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To study the roles that different nodes play in differentiating Bayesian networks
under two states, such as control versus disease, we formulate two node-specific
scores to facilitate such assessment. The first score is motivated by the prediction
invariance property of a causal model. The second score results from modifying
an existing score constructed for differential analysis of undirected networks. We
develop strategies based on these scores to identify nodes responsible for topo-
logical differences between two Bayesian networks. Synthetic data and real-life
data from designed experiments are used to demonstrate the efficacy of the
proposed methods in detecting responsible nodes.
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1 INTRODUCTION

Networks have been widely used to characterize interplays between components in a biological system. These compo-
nents, referred to as nodes in a network, can be genes as in a gene regulatory network,1 brain regions as in a brain network,2
proteins as in a protein-protein interaction network,3 or metabolites as in a metabolic network.4 Comparing networks
between different states can provide insight on mechanisms of disease initiation and progression. For example, changes
in a gene regulatory network for a cancer patient compared with that for a healthy individual can lead to the detection
of target genes necessary for developing targeted therapy; and contrasting the brain network of a cognitively impaired
subject with that of a cognitively normal individual can help in discovering predictive biomarkers for neurodegenerative
diseases. The analysis of differences between networks under different states is known as differential network analysis,5,6

which has been an actively researched topic in a whole host of scientific domains besides biology.
Most existing works on differential network analysis consider comparisons between undirected networks. Shojaie7

provides a comprehensive review on statistical methodologies for differential analysis of undirected networks. The com-
mon thread of these methods is to compare quantities that characterize marginal or conditional associations between
nodes under different states. These quantities can be precision matrices, covariance matrices, or adjacency matrices corre-
sponding to undirected networks under different states or associated with different populations, for example, a cancerous
population and a healthy population. The ultimate goals of these analyses are, for instance, in the context of gene reg-
ulatory networks, to identify genes with differential gene expression levels, or to detect edges that suggest differential
connections between genes.8-12 More recently, Tu et al13 incorporated information regarding whether or not genes are
differentially expressed between two populations in their task of identifying differential edges.
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Standing in stark contrast to the aforementioned works and references therein, we consider differential analysis of
Gaussian Bayesian networks as the most widely applicable type of directed networks. Formulating a Bayesian network
requires the specification of a directed acyclic graph (DAG) for a pre-specified set of nodes, along with the joint distribution
of these nodes. For a Gaussian Bayesian network, the distribution of each node is assumed to be Gaussian marginally or
conditioning on a linear combination of its parent nodes. A Bayesian network characterizes causal relationships between
nodes, and thus captures richer information including and beyond associations and correlations between nodes. Research
on differential analysis of Bayesian networks is still in its infancy. Recent developments in this direction mostly focus
on proposing direct methods that bypass separately learning two Bayesian networks and directly estimate the so-called
difference DAG. A difference DAG encapsulates information on changes in the existence of a causal effect, that is, the
existence of a directed edge, as well as changes in the strengths of causal effects, that is, edge weights. In particular, Wang
et al14 developed an algorithm to infer the difference DAG by first testing invariance between regression coefficients that
quantify causal effects, and then testing invariance in noise variances between the two models. Ghoshal et al15 took the
viewpoint of linear structural equation models for Bayesian networks so that estimating regression coefficients is equiv-
alent to estimating a precision matrix. This allows them to leverage existing algorithms for computing the difference of
precision matrix, and further estimate the difference DAG by repeatedly eliminating nodes and re-estimating the differ-
ence of precision matrix over the remaining nodes. These proposed strategies make use of data from observational studies
under the assumption that two networks have a common topological order of nodes. A topological order of nodes com-
patible with a DAG is a linear ordering of nodes such that, corresponding to every directed edge in the DAG, a parent
node comes before a child node in the ordering.

We propose in this study indirect methods for differential analysis of Bayesian networks based on data from designed
experiments. Having data from designed experiments as opposed to data from observational studies allows us to infer
causal relationships between nodes without assuming known ordering of nodes or two networks having the same topolog-
ical order. Our methods are “indirect” in the sense that we do not directly infer the difference DAG; instead, we first infer
two Bayesian networks separately, then we exploit the inferences to identify nodes responsible for potential topological
discrepancies between two networks. It is also worth noting that, unlike many existing methods for differential network
analysis (eg, Wang et al14 and Ghoshal et al15) that aim to identify undirected or directed edges responsible for network
differentiation, our methods identify responsible nodes. Section 2 provides a description of data available for drawing
inference for Bayesian networks based on structural linear equation models. In Section 3 we define two new scores to
quantify a node’s potential to be a responsible node in differentiating two networks. Section 4 presents two methods for
identifying responsible nodes based on the two new scores. Section 5 reports simulation studies where we apply the pro-
posed and competing methods to synthetic data. Section 6 gives a close-up comparison of the two proposed methods and
investigates uncertainty measures of a responsible node discovery based on these methods. We then use these methods
to identify responsible nodes in a real-life application considered in Section 7. Section 8 summarizes contributions of the
study and points out follow-up research directions.

2 DATA AND MODELS

Consider J nodes, X1, … ,XJ , that may exhibit different causal relationships in two populations of interest. For 𝓁 = 1, 2,
denote by X(𝓁) the N𝓁 × J data matrix storing node-specific data of N𝓁 independent experimental units from population 𝓁.
Experimental units in X(1) may be independent or correlated with those in X(2). For example, X1, … ,XJ are J genes that
may interact with each other differently in a gene regulatory network associated with a disease population when compared
with that for a control population; and a row in X(1) records expression levels of J genes from a healthy individual, whereas
a row in X(2) are expression levels of these genes from a cancer patient who is independent of individuals in the healthy
control group. As an example with correlated experimental units under two states, in a brain network, X1, … ,XJ are J
anatomic regions of interest (ROIs); the first row of X(1) records the blood oxygen levels of these ROIs for an individual
at the resting state, while the first row of X(2) stores the blood oxygen levels of the ROIs for the same individual when
performing a task. In this study, we assume that data X(1) and X(2) are from a designed experiment involving sufficient
interventions in various experimental conditions to allow identification of causality between nodes.

Denote by  the set of experimental conditions in the designed experiment. For node Xj, j ∈ {1, … , J}, its obser-
vational data are data observed under experimental conditions where Xj is not intervened. We assume that the data
generating mechanism of Xj’s observational data under condition e ∈  is specified by the following structural linear
equation model, for population 𝓁 ∈ {1, 2},
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Xj =
J∑

k=1
𝛽

(𝓁)
k,j Xk + 𝜖(e)𝓁,j, for j = 1, … , J (1)

where 𝜖(e)𝓁,j is the mean-zero Gaussian noise that is independent of all direct causal covariates of Xj, 𝛽(𝓁)k,j is the causal effect
of Xk on Xj for k ≠ j, and 𝛽(𝓁)k,k = 0. It is assumed that data of each node are centered and thus an intercept is not needed
in (1). In the nomenclature of Bayesian networks, if 𝛽(𝓁)k,j ≠ 0, then Xk is a parent node of Xj. Denote by Pa(𝓁)j the parent
set of Xj, and thus nodes in Pa(𝓁)j are direct causal nodes of Xj under population 𝓁. Define B(𝓁) = [𝛽(𝓁)k,j ]k,j=1,… ,J as the J × J
causal effect coefficients matrix for population 𝓁, which determines the directed acyclic graph structure of population 𝓁,
denoted by G𝓁 . In Appendix A we use a concrete example to illustrate the data structure and models associated with a
DAG outlined in this section.

3 TWO NEW SCORES FOR DIFFERENTIAL ANALYSIS

3.1 The prediction invariance score

An interesting property of causal models known as the prediction invariance property was discussed in detail in Peters
et al,16 and was utilized for causal inference. Put in the context of model (1), the prediction invariance property refers to
the phenomenon that the model error when regressing Xj on Pa(𝓁)j follows the same distribution across all experimental
conditions where Xj is not intervened. In contrast, when regressing Xj on a proper subset of Pa(𝓁)j , the model error may
follow different distributions under different experimental conditions where Xj is not intervened. That is, the prediction
invariance property is not guaranteed to hold for an incorrectly specified causal model. In Appendix A we provide a
concrete example that illustrates these statements by deriving the model error distributions of different regression models,
some of which are causal models consistent with the true data generating process, but some are not.

Exploiting the prediction invariance property of a causal model, we construct a score that quantifies a node’s potential
to differentiate Bayesian networks by having different causal models under two states or populations. We call this score the
prediction invariance score, PI for short. The following outlines the algorithm to compute PI scores of J nodes given data
X(1) and X(2), in which Steps 4–6 are where we check if the prediction invariance property is violated under an assumed
causal model based on S partitions of  .

Step 1: For 𝓁 = 1, 2, estimate B(𝓁) based on X(𝓁) subject to the acyclic constraint. Denote by ̂B
(𝓁)
(̂G𝓁) = [ ̂𝛽

(𝓁)
k,j (̂G𝓁)]k,j=1,… ,J

the estimated coefficients matrix, and by ̂G𝓁 the corresponding graph structure.
Step 2: Compute the least squares estimate of B(1) using X(1) while assuming the graph structure ̂G2, yielding the
estimate denoted by ̂B

(1)
(̂G2) = [ ̂𝛽

(1)
k,j (̂G2)]k,j=1,… ,J . Similarly, obtain ̂B

(2)
(̂G1) = [ ̂𝛽

(2)
k,j (̂G1)]k,j=1,… ,J using data X(2) while

assuming structure ̂G1.
For j = 1, … , J, implement Steps 3–7.
Step 3: Compute two residual vectors for node Xj under population 𝓁 ∈ {1, 2},

r(𝓁)j = X(𝓁)[Oj, j] −
J∑

k=1

̂
𝛽

(𝓁)
k,j (̂G𝓁)X(𝓁)[Oj, k], (2)

r̃(𝓁)j = X(𝓁)[Oj, j] −
J∑

k=1

̂
𝛽

(𝓁)
k,j (̂Gm)X(𝓁)[Oj, k], with m ≠ 𝓁, (3)

where Oj is the row index set of X(𝓁) corresponding to experimental units out of the N𝓁 units from population 𝓁 whose
node Xj is not intervened.
For s = 1, … , S, repeat Steps 4–6.
Step 4: Randomly divide r(𝓁)j into two subsets of (nearly) equal size so that the two subsets correspond to two disjoint
sets of experimental conditions. Denote these two subsets as r(𝓁)j,s,1 and r(𝓁)j,s,2, for 𝓁 = 1, 2. Similarly, divide r̃(𝓁)j into two
subsets, r̃(𝓁)j,s,1 and r̃(𝓁)j,s,2, for 𝓁 = 1, 2.
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HUANG and ZHANG 3297

Step 5: For 𝓁 = 1, 2, use an F test to test the null hypothesis that r(𝓁)j,s,1 and r(𝓁)j,s,2 come from two populations that share
the same variance; denote the p-value of the test as v(𝓁)j,s . Carry out the same test on r̃(𝓁)j,s,1 and r̃(𝓁)j,s,2, denote the p-value of
the test as ṽ(𝓁)j,s .
Step 6: For 𝓁 = 1, 2, use a two-sample t test to test the null hypothesis that r(𝓁)j,s,1 and r(𝓁)j,s,2 come from two populations
that share the same mean; denote the p-value of the test as m(𝓁)

j,s . Carry out the same test on r̃(𝓁)j,s,1 and r̃(𝓁)j,s,2, denote the
p-value of the test as m̃(𝓁)

j,s .
Step 7: Compute the PI score of Xj given by

PIj =
1
S

S∑

s=1

exp
{
−min

(
m̃(1)

j,s , ṽ(1)j,s , m̃(2)
j,s , ṽ(2)j,s

)}

exp
{
−min

(
m(1)

j,s , v(1)j,s , m(2)
j,s , v(2)j,s

)} , (4)

where min(a, b, c, d) refers to the minimum of a, b, c, d.

In Step 1, we apply the frequentist node-wise parent selection method proposed in our earlier work17 to estimate a
coefficients matrix that satisfies the acyclic constraint while encouraging sparsity. We then mismatch data with (esti-
mated) graph structures when estimating causal effects again in Step 2 to obtain ̂B

(1)
(̂G2) and ̂B

(2)
(̂G1), which can (and

usually do) differ from the coefficients matrix estimates in Step 1, that is, ̂B
(1)
(̂G1) and ̂B

(2)
(̂G2). If the two popula-

tions share the same causal model/structure for Xj in the sense that Pa(1)j = Pa(2)j , then such mismatch does not lead to
an incorrect causal model for Xj under either population. Consequently, the residuals in both (2) and (3) from Step 3
are expected to satisfy the prediction invariance property, which in turn suggests that the p-values from Steps 5 and 6
should not be too small, despite how one splits the |Oj| residuals into two subsets, and PIj in (4) is expected to be close
to one. Here, |Oj| denotes the cardinality of the index set Oj. Conversely, a value of PIj much larger than one implies
violation of the prediction invariance under such mismatch, indicating that the causal model for Xj under one pop-
ulation does not carry over to the other population in the sense that Pa(1)j ≠ Pa(2)j . When carrying out a two-sample t
test in Step 6, we use the t test involving a pooled sample variance if the corresponding equal-variance test in Step 5
fails to reject the null; otherwise, we use the t test that assumes the Welch-Satterthwaite pooled degrees of freedom.18

In Step 7, the denominator of the PI score in (4) serves as a normalization factor, and signifies that we quantify the
severity of prediction-invariance violation after swapping the two graph structures relative to the severity before the
swapping. Taking the exponential transformation in (4) is to avoid a nearly zero normalization factor at the denomina-
tor while keeping the transformation monotone; and choosing the smallest p-values to contrast between the numerator
and denominator is to capture the most significant discrepancy between two sets of residuals revealed by the four
equal-mean/variance tests.

We call Xj a differential node if Pa(1)j ≠ Pa(2)j , and a larger PIj can be interpreted as stronger data evidence indicating that
Xj is a differential node. In gene regulatory networks, a differential node is a gene that changes the way it is influenced
by other genes as one moves from one state to the other, such as a mutated gene that acquires a new set of regulators as
occurs frequently in cancer development.

3.2 The DISCERN score and a modified score

With a similar goal as ours of identifying responsible nodes for differential network analysis, Grechkin et al11 pro-
posed a score to identify genes that are significantly rewired in the gene regulatory network of a disease population
when comparing with a control population. Also like our methods, their score is constructed after undirected net-
works are inferred using a penalized estimation method to encourage sparse networks. They coin their method as
DISCERN, standing for differential sparse regulatory network, and the score is called DISCERN score, defined as, for node
Xj, j ∈ {1, … , J},

DISCERNj =
MSEj(1, 2) +MSEj(2, 1)
MSEj(1, 1) +MSEj(2, 2)

, (5)
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3298 HUANG and ZHANG

where

MSEj(𝓁,m) =
1

|Oj|

‖‖‖‖‖‖
X(𝓁)[Oj, j] −

J∑

k=1

̂
𝛽

(m)
k,j (̂Gm)X(𝓁)[Oj, k]

‖‖‖‖‖‖

2

, for 𝓁,m ∈ {1, 2}, (6)

is the mean squared error of predicting Xj in population 𝓁 using the estimated covariate effects for population m, in which
||t|| denotes the L2-norm of a vector t. If 𝓁 = m, the residual vector in (6) is r(𝓁)j in (2). If 𝓁 ≠ m, the residual vector in (6)
results from mismatching observational data of Xj from one population with the covariate effects estimates for the other
population. Due to this mismatch, a larger numerator in (5) in comparison to the denominator provides stronger data
evidence suggesting that the association pattern and strength between Xj and other nodes in one population do not carry
over to the other population.

The DISCERN score shares some similarities with the PI score in that it also involves mismatching data from one
population with coefficients estimates for the other population, and that the denominator in (5) also serves as a normal-
ization factor like the denominator of PI. Despite these similarities, a responsible node identified by DISCERN should
not be interpreted similarly as a differential node identified by PI. Nodes singled out by DISCERN are referred to as per-
turbed nodes in Grechkin et al,11 and they contribute to changes in connectivity between nodes and edge weights in one
undirected network when comparing with the other.

Adhering to our theme of causality-oriented differential analysis of Bayesian networks, we propose to revise DISCERNj
by replacing the mean squared error in (6) by

MSE∗j (𝓁,m) =
1

|Oj|

‖‖‖‖‖‖
X(𝓁)[Oj, j] −

J∑

k=1

̂
𝛽

(𝓁)
k,j (̂Gm)X(𝓁)[Oj, k]

‖‖‖‖‖‖

2

, for 𝓁,m ∈ {1, 2}. (7)

Recall that { ̂𝛽(𝓁)k,j (̂Gm), k = 1, … , J} in (7) are entries of ̂B
(𝓁)
(̂Gm) as an estimate of B(𝓁) using data X(𝓁) with the graph

structure ̂Gm. Hence, when 𝓁 = m, MSE∗j (𝓁,m) is the same as MSEj(𝓁,m) in (6); but when 𝓁 ≠ m, this new mean squared

error depends on X(m) only via ̂Gm, in contrast to the one defined in (6) that depends on X(m) via ̂B
(m)
(̂Gm). In fact, the

residual vector appearing in (7) is precisely r̃(𝓁)j defined in (3), and it reflects prediction error of Xj under population 𝓁
when one assumes that Pa(m)j contains all direct causal nodes of Xj. We call the modified score the differential sparse
causal network (DISC) score, that is,

DISCj =
MSE∗j (1, 2) +MSE∗j (2, 1)
MSEj(1, 1) +MSEj(2, 2)

, for j = 1, … , J, (8)

which differs from DISCERNj in (5) only in the numerator. A more substantial disagreement between the causal models
for Xj under two populations will lead to a larger numerator relative to the denominator of DISCj, and hence a node with
a higher DISC score has a higher potential to be a differential node.

4 RESPONSIBLE NODES IDENTIFICATION

The DISCERN, PI, and DISC scores all aim at identifying responsible nodes for network differentiation under two
states/populations, with a higher value indicating a higher potential of being a responsible node. In a given application, it
is unclear how high is enough for a score to support the claim of a responsible node, and the actual number of responsible
nodes is typically unknown. Follow-up procedures are needed for picking out responsible nodes after a proposed score is
computed for all J nodes.

4.1 Permutation-based method using DISCERN

Grechkin et al11 assessed the significance of DISCERNj by a p-value estimated via a permutation procedure. Applying
this procedure to data from designed experiments entails permuting experimental units from the two populations under
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HUANG and ZHANG 3299

each experimental condition. The permuted versions of X(1) and X(2), denoted by X(1)
b and X(2)

b , respectively, from the b-th
permutation mimic two data sets from a common population, for b = 1, … ,M. One then computes DISCERN scores for
J nodes based on data X(1)

b and X(2)
b , starting from estimating B(𝓁) using data X(𝓁)

b , for 𝓁 = 1, 2. Denote the DISCERN score
for Xj from the b-th permutation by DISCERNj,b, for j = 1, … , J and b = 1, … ,M. Then an estimated p-value associated
with DISCERNj is given by

∑M
b=1I(DISCERNj,b > DISCERNj)∕M, where I(⋅) is the indicator function. After collecting J

estimated p-values, one implements the Benjamini-Hochberg false discovery rate correction19 on these p-values to identify
significant DISCERN scores while controlling the false discovery rate at a pre-specified level, such as 0.05. By the design
of this permutation procedure, the resultant p-values are for testing the null hypothesis stating that B(1) = B(2), that is, the
two networks share the same structure and edge weights.

Our proposed scores PIj and DISCj are constructed to assess potential violation of a different null hypothesis, which
states Pa(1)j = Pa(2)j . The above permutation procedure cannot be used or easily revised to assess the significance of PIj
or DISCj because such permutation creates a null signifying that two Bayesian networks are identical in graph structure
and also in the strength of causal effects. Had none of our scores for J nodes been statistically significant, we would
only conclude failing to reject the null hypothesis of G1 = G2, but cannot draw any conclusion regarding the hypothesis
of B(1) = B(2). It is unclear how to numerically create the null setting that only assumes two Bayesian networks share
the same graph structure but may not have all identical edge weights via permutation or bootstrap. The assessment of
statistical significance for the new scores remains an open question for future research.

4.2 Rank-based methods using PI and DISC

To identify differential nodes based on the new scores, we propose a simple approach that utilizes the p-values from
equal-mean and equal-variance tests for residuals {r̃(1)j , r̃(2)j , j = 1, … , J} in (3). Because having small p-values among
{m̃(1)

j,s , ṽ(1)j,s , m̃(2)
j,s , ṽ(2)j,s }

S
s=1 can already be evidence against the null Pa(1)j = Pa(2)j , these p-values shed light on the potential

of Xj being a differential node. We thus estimate the number of differential nodes to be

d =

⌈
1
S

S∑

s=1
max
𝓁∈{1,2}

J∑

j=1
I
(

min
(

m̃(𝓁)
j,s , ṽ(𝓁)j,s

)
< 0.025

)⌉
, (9)

in which ⌈t⌉ denotes the ceiling of a real number t. This estimator is to count, across S random splits of r̃(𝓁)j , the average
number of nodes for which a significant equal-mean test or a significant equal-variance test arises when we swap the
graph structures for the two data sets. The cutoff value 0.025(= 0.1∕4) adopted in (9) results from applying the Bonferroni
correction of multiple testing, acknowledging that there are four equal-mean/variance tests for each node, with each
test set at a significance level of 0.1. Using a lower significance level, say, 0.05, for each test yields similar results in our
empirical study. When PI scores are used, we choose d nodes whose PI scores rank top d to claim as differential nodes.
Similarly, if DISC scores are used, we pick out d nodes whose DISC scores rank top d to claim as differential nodes.

Once a differential node is identified, we trace back to its parent sets in two networks. The discrepancy between
two parent sets leads to additional nodes that drive the differentiation between two populations in the sense that they
influence a differential node in one population but not in the other population. We call these nodes driver nodes as a
second type of responsible nodes in addition to differential nodes. More specifically, suppose Xj is a differential node, then
a driver node Xk ∈ Pa(1)j ΔPa(2)j , where Δ is the symmetric difference operator. In gene regulatory networks, a driver node
is a gene that changes how it influences or regulates other genes, for example, as one moves from one state/population to
the other.

To provide an uncertainty measure for a claim of differential/driver node, we next formulate a likelihood assessment
of a node being identified as such a responsible node according to a score. Let and  be the set of differential nodes and
the set of driver nodes, respectively, that reflect the ground truth, and denote by ̂ and ̂ the set of claimed differential
nodes and the set of claimed driver nodes according to a score based on the estimated networks. We repeat the process
of responsible nodes identification using a proposed score for M bootstrap samples, each bootstrap sample created via
sampling with replacement (within each experimental condition) from the raw data X(1) and X(2). The relative frequency of
Xj being concluded as a differential node across M replicates is an empirical probability that Xj is classified as a differential
node given the current model and experimental settings, denoted by P(Xj ∈ ̂). The empirical probability of Xj being
identified as a driver node is similarly computed, denoted by P(Xj ∈ ̂).
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3300 HUANG and ZHANG

5 SIMULATION STUDY

5.1 Competing methods

We now look into the performance of our proposed strategies for identifying responsible nodes in simulation studies where
we generate data from designed experiments based on Bayesian networks we construct. Even though DISCERN is devel-
oped for identifying perturbed nodes in undirected networks, one may wonder what kind of nodes stand out according
to DISCERN when applied to Bayesian networks. We thus include DISCERN as a competing method in the simulation
and view perturbed nodes identified by it as differential nodes under the context of Bayesian networks. Another compet-
ing method is to simply claim a node to be differential if its parent sets are different in the two estimated DAGs, ̂G1 and
̂G2. This simple method does not provide information on the relative potential of identified nodes as responsible nodes,
or uncertainty in the claims.

In summary, we compare four methods in the simulation study. A code name for each method is given following each
Roman numeral label, (i) DAG: one picks out differential nodes by comparing ̂G1 and ̂G2; (ii) DISCERN: one claims nodes
as differential nodes if their DISCERN scores are significant according to the permutation test; (iii) PI: one claims d nodes
as differential nodes whose PI scores rank top d; (iv) DISC: one claims d nodes as differential nodes whose DISC scores
rank top d. For the latter two methods, d is computed according to (9). Following each of the four strategies of differential
node identification, we pick out driver nodes accordingly for each method.

5.2 Data generation

In the simulation study, we randomly generate two different DAGs of J = 30 nodes, G1 and G2, where we designate nodes
as differential nodes, driver nodes, or neither. Appendix B describes a systematic approach to generate a pair of DAGs
that allows users to specify the classification of nodes into ,  , or neither. After generating G1 and G2, we construct
coefficients matrices, B(1) and B(2), by filling in nonzero entries in them indicated by the corresponding graph structure,
and each nonzero entry is generated from a two-component mixture, 0.5  (−2,−1) + 0.5  (1, 2), where  (a, b) refers
to a uniform distribution supported on [a, b]. Given B(1) and B(2), we generate X(1) and X(2) from a designed experiment
with various interventions to guarantee identifiability of causal relationships between nodes. More specifically, we follow
the do interventions corresponding to the do operations in Pearl20 to create J experimental conditions,  = {e1, … , eJ},
so that, under ej, Xj (and only Xj) is intervened, with interventional data of Xj generated independently of all other nodes,
for j = 1, … , J. As a concrete example, we elaborate the generation of X(1) next, starting with generating interventional
data under J experimental conditions. Under ej, we use nj random numbers from  (0, 1) as interventional data of Xj in
X(1), for j = 1, … , J. After interventional data for each of J nodes are generated, we generate observational data for each
node, one node at a time following the topological order of J nodes compatible with G1, according to the model in (1)
with 𝜖(ek)

j ∼ N(0, 0.25), where k ≠ j, for j = 1, … , J.
In formulating G1 and G2, we create two cases in the simulation study that differ in the designation of responsible

nodes besides other aspects. In Case 1, G1 has 120 edges and G2 has 111 edges, with || = 9, || = 5, and | ∩ | = 0. In
Case 2, G1 has 196 edges and G2 has 181 edges, with || = || = 9 and | ∩ | = 4. When generating data under each
case, we vary the number of experimental units in experimental condition ej, that is, nj, from 5 to 60, same for all j =
1, … , J. Under each simulation setting specified by a case number (1 or 2) and an nj-level combination, we generate 100
Monte Carlo replicates of data matrices, X(1) and X(2). Four methods for differential node identification (DAG, DISCERN,
PI, DISC) are applied to each pair of data matrices, followed by driver node identification. In the permutation procedure
to assess the statistical significance of DISCERN scores, we set the number of permutations at M = 300. When computing
PI scores, we randomly divide each residual vector, r(𝓁)j and r̃(𝓁)j , into two halves ten times, that is, S = 10.

5.3 Simulation results

Three metrics are recorded in the simulation study to assess the performance of a method in terms of differential nodes
identification: (a) the true positive rate (TPR) defined as the number of true differential nodes identified by the method
divided by the actual number of differential nodes, that is, TPR = | ̂ ∩|∕||; (b) the true negative rate (TNR) defined
as the number of true non-differential nodes concluded by the method divided by the actual number of non-differential
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HUANG and ZHANG 3301

nodes, that is, TNR = | ̂c ∩c|∕|c|; (c) the false discovery rate (FDR) defined as the number of true non-differential
nodes that are falsely claimed by the method as differential nodes divided by the total number of differential nodes claimed
by the method, that is, FDR = | ̂ ∩c|∕| ̂|. These metrics are similarly defined for driver nodes identification.

Figure 1a presents the Monte Carlo averages of each metric for four considered methods as nj varies under Case 1.
These results suggest that PI and DISC perform similarly and satisfactorily in identifying differential nodes and driver
nodes, especially when the sample size is not small. In comparison, DISCERN tends to claim a much larger number of
differential nodes, which produces a TPR of almost one whilst the TNR is nearly zero despite the sample size, and its FDR
is the highest among the four methods. Certainly, the method itself is not be blamed for its unsatisfactory performance
since DISCERN is not developed for detecting violation of the null hypothesis stating that G1 = G2, but rather that B(1) =
B(2). Regardless, it is interesting that, with some modifications made to DISCERN, the new method DISC is much more
effective in identifying differential nodes. The performance of DAG is similar to DISCERN in that it claims many more
nodes to be differential nodes than PI and DISC, resulting in TPR nearly one, whereas its TNR and FDR lie between
DISCERN and our two proposed methods.

Given ̂G1, ̂G2, and ̂, identifying driver nodes is a deterministic process. In this regard, the four methods do not differ
as drastically as in differential node identification, with our proposed methods outperforming DAG and DISCERN except
when considering TPR. The two competing methods again yield almost perfect TPR, which is a direct consequence of their
claiming majority of the nodes to be differential nodes in the first place. Results under Case 2 summarized in Figure 1b
tell similar stories, but having some differential nodes that are also driver nodes in this case creates a more challenging
scenario for PI and DISC to identify differential nodes, leading to lower TPR than those under Case 1.

Because it is preferable for a method to achieve high TPR and TNR while keeping FDR low, we define a ratio given
by (TPR + TNR)∕FDR to combine three metrics for assessing a method so that a higher ratio implies a better overall
performance. Figure 2 shows the values of this ratio for different methods. From this angle, DISC stands out by giving the
most satisfactory performance when all three metrics are considered via this ratio, PI substantially improves over DAG,
and DISCERN is the least appealing method.

Additional simulation results are provided in Appendix C, where we consider a third configuration of G1 and G2.
Following the graph generation strategy described in Appendix B, one has nearly full control of the roles different nodes
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F I G U R E 1 Averages of TPR, TNR, and FDR across 100 Monte Carlo replicates in terms of differential nodes identification (upper
panels) and driver nodes identification (lower panels) associated with four methods, DAG (dash-dotted lines), DISCERN (dotted lines), PI
(sold lines), and DISC (dashed lines). (a) Case 1. (b) Case 2.
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F I G U R E 2 Averages of the ratio, (TPR+TNR)/FDR, across 100 Monte Carlo replicates versus nj for differential nodes identification
(left halves of (a) and (b)) and driver nodes identification (right halves of (a) and (b)) associated with four methods, DAG (dash-dotted lines),
DISCERN (dotted lines), PI (sold lines), and DISC (dashed lines). (a) Case 1. (b) Case 2.

play when formulating two graph structures, as in Cases 1 and 2. This strategy also guarantees that the topological order-
ings of nodes according to G1 and G2 are compatible. The graph configuration presented in Appendix C breaks this
pattern by having G1 and G2 that do not share compatible ordering of nodes.This additional setting highlights that we
do not assume known ordering or a common ordering of nodes shared by two populations in our methodology develop-
ment, which owes to the experimental data that allows for causal discovery, and the graph estimation method used in
our methods that exploits such data for inferring causality. According to the empirical evidence presented in Appendix
C, the comparisons between DAG, DISCERN, PI, and DISC when two populations have different ordering of nodes are
similar to how these methods compare when two populations have the same orderings of nodes. Since all four strategies
for responsible node identification start from estimating G1 and G2, one would expect that their performance depends
on the choice of method for graph estimation. When the topological ordering of nodes is known or believed to be the
same between two populations, different methods for graph estimation that make use of such known information can
be adopted. Regardless, as long as causal relationships between nodes can be inferred (even partially) based on the avail-
able data using a chosen method for graph estimation, we expect that accounting for the inferred causality leads to more
effective responsible node identification than when one ignores the causality information.

6 FURTHER COMPARISON OF PI AND DISC

6.1 Receiver operating characteristics

Having shown the efficacy of our two proposed methods in pinpointing responsible nodes for network differentiation, we
now further compare their operating characteristics. The estimated number of differential nodes d given in (9) utilizes
information that go in the construction of PI scores. Using the so-defined d as a threshold quantity to identify differential
nodes based on both PI and DISC scores may appear to favor the former score. To alleviate the dependence on the choice of
threshold when comparing PI and DISC in responsible nodes discovery, we inspect their receiver operating characteristics
(ROC) as the threshold increases from 0 to J. Figure 3 presents ROC curves of PI and DISC regarding responsible nodes
identification when they both claim top k nodes as differential nodes based on the sorted scores, where k ∈ {0, 1, … , 30},
under the simulation settings formulated in Section 5.2 with nj ∈ {5, 10}. According to these ROC curves that depict pairs
of TPR and false positive rate (= 1 − TNR), we come to similar conclusions stated earlier: PI and DISC are comparable in
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F I G U R E 3 Average receiver operating characteristic (ROC) curves of two proposed methods, PI (sold lines) and DISC (dashed lines),
across 100 Monte Carlo replicates in terms of differential nodes identification (upper panels) and driver nodes identification (lower panels).
(a) Case 1. (b) Case 2.

differential node identification when a responsible node does not play a dual role (as in Case 1), but DISC outperforms
PI in identifying differential nodes when some of such nodes are also driver nodes (as in Case 2).

6.2 Discriminating power

We now compare PI and DISC in regard to their ability to separate three types of nodes, which are differential nodes (in),
driver nodes (in ), and nodes that are neither (ie, inc ∩  c). Let generically refer to the set of nodes of a certain type
that reflects the ground truth, such as,  , orc ∩  c; and let ̂ be the set of nodes of a certain type that a method claims
based on estimated networks. Define ( ̂;) = ||−1 ∑

Xj∈
P(Xj ∈ ̂) as the average empirical probability of a node

being classified in ̂ across all nodes that are actually in. For instance, ( ̂;) = ||−1 ∑
Xj∈

P(Xj ∈ ̂) is the average
empirical probability of a driver node being classified as a differential node. Using simulated data X(1) and X(2) described
in Section 5.2 under Case 1, we compute for each proposed method six averages of empirical probabilities: ( ̂;) and
(̂ ;), for = ,  , and c ∩  c. Each empirical probability is obtained from M = 300 bootstrap samples. Figure 4a
depicts Monte Carlo means of ( ̂;) and (̂ ;) across 100 replicates as nj varies for PI and DISC.

A method effective in identifying differential nodes is expected to yield ( ̂;) substantially higher than ( ̂;) for
 ≠ , such as when  =  or  = c ∩  c. Similarly, a method effective in identifying driver nodes should produce
(̂ ;) much higher than (̂ ;) for  ≠  . These are indeed the comparative patterns demonstrated in Figure 4a
for both proposed methods. Figure 4b provides a similar comparison under Case 2. Recall that, unlike in Case 1 where
| ∩ | = 0, here in Case 2 we have | ∩ | = 4. We thus summarize in Figure 4b eight averages of empirical probabilities
for each proposed method: ( ̂;) and (̂ ;), for  =  ∩  c

, 
c ∩  ,  ∩  , and c ∩  c. Overall, ( ̂;) still

tends to be higher when  contains some differential nodes than when  excludes all differential nodes, although the
power to correctly claim a differential node somewhat drops if this differential node is also a driver node, with the drop
more noticeable for PI than for DISC. This suggests that DISC is less “confused” by the dual role of a responsible node
than PI is. The two methods are both highly effective in separating driver nodes from non-driver nodes, whether or not a
driver node is also a differential node.
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F I G U R E 4 Monte Carlo means of ( ̂;) (upper panels) and (̂ ;) (lower panels) across 100 replicates associated with PI (left
halves of (a) and (b)) and DISC (right halves of (a) and (b)) versus nj, where is ∩  c (solid lines),c ∩  (dashed lines), ∩ 
(dot-dashed lines), andc ∩  c (dotted lines), respectively. (a) Case 1. (b) Case 2.

6.3 Responsible nodes identification based on empirical probabilities

As evidenced in Figure 4, the empirical probabilities from bootstrap samples also provide clues for what role(s) a node
potentially plays in Bayesian networks differentiation. In particular, {P(Xj ∈ ̂), j = 1, … , J} can separate differen-
tial nodes from non-differential nodes reasonably well, and {P(Xj ∈ ̂), j = 1, … , J} can distinguish driver nodes from
non-driver nodes even better. Therefore, a simple strategy for identifying responsible nodes is to claim Xj as a differential
node if P(Xj ∈ ̂) > 0.5, and to claim Xj as a driver node if P(Xj ∈ ̂) > 0.5. The threshold of 0.5 is an ad hoc choice before
one has more theoretical ground to suggest a different threshold.

Under the same simulation settings described in Section 5.2, we demonstrate the operating characteristics of the new
strategies of responsible nodes discovery based on the empirical probabilities, in comparison with our two previously
proposed methods. To distinguish the new strategies from PI and DISC considered in Section 5 that do not involve empir-
ical probabilities, we refer to the new strategy as PI-bp when PI scores are used to obtain the bootstrap-based probability,
and as DISC-bp when DISC scores are used. Figure 5 shows the TPR, TNR, and FNR for responsible node identification
associated with four methods: PI, PI-bp, DISC, and DISC-bp.

At the price of additional computation to obtain empirical probabilities, {P(Xj ∈ ̂)}J
j=1 and {P(Xj ∈ ̂)}J

j=1, one typ-
ically sees some improvement over the original method, PI or DISC. The improvement is more noticeable when PI
scores are used, especially in lowering FDR of differential nodes. The gain is less impressive when DISC scores are used,
especially under Case 2 where some nodes play dual roles. We thus conclude that the new strategies perform at least
as well as the original proposed methods. Besides providing uncertain measures of claims regarding differential nodes,
{P(Xj ∈ ̂)}J

j=1 can also be viewed as scores of J nodes that quantify the relative potential of being a differential node, with a
higher probability indicating more potential under the current model and experimental settings. Similarly, {P(Xj ∈ ̂)}J

j=1
can be used as J scores to quantify the relative potential of these nodes as a driver node. Such scores can be more appealing
due to their inherent probability interpretation that PI scores and DISC scores lack.

Lastly, we repeat the simulation study where we compare PI, PI-bp, DISC, and DISC-bp under Case 1, but we now
generate random noise in each model in (1) from a mean-zero skew normal distribution21 with variance 0.25 and skewness
0.47. This simulation study is designed to inspect the impact of violation of Gaussian Bayesian networks on the proposed
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F I G U R E 5 Averages of TPR, TNR, and FDR across 100 Monte Carlo replicates in terms of differential nodes identification (upper
panels) and driver nodes identification (lower panels) associated with four methods, PI (solid lines), PI-bp (dot-dashed lines), DISC (dashed
lines), and DISC-bp (dotted lines). (a) Case 1. (b) Case 2.

methods. Figure 6 shows the three metrics for assessing the efficacy of each method in identifying responsible nodes. The
deterioration of each considered method in the presence of non-Gaussian noise is evident when comparing with results
in Figure 5a. The normality violation impacts the methods based on DISC scores more, and they are outperformed by
the methods based on PI scores. This suggests that, even in the presence of model misspecification, the t test and F test,
which contribute to the PI score, retain more information relating to causality discovery than the mean squared errors do,
which are the building blocks of the DISC score. This makes PI scores more informative than DISC scores in the presence
of model misspecification. Considering the empirical evidence in Section 5.3 and those in this section, we conclude that
DISC is preferable to PI in responsible node identification unless when one has concern about the normality assumption
for the model error, in which case we recommend opting for PI.

7 APPLICATION TO FLOW CYTOMETRY DATA

In this section, we entertain the flow cytometry data collected from a designed experiment composed of nine experimen-
tal conditions described in Sachs et al,22 where a series of stimulatory cues and inhibitory interventions were imposed
on selected phosphorylated proteins and phospholipids. In this study, experimental units are human immune system
cells, from each of which phosphomolecular measurements were collected from eleven phosphorylated proteins and
phospholipids, viewed as nodes in a network.

For illustration purposes, we consider J = 8 of the eleven nodes, Raf, Mek, PLCg, PIP2, Erk, AKT, PKA, and PKC, that
have both interventional data and observational data. We randomly select from the raw data a subset of size N1 = 123
experimental units to form the first data matrix X(1) corresponding to the eight nodes. We then make two changes in X(1)

to produce an artificial data set, X(2), of the same size. First, we replace the observational data of PLCg in X(1) with the
median of these data plus standard normal random noise. Second, under the experimental condition where Mek was
intervened, we substitute the interventional data of Mek with the median of Raf’s data under this condition plus standard
normal random noise. The first change is likely to make PLCg a differential node because the causal relationship between
PLCg and its parent node(s) presumably supported by X(1) is very likely to disappear after we distort the observational

 10970258, 2024, 17, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10125 by U
niversity O

f South C
arolina, W

iley O
nline L

ibrary on [14/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3306 HUANG and ZHANG

nj

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60

Driver Nodes TPR Driver Nodes TNR

10 20 30 40 50 60

Driver Nodes FDR

Differential Nodes TPR

10 20 30 40 50 60

Differential Nodes TNR

0.2

0.4

0.6

0.8

1.0

Differential Nodes FDR

PI PI−bp DISC DISC−bp

F I G U R E 6 Averages of TPR, TNP, and FDR across 100 Monte Carlo replicates under Case 1, with skewed normal random noise, in
terms of differential nodes identification (upper panels) and driver nodes identification (lower panels) associated with four methods, PI (sold
lines), PI-bp (dot-dashed lines), DISC (dashed lines), and DISC-bp (dotted lines).

data of PLCg to create X(2). The second change is intended to make Mek a driver node by distorting its interventional data
so that any potential bond between Mek and its child node is broken in the process of creating the artificial data.

Using X(1) and the artificial data X(2), we implement four methods, DAG, DISCERN, PI, and DISC, considered in
Section 5 to find responsible nodes that contribute to differentiating two underlying populations. In practice, when it
comes to PI and DISC for the purpose of finding responsible nodes, we recommend using DISC based on d proposed in
Section 4 instead of using empirical probabilities of node classification described in Section 6 whenever one is willing to
assume Gaussian model error. In most practical settings, some nodes are very likely to be both differential nodes and driver
nodes, which is the situation where DISC outperforms PI when the model error is Gaussian, and, according to evidence
in Section 6.3, DISC gains little from using the empirical probabilities of node classifications. These empirical probabili-
ties are more useful for uncertainty quantification after responsible nodes are claimed. Figure 7 gives the two estimated
graphs, ̂G1 and ̂G2. Table 1 lists responsible nodes these methods claim. If only basing upon comparisons between ̂G1 and
̂G2, one would claim almost all nodes as differential nodes. In this particular application, DISCERN becomes less aggres-
sive in making claims about differential nodes than PI and DISC; in particular, it does not pick out PLCg as a differential
node. Our proposed methods, PI and DISC, are mostly in agreement in differential nodes identification, and both give
high confidence in the claim that PLCg is a differential node. They also agree on driver nodes identification, with high
empirical probabilities assigned to Mek.

8 DISCUSSION

We defined two scores, the PI score and DISC score, for identifying responsible nodes that contribute to differentiating the
Bayesian network under two states or associated with two populations. Both scores are designed to collect data evidence
against the null G1 = G2, with the scores for node Xj tailored for testing the null Pa(1)j = Pa(2)j . Using intermediate results
needed for computing these scores, we proposed an estimator for the total number of differential nodes to facilitate dif-
ferential node identification based on the ranked scores. Lastly, we employed a bootstrap procedure to obtain uncertainty
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F I G U R E 7 The estimated directed graphs based on a subset of the flow cytometry data set X(1) (on the left) and the one based on an
artificial data set X(2) (on the right). Some of the data in X(1) associated with PLCg and Mek are distorted to produce X(2).

T A B L E 1 Responsible nodes identification associated with each of four methods using the flow cytometry data
set X(1) and an artificial data set X(2).

Differential nodes

DAG All nodes except for AKT

DISCERN PKC (0.000), PIP2 (0.007)

PI PLCg (1.000), Raf (1.000), PKA (0.913), PIP2 (0.630)

DISC PLCg (1.000), Raf (1.000), PKC (1.000), PIP2 (0.997)

Driver nodes

DAG Mek, AKT, PLCg, Raf

DISCRERN Mek, AKT, PLCg

PI Mek (1.000), AKT (1.000), PLCg (0.903)

DISC Mek (1.000), AKT (1.000), PLCg (1.000)

Note: Numbers in parentheses for DISCERN are p-values for the significance of chosen nodes based on 300 permutations. Numbers
in parentheses for PI and DISC are empirical probabilities based on 300 bootstrap samples for uncertainty measures of claimed nodes.

assessments of claims regarding differential/driver node discovery in the form of empirical probabilities. These empirical
probabilities can also be used as scores to quantify nodes’ potential of being a certain type of responsible nodes. Computer
programs for implementing the proposed methods are available at https://github.com/hxzusc/DiffNet.

Compared with the method of DISCERN developed for undirected networks, and with the simple method based on
inspecting structural discrepancies between two estimated DAG’s, the proposed methods based on PI and DISC scores
lead to more accurate discoveries of responsible nodes. Even though the new scores do not aim to detect discrepancies in
the magnitude of causal effects between two populations, they make use of such information indirectly via their depen-
dence on different forms of residuals. These residuals are the key to revealing different causal structures of two Bayesian
networks. As a referee pointed out, to test whether or not residuals from different experimental conditions follow the same
distribution, one may consider other tests, such as the Kolmogorov–Smirnov test. We use the t test and F test here to focus
on comparing the mean and variance of residuals under different conditions for simplicity, which is also well-motivated
when residuals are viewed as Gaussian errors.

Implementation of both proposed methods starts with inferring two Bayesian networks. This is also the most compu-
tationally heavy step of the proposed methods. Future improvements on the computer programs include implementing
parallel computing to shorten the computation time. With a large collection of existing methods for estimating Bayesian
networks based on data from designed experiments, properties of the proposed methods when using different approaches
to infer Bayesian networks are worthy of systematic investigation. In particular, if data associated with the two networks
are believed to be dependent, a method that accounts for such dependence may be more efficient in responsible nodes
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3308 HUANG and ZHANG

identification than our current methods that ignore such information. Another important topic for follow-up research
is the nature of responsible nodes singled out by these methods when causal relationships are only partially identifiable
due to lack of rich enough experimental data.
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APPENDIX A. AN ILLUSTRATIVE EXAMPLE FOR PREDICTION INVARIANCE

As an illustrative example, we consider four nodes, X1, X2, X3, and X4, whose causal relationships had there been no
intervention are specified by the DAG in Figure A1. Using notations introduced in Section 2 but without the population
index 𝓁, we use X to denote an N × 4 data matrix that contains data of the four nodes, where the first N∕2 rows of data are
from the first experimental condition e1 where X2 is suppressed at zero, and the latter N∕2 rows of X are from the second
condition e2 under which X3 is stimulated so that it follows some non-Gaussian distribution. Knowing that Figure A1
depicts the causal relationships of the four nodes, we have the structural linear equation models for X1 and X4 given by,
for e ∈ {e1, e2} since X1 and X4 are not intervened under these conditions,

X1 = 𝛽2,1X2 + 𝛽3,1X3 + 𝜖(e)1 , (A1)

X4 = 𝛽1,4X1 + 𝜖(e)4 , (A2)

where 𝜖(e)1 ⊥(X2,X3) and 𝜖(e)4 ⊥X1 are mean-zero Gaussian noise. In other words, the first column of X, X[, 1], is the obser-
vational data for X1 that arises from (A1); similarly, X[, 4] contains observational data for X4 arising from (A2). Due to
the intervention in e1, entries in X[1 ∶ N∕2, 2] are all zero’s, and data in X[(N∕2 + 1) ∶ N, 2] contains observational data
of X2 coming from the model X2 = 𝜖

(e2)
2 , where 𝜖(e2)

2 is mean-zero Gaussian noise since X2 is a root node according to
Figure A1. Lastly, under e1 where X3 is not intervened, its distribution conditional on its only parent X2 is specified by
X3 = 𝛽2,3X2 + 𝜖

(e1)
3 , where 𝜖(e1)

3 ⊥X2 is mean-zero Gaussian noise. The aforementioned covariate effects coefficients, 𝛽2,1,
𝛽3,1, 𝛽1,4 and 𝛽2,3, are the only non-zero entries in the coefficients matrix B = [𝛽k,j]k,j=1,2,3,4.

Next we explain the prediction invariance property of causal models not limited to linear models with Gaussian
error. The graph in Figure A1 leads to a factorization of the joint distribution of (X1,X2,X3,X4) elicited by the following
hierarchical models,

X2 ∼ f2(x2), (A3)

X3|X2 ∼ f3|2(x3|x2), (A4)

X1|(X2,X3) ∼ f1|(2,3)(x1|x2, x3), (A5)

X4|X1 ∼ f4|1(x4|x1), (A6)

where the probability density function (pdf) of a distribution is used to specify a distribution in each of the four submodels.
For example, f1|(2,3)(x1|x2, x3) can be the pdf of N(𝛽2,1X2 + 𝛽3,1X3, 1), indicating that X1|(X2,X3) ∼ N(𝛽2,1X2 + 𝛽3,1X3, 1). Note
that, as long as this conditional distribution remains the same, not in terms of the specific conditional mean or variance
but in terms of the distribution family (Gaussian in this example), the model error when regressing X1 on (X2,X3), that
is, 𝜖 = X1 − (𝛽2,1X2 + 𝛽3,1X3), follows the same distribution, N(0, 1) in this example, despite what values X2 and X3 are
evaluated at. Hence, to check whether or not the model error of a structural equation model follows the same distribution

X1

X2

X3

X4

F I G U R E A1 A directed acyclic graph with four nodes for the causal relationships between them had there been no interventions.
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3310 HUANG and ZHANG

across different experimental conditions in a designed experiment, it suffices to check whether or not the conditional
distribution of the response given covariates in the structural equation model stays in the same distribution family across
different experimental conditions.

Now consider four structural equation models for X1, referred to as models A, B, C, and D, with the set of covariates
being {X2}, {X2,X4}, {X2,X3}, and {X2,X3,X4}, respectively. One fits each model to two data sets successively, collected
under two experimental conditions in  = {e1, e2}. Under e1, X2 is intervened so that X2 ∼ f ∗2 (x2) ≠ f2(x2). Under e2, X3
is intervened so that X3 is independent of all other nodes, leading to a model replacing (A4) under this experimental
condition, X3 ∼ f ∗3 (x3) ≠ f3|2(x3|x2). In effect, the intervention in e1 only impacts (A3) in the above hierarchical models,
and it does not change the graph structure in Figure A1, whereas the intervention under e2 erases the edge connecting
X2 and X3. We next inspect whether or not the model error distribution associated with each of models A, B, C, and D
changes when one moves from experimental condition e1 to experimental condition e2. As we point out earlier, this is
equivalent to inspecting if the distribution of X1 given the set of covariates in a structural equation model remains the
same (in terms of distribution family) under the two experimental conditions. According to Figure A1, the set of direct
causal nodes of X1 is Pa1 = {X2,X3}. Since the set of covariates in model C coincides with Pa1, model C is a correct
causal model for X1. Clearly, the conditional distribution of X1 given {X2,X3} remains the same whether X2 or X3 is
intervened. Thus the model error of model C remains the same under e1 and e2, that is, prediction invariance holds
for model C. In contrast, for model A, we have the conditional distribution of the response X1 given the covariate X2
specified by

f (1)1|2(x1|x2) =
∫

f1|2,3(x1|x2, v)f3|2(v|x2)dv, under e1,

f (2)1|2(x1|x2) =
∫

f1|2,3(x1|x2, v)f ∗3 (v)dv, under e2,

(A7)

where the integrations are over the support of X3. By suppressing the causal dependence of X3 on X2 under e2, one ends
up with a model error distribution differs from that under e1 in general according to (A7). This is an example where one
loses prediction invariance due to missing a direct causal covariate (X3) in a regression model. In other words, model A is
an incorrect causal model for X1. For model B, the conditional distribution of the response given (X2,X4) under condition
ek is specified by, for k = 1, 2,

f (k)1|(2,4)(x1|x2, x4) =
f4|1(x4|x1)f (k)1|2 (x1|x2)

∫ f4|1(x4|v)f (k)1|2 (v|x2)dv
,

where the integration is over the support of X1. Because f (1)1|2(x1|x2) ≠ f (2)1|2(x1|x2) in general by (A7), the above conditional
distribution can differ between the two experimental conditions. Hence, model B does not possess the prediction invari-
ance property either, which is another incorrect causal model for X1. Lastly, the model error distribution of model D
remains the same under e1 and e2 because

f1|(2,3,4)(x1|x2, x3, x4) =
f1|(2,3)(x1|x2, x3)f4|1(x4|x1)
∫ f1|(2,3)(v|x2, x3)f4|1(x4|v)dv

,

where neither the distribution of X1 conditional on (X2,X3) nor the distribution of X4 conditional on X1 is affected by
the interventions imposed under e1 and e2. Model D serves as another example under which prediction invariance holds
because, like model C, it is also a correct causal model for X1, although it is less parsimonious than model C.

APPENDIX B. DESIGN OF TWO DIRECTED ACYCLIC GRAPHS

In order to control which nodes are differential nodes, driver nodes, or neither when constructing two DAG’s, we first
randomly generate G1, and then strategically revise entries in the adjacency matrix corresponding to G1 to create a dif-
ferent adjacency matrix that specifies G2. With an abuse of notation, we also use G𝓁 to denote the adjacency matrix
corresponding to graph G𝓁 .
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HUANG and ZHANG 3311

T A B L E B1 Partition of a J × J adjacency matrix in order to design G2 that differs from G1 systematically, with user-designated
differential nodes and driver nodes.

1 … a a+ 1 … a+ b a+ b+ 1 … J

1

⋮

a

a + 1

⋮ Block 1 Block 2

a + b

a + b + 1

⋮ Block 3 Block 4

J

Note: The gray region corresponds to Block 5.

To construct G2, we partition its adjacency matrix into five blocks as shown in Table B1, where we partition J nodes
into three groups, {X1, … ,Xa}, {Xa+1, … ,Xa+b}, and {Xa+b+1, … ,XJ}. The row name and column name correspond to
the row index and column index of the adjacency matrix in Table B1.

Following this partition of the adjacency matrix, given G1, we create G2 by keeping the same block 5 as that in G1 to
make nodes in {X1, … ,Xa} neither differential nodes nor driver nodes. We then randomly replace nonzero entries in
one or multiple blocks among blocks 1–4 of G1 with zeros to lead to G2. This amounts to random edge deletion in G1 to
produce G2, which guarantees acyclic constraint satisfied in G2 as long as G1 is a directed acyclic graph. In the simulation
study presented in the main article, we generate two pairs of graphs referred to as Case 1 and Case 2 as follows.

• Case 1: Keep blocks 1, 2, and 4 the same as those in G1, and randomly replace nonzero entries in block 3 of G1 with
zeros to create block 3 in G2. In this case, some nodes in {Xa+1, … ,Xa+b} become differential nodes but not driver
nodes, and some nodes in {Xa+b+1, … ,XJ} are driver nodes but not differential nodes.

• Case 2: Keep blocks 2 and 4 the same as those in G1, and randomly replace nonzero entries in blocks 1 and 3 of G1 with
zeros to create blocks 1 and 3 in G2. By so doing, some nodes in {Xa+1, … ,Xa+b} are differential nodes and also driver
nodes, and some nodes in {Xa+b+1, … ,XJ} are driver nodes but not differential nodes.

APPENDIX C. ADDITIONAL SIMULATION RESULTS

Besides the two cases of formulating G1 and G2 as described in Section 5.2, we consider a third specification of G1 and
G2 that does not follow the designs in Appendix B. More specifically, after generating G1 with p = 30 and 120 edges, we
randomly permute some columns of the adjacency matrix of G1, followed by deleting cycles of the permuted adjacency
matrix to obtain the final adjacency matrix that specifies G2 with 117 edges. The resultant graph G2 is incompatible with
any topological ordering of nodes that G1 is compatible with. This design of G1 and G2 produces || = 8, || = 7, and
| ∩ | = 1. Figure C1 summarizes simulation results from this configuration of the two graphs, with data simulated
following the rest of the simulation designs in Section 5.2.

Most patterns of the comparisons between the four considered methods in this case are similar to those under Case 2
(see Figures 1 and 2). In particular, the two proposed methods, PI and DISC, are more effective in identifying differential
nodes than the method based on the DISCERN score, which is inferior to the simple method based only on the two
estimated DAG’s. Between the two proposed methods, DISC outperforms PI, especially when the sample size is small.
The four considered methods are comparable in terms of driver nodes identification.
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F I G U R E C1 Panel (a) shows averages of TPR, TNR, and FDR across 100 Monte Carlo replicates in terms of differential nodes
identification (upper half) and driver nodes identification (lower half) associated with four methods, DAG (dash-dotted lines), DISCERN
(dotted lines), PI (sold lines), and DISC (dashed lines). Panel (b) shows the corresponding averages of the ratio, (TPR+TNR)/FDR, for
differential nodes identification (left half) and driver nodes identification (right half).
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