length CP CI length

N = 200 τ0 0.997 0.455 1.000 0.541
τ1 0.170 0.042 0.942 0.111

N = 500 τ0 0.985 0.288 1.000 0.342
τ1 0.009 0.022 0.950 0.064

N = 1, 000 τ0 0.955 0.204 1.000 0.242
τ1 0.000 0.014 0.951 0.043
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Simulation Analyses

Table: Mean square errors (MSE) and mean bias errors (MBE) based
on 1,000 MCMC simulations (τ0 = 0.01, τ1 = 0.05). MBE=
1
N

∑N
i=1(β̂i − β).

Without Zero-inflation With Zero-inflation
Parameter MSE MBE MSE MBE

N = 200 τ0 0.008 0.044 0.001 -0.008
τ1 0.002 -0.039 0.001 -0.001

N = 500 τ0 0.006 0.051 0.000 -0.008
τ1 0.002 -0.040 0.000 0.001

N = 1, 000 τ0 0.005 0.051 0.000 -0.009
τ1 0.002 -0.041 0.000 0.001
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Power Comparison to existing methods

Figure: Power curves comparing various methods. Both TLA and
CNM-Full approaches are Gaussian-based models [?, ?].
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WGCNA
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Experimental Data Analysis

We use BRAF gene expression count as X3 and screen all
gene-pair combinations in the KEGG melanoma pathway.

Table: Top table of dynamic correlations differences. ∆τ1 is the
difference between τ1 estimates in Phase 3 (P3) and Phase 1 (P1).

Gene 1 Gene 2 τ1(P1) τ1(P3) ∆τ1

PDGFC FGFR1 0.084 (0.045,0.120) 0.000 (-0.006,0.007) -0.084
BAX POLK 0.053 (0.023,0.085) 0.000 (-0.007,0.005) -0.054
AKT1 ARAF -0.024 (-0.046,-0.004) 0.019 (0.000,0.039) 0.043
AKT1 MAPK1 0.004 (-0.008,0.015) 0.043 (0.020,0.060) 0.039
AKT3 MAP2K2 0.033 (0.017,0.048) -0.003 (-0.010,0.002) -0.037
AKT1 BAK1 -0.027 (-0.053,-0.004) 0.008 (-0.003,0.030) 0.035
MAP2K2 FGFR1 0.031 (-0.001,0.081) -0.003 (-0.009,0.003) -0.033
BAX MDM2 0.032 (0.005,0.059) -0.001 (-0.007,0.005) -0.033
AKT1 AKT2 0.003 (-0.009,0.014) 0.031 (0.003,0.050) 0.029
MAP2K2 BAX 0.035 (-0.006,0.075) 0.006 (-0.003,0.016) -0.029
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Conclusion

The results from the simulation analysis indicates that our
proposed ZENCO model outperforms other existing
Gaussian-based approaches due to the fact our model
accounts for zero-inflation, over-dispersion in scRNAseq
data
We used the expression level of BRAF as the modulator
variable X3. In other applications, X3 can be easily
modified to represent other conditions such as tumor
status, degree of inflammation, or cell types, ...etc.
In this work, our focus is on the change of co-expression
patterns between a gene pair. It’s plausible that
higher-order interactions between genes exist, a
generalization of our approach to higher dimension is
feasible. However, special treatments need to be consider
to ensure the positive definiteness of the variance
covariance matrix in higher-dimension.
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