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A B S T R A C T  

We develop a me thodo lo gy for v alid infe re nce afte r va riable selection in log i stic r egr ession when the re sponse s a re pa rtially obse rv e d, th at is, when 

one o bs erves a s e t of err or-pr one t esting out comes inst ead of the true values of the respon s es. Aiming at s electing importa n t cova riates while 
ac c ounting for missing information in the respon s e d ata, we app ly the expect ation- maximization algorithm to compute maximum l ikel ihood 

estim ators s ubje ct to LAS SO pe nalization . Subs eque n t to va riable sele ction, w e m ake infe re nces on the sele cte d c ov ari ate effects by extending 
pos t-selection infe re nce me thodo lo gy bas ed on the polyhedr al lemma. E mpirical evidence from our extensive simulation study su gge sts that our 
pos t-selection infe re nce results a r e mor e r eli ab le than thos e from n aiv e infe re nc e methods th at us e the s ame d ata to perform v ari ab le s election 

a nd infe re nce without adjus ting for v ari ab le s election . 

KEY W OR DS : c onfidenc e in te rvals; EM al gorithm; individual tes ting; LAS SO; va riable selection. 
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1 I N T R O D U C T I O N 

he n tes ting a la rge n umbe r of ind ividuals for a d is eas e or infec-
ion, it can be advantageous to test individuals in groups rather
han one by one. This strategy is called group testing. In group
es ting, individuals a re p l ac e d (us ually at ra ndom) in to groups
often small, of 2-10 individuals), and the specimens drawn from
he individuals in each group are c ombine d into a single pooled
pecime n. The n the poole d spe cimen is t est ed for the presence
f the dis eas e or infection, giving a positive or negative result

or each group. If individual di agnos e s are de sired, individuals in
r oups tha t t est ed positive can be ret est ed one by one; depend-

ng on the goals of the study, one may or may not retest individ-
als in groups that t est e d positiv e. 
One adva n t age of group te s ting is that it ca n gr ea tly r e duc e

he cost of dis eas e s urv ei l lanc e. Ev en if individuals in positive
ools are ret est ed, it is the case that when the disease is rare, the
 a jority of the pools wi l l test ne gativ e, res ulting in a si gnifica n t

eduction in the total n umbe r of tes ts th at ne e d to be performed.
 more hidde n adva n tage t o group t es ting is that, whe n positive
ools are ret est ed, one can, if the dis eas e is rare, obtain more
c curate estim ator s of d is eas e prev alence, e tc. th an one w ould
btain if one t est ed individuals one by one. The reason for this

s that each test is ass ume d to be liable to err or; tha t is, it can
 ive a fal se positive or a fal se ne gativ e res ult. The sourc e of the
idde n adva n tage ca n be put simply: The smalle r the n umbe r
f te sts, the fe wer the opportunities to make one of these errors.
he s en sitivity and spec i fic ity of the tests wi l l ther efor e p l ay
 n importa n t role in a ny a nalysis of group tes ting data. The
 en sitivity of a test is the probability that it is positive when the
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nfection is prese n t, while its spec i fic ity is the probability that it
s ne gativ e when the infe ction is abse n t. Throughout our work,

e wi l l assume that the s en sitivity and spec i fic ity of the group or
ndividual tes ts a re known a nd that they a re less tha n 1, so that
a ch testin g outcome is li ab le to error. G iven the li ability to error
f each test, we wi l l throughout this work make a dist inct ion
etw e e n tes ting outcomes as s oci ated w ith indiv iduals, which
e can o bs erve, and individuals’ true dis eas e status es, which we

a nno t observ e. 
Group testing has bee n imple me n ted with success in many

 e ttin gs. S innott-Armstron g et al. ( 2020 ) de mons trate d th at the
 umbe r of individuals it w as pos sib le to test w as doub led with
nly a m argin al increase in the n umbe r of tes ting kits ne e de d
hen ut iliz ing group test ing for SARS-CoV-2 RNA detection;
erdun et al. ( 2021 ) further optimized group testing strategies

ailored to the COVID-19 pa nde mic, lea din g to a 10-fold in-
rease in testing efficiency. Pilcher et al. ( 2020 ) dev elope d a
odel to as s es s the efficiency and a ccura cy of specimen pooling

lgor ithms for SARS- CoV-2 and show e d th a t gr oup testing could
 nable ra pid scale- up of te s ting a nd real -time s urv ei l lance of in-
idenc e. McMah an et al. ( 2017 ) r eport tha t the State Hygienic
abora tory a t the Unive rsity of Iowa, which tes ts thousa nds of

ow an s annually for chl amydi a and g onorrhe a, h as sav e d approx-
mately $3.1 mi l lion from 2009 to 2014 by a doptin g a group test-
n g approa ch. 

Be side s dis eas e de tection, res ea rche rs a re in te res ted in pe r-
orming log i stic r egr ession with gr oup testing da ta in or der to
de n tify risk factors or importa n t cova riates for the prediction of
is eas e incidence at the individual le vel. T he main challenge to
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fit ting r egr e ssion mode ls with group te sting dat a is that instead
of o bs erv ing indiv idual s’ true di s eas e status es, we o bs e rve tes t-
ing outc omes th a t ar e only gua ra n te e d to be c orre ct with c ertain
probabilities . As w e wi l l se e in the dev elopme n t of our methods,
the l ikel ihood function s bas ed on the o bs erv e d t esting out comes
a re m uch more c omplicate d th an the l ikel ihood functions based
on individuals’ true dis eas e status es, a nd they depe nd in tricately
on the s en sitivity and spec i fic ity of the tests. X ie ( 2001 ), Zhang
et al. ( 2013 ), and Gregory et al. ( 2019 ) addre ssed the se com-
p lication s by employing the expect ation- maximization (EM) al-
gorithm to estimate pa ra mete rs in ge ne r aliz ed linear r egr ession
models for the individual respon s e bas ed on group testing d ata.
McMahan et al. ( 2017 ) took a Bayesian approach for regression
analysis of group testing data. Joyner et al. ( 2020 ) formulated a
Bayesia n ge ne ral ized l inear mixe d model th at can ac c ommodate
any group t esting prot oco l, and us ed a spike-a nd -slab prior to fa-
cilitate v ari ab le s election . Focusing on multip le-infection group
te sting dat a, Lin et al. ( 2019 ) propos ed a me thod exp loiting the
LAS SO pe nalty for va riable selection to ide n tify risk factors for
each infection. 

Subseque n t to va riable selection, one may wish to make infer-
ences on the effects of the s elected cov ari at es, such as t esting hy-
pothe se s r egar din g co v ari ate effects or constructing confidence
in te rvals (CIs) for them. A n aiv e approach to inference after vari-
ab le s ele ction is to fit the re gre ssion mode l using only the se-
le cte d c ov ari ates a nd the n to make infe re nce as though the pro-
cess of choosing the cov ari ates had not used the same da ta. Ther e
is abunda n t evide nce in the lite ra tur e tha t this n aiv e approach
can lead to inflated Type I error rates and CIs that are too nar-
row (Berk et al., 2013 ; Lee et al., 2016 ; Tibshirani et al., 2016 ).
As our own simulation studies demonstrate, n aiv e post-sele ction
infe re nce wi l l h av e the same undesire d c on s e quenc es in the case
of r egr ession with gr oup testing da ta. We pr ese n t a proc e dure for
making valid post-selection infe re nces in this s e tting. 

The rest of the paper is organized as follows: In Section 2 ,
we provide a brief review of post-selection infe re nce lite ra-
ture. In Se ction 3 , w e prese n t the EM algorithm for LASSO-
pen alize d estim a tion of r egr ession pa ra mete rs in a log i stic re-
gre ssion mode l for individual te sting dat a when the individual
tests h av e s ome s en sitivity Se and spec i fic ity Sp. We then de-
rive a method for valid post-selection infe re nce. Section 4 ex-
tends the method to group testing data. Section 5 prese n ts sim-
ulation studies of the empirical perform anc e of the proposed
me thodo lo gy and i l lustrates its implementation on a real data
s e t. Section 6 outlines key takeaways and suggestions for future
r esear ch. 

2 OV E RV I E W O F  P O ST- S  E L  E C T I O N 

I N F E R E N C E  

Throughout this pa pe r, we wi l l us e the term s m ode l se le ct io n and
va ri ab le sele ct io n in te rcha ngeably to mea n the process of decid-
ing from among a s e t of av ail ab le pred ictor s which one s to kee p.
Pos t-selection infe re nce aims to account for the unce rtain ty in-
troduc e d by the model selection process, in con tras t to cl as si-
cal s tatis tical infe re nc e, which ass ume s the mode l h as be en se-
le cte d or is known before the data are o bs erv e d. Kuchib hotl a
et al. ( 2022 ) provide a c omprehensiv e review on 3 strategies for
pos t-selection infe re nce. 
One strategy is s amp le sp litting (Mein shaus en e t al., 2009 ; 
Was s e rma n a nd Roede r, 2009 ; Fithia n et al., 2014 ; Rinaldo et al.,
2019 ), whe reb y one splits the observ e d data into training and 

te sting dat a s e ts, usin g the trainin g s e t to perform model or v a ri -
ab le s election and the testing s e t to perform inference in the se- 
le cte d model. This strategy avoids “double dipping” into the ob- 
serv e d data and guarantees inferenc es un affe cte d by the selection 

proc ess . A downside is the loss in power entailed by using part of 
the data solely for variable selection. Infe re nc e base d on the data 
split ting appr oach may also be d iffic ult to repl icate, as the model 
sele cte d as w ell as the infe re nces in the sele cte d model m ay be
ve ry se nsitive to which observations fall in the training v ers us the 
testing s e t (Rasines and Young, 2022 ). 

The work on sim ulta neous infe re nce b y Be rk et al. ( 2013 ), 
along with s ubse que n t works by Zhang and Cheng ( 2017 ) and 

B a choc et al. ( 2019 , 2020 ), a mong ma ny othe rs, con tribut ed t o
the se c ond strate gy of post-sele ction infe re nc e. A c ommon goal 
of methods under this theme is to control the family-wise error 
rate for all pa ra mete rs in the sele cte d model. By striving for “uni- 
vers ally v alid post-s ele ction inferenc e for all mode l se lection pro- 
c e dures ...” (Berk et al ., 2013 , Sect ion 4.4) and controlling the 
probability of making an error for any pa ra mete r in a sele cte d 

model, this strategy can lead to overly con s erv a tive CI s. 
The thir d stra te gy, which w e adopt in this pa pe r, a t t empts t o

make infe re nces in the sele cte d model th a t ar e c onditione d on
the eve n t th at the sele cte d model was sele cte d. If one can prop-
erly condition on the selection eve n t, one ca n, for exa mple, con- 
struct CI s tha t m aintain nomin al c ov er age r ates eve n whe n con-
structed with the same data used in model selection. The key 
st ep is t o find the c ondition al s amp l ing d istributions of one’s es-
tim ators giv en the model sele ction ev e n t. In linea r r egr ession, 
for example, one may begin b y conside ring the sa mpl ing d is- 
tribution of the leas t-squa re s e stim ators (LS Es) in a giv en, pre- 
spec i fied model. Then one introduces a selection eve n t, which is 
the eve n t that the given model is sele cte d by a v ari ab le s election
proc e dure. If the sele ction ev e n t ca n be expres s e d as affine c on-
s train ts on the respon s es, the n a nalytic de riv ation s of the condi-
t ional distribut ions of the LS Es giv en the sele ction ev e n t be c ome 
more feasible. It has been shown that v ari ab le s election in linear 
r egr es sion vi a forw a rd s tepwis e s election, leas t a ngle r egr ession,
a nd LAS SO-pe naliza tion r esults in selection eve n ts that p l ace 
the v e ctor of respon s es in a po lyhedral s e t (Lee e t al., 2016 ; Tib-
shirani et al., 2016 ). Due to thi s property, one find s, in the case 
of Gaus si an nois e, that the s amp l ing d istributions of the LSEs in 

the sele cte d model ar e trunca ted Gaus si an s. Thes e truncated dis- 
tributions properly ac c ount for v ari ab le s election and can thus 
be used to make valid pos t-selection infe re nces. Tibshira ni et al. 
( 2018 ) show e d th a t this stra te gy w orks asymptotically in the 
cas e of non-Gaus si an nois e, a nd Taylor a nd Tibshira ni ( 2018 ) 
outlined a ge ne ralization of these results to log i stic regression 

and proportional hazard s model s. Hyun et al. ( 2018 ) dev elope d 

infe re nc e c onditioning on mode l se le ction ev e n ts that a re de-
fined by the gener aliz e d LASSO re gulariza tion pa th. Mor e r e- 
ce n t developme n ts in this direction aim to a nalytically de rive ex- 
act or appr oxima tely v alid post-s ele ction inferenc e under more 
c omplicate d model settings with diffe re n t mode l se lection pro- 
c e dures (Kuchib hotl a e t al., 2020 ; Pa ni grahi et al., 2021 ; Ne ufe ld
et al., 2022 ; Ruga me r et al., 2022 ; Zhao et al., 2022 ; Pa ni grahi
and Taylor, 2023 ). 
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To make valid post-selection infe re nces in log i stic r egr ession
ith group testing data, we follow the third strategy. We first

ntroduce our cov ari ate effect estimators as well as a selection
ve n t. The n we describe how to make post-selection infe re nces
ased on the appr oxima te conditional s amp l ing d istributions of
ur estim ators giv en the sele ction ev ent. We introduc e our pro-
 e dure in the context of log i stic r egr ession w ith indiv idual test-
ng data, in which each individual is t est ed with a test having
 ome s en sitivity Se and s ome spec i fic ity Sp. The n we exte nd our

ethods to the group testing s e tting in Section 4 . 

3 P O ST- S  E L  E C T I O N I N F E R E N C E  B A S E D  O N  

I N D I V I D UA  L  T E  ST I N G  DATA  

3.1 The post-s e lectio n s tatis tic 
e note b y Y = (Y 1 , . . . , Y n ) � a v e ctor of bin ary respon s es in-

icating the uno bs erv ab le true dis eas e status of n individuals,
 nd b y X = (x 1 , . . . , x n ) � a n n × p de sign matrix with value s
f p cov ari ates for each of the n individuals. We assume a lo-
 i stic r egr e ssion mode l s uch th at Y i | x i ∼ Bernoulli ( πi ( θ)) for
 = 1 , . . . , n , with πi ( θ) = 1 / { 1 + exp (−α − x � 

i β) } , where
= (α, β� ) � . Throughout we wi l l r egar d x 1 , . . . , x n as fixed,

o we wi l l no longer explicitly condition on the cov ari ate v alues.
Suppos e we o bs erve individual t esting out comes Z =

(Z 1 , . . . , Z n ) � in p l ace of Y, whe re the tes ts h av e s en sitiv-
ty Se and spec i fic ity Sp, so that Z i | Y i ∼ Bernoulli ( Se · Y i +

(1 − Sp ) · (1 − Y i )) , for i = 1 , . . . , n . We assume Z i | Y i does
ot depend on x i . More ov er, w e ass ume Se and S p to be kno wn.
 e v eral w orks in group te sting dat a make this s ame as sumption,

or examp le, Gregory e t al. ( 2019 ), Xie ( 2001 ), a nd Zha ng et al.
 2013 ), whereas some other works aim t o estimat e Se and Sp
n ta nde m with the r egr ession coefficie n ts θ, such as McMahan
t al. ( 2017 ) and Joyner et al. ( 2020 ). If tr ea ting Se and Sp as
nknown, one typically t ake s a Bayesia n a pproach to est imat ing

he m (P uggioni e t al., 2008 ). In s ome cas e s, point e stimate s of
e and Sp for tests tha t ar e in widespread use are av ail ab le from
tud ies l ike Haugl and e t al. ( 2010 ), which pres e n ted Se a nd Sp
oin t es timates of 0.890 and 0.992, respe ctiv ely, for a s tra nd
isp l ace me n t as s ay on cervical sw abs for Ch l a myd i a tracho ma t is

n women . G iven that such information may be av ail ab le, and
o th at w e m ay focus on the area of pos t-selection infe re nc e, w e
i l l proc e e d under the ass umption th at Se a nd Sp a re known. 
Viewing Y as missing data, we obtain the re gularize d m axi-
um l ikel ihood estimator (MLE) of θ using the EM algorithm

 ubje ct to LAS SO pe nal ization, as outl ined in Algorithm 1. With
omp le te d ata (Y, Z ) , the comp le te d ata lo g-l ikel ihood has the
orm 

� c ( θ; Y, Z ) = 

n ∑ 

i =1 

{
Y i log ( πi ( θ)) 

+(1 − Y i ) log (1 − πi ( θ)) 
} + C(Y, Z ) , 

(1) 

here C(Y, Z ) is the log-l ikel ihood of Z given Y, which is as-
 ume d to be free of θ. In the E-step, we compute the expectation
f Equation 1 given Z under the current estimate for θ, say θ(k) .
hi s g ives the o bj e ctiv e function (into which w e later inc orpo-
ate the LASSO penalty) 

Q ( θ; θ(k) , Z ) = 

n ∑ 

i =1 

{
E 

θ(k) [ Y i | Z i ] log (πi ( θ)) 

+(1 − E 

θ(k) [ Y i | Z i ]) log (1 − πi ( θ)) 
}
, 

(2)

here w e h av e remov e d the term inv olving C(Y, Z ) sinc e it does
ot depend on θ, and where, for i = 1 , . . . , n , we have 

E 

θ(k) [ Y i | Z i ] = 

Se Z i (1 − Se ) 1 −Z i πi ( θ(k) ) 
{ P 

θ(k) (Z i = 1) } Z i { P 
θ(k) (Z i = 0) } 1 −Z i 

, (3)

n which P 
θ(k) (Z i = 0) = (1 − Se ) πi ( θ(k) ) + Sp { 1 −

i ( θ(k) ) } , and P 
θ(k) (Z i = 1) = 1 − P 

θ(k) (Z i = 0) . In the M-
st ep, one updat es the estimat e for θ by maximizing Q ( θ; θ(k) , Z )
n Equation 2 pen alize d by LA SSO w ith a penalty parameter
≥ 0 . The outputs at c onv e rge nce of Al gorithm 1 a re the

en alize d MLEs for the r egr ession coefficie n ts in θ. 

l go r ithm 1 E M al gorithm for LAS SO-pe n alize d log i stic re-
res sion bas e d on impre cis e individual testing d ata 

1: Initialize an estimate θ(0) for θ. Set the iteration counter at
k = 0 . 

2: Compute ˆ Y i 
(k) = E 

θ(k) [ Y i | Z i ] , for i = 1 , . . . , n , ac c ording
to (3). 

3: Obtain 

θ(k+1) ← − argmax 
θ∈ R p+1 

n ∑ 

i =1 

{ 

ˆ Y 

(k) 
i log ( πi ( θ) ) 

+(1 − ˆ Y 

(k) 
i ) log ( 1 − πi ( θ) ) 

} 

− λ‖ β‖ 1 . (4) 

4: Re peat Ste ps 2 a nd 3 un til 1 √ 

n ‖ ̂

 Y 

(k+1) − ˆ Y 

(k) ‖ 2 〈 10 

−6 . 

Incorporating the LAS SO pe nalty in to ea ch M -step allows one
o perform v ari ab le s election . Le t M = { j ∈ { 1 , . . . , p} : ˆ β j 
 =
 } be the s e t containing the indices of the sele cte d c ov ari ates,
nd let | M| be the card inal ity of M. Subseque n t to va riable se lec -
ion, w e c onsider m aking infe re nc es on θM 

= (α, β� 

M 

) � base d
n Z and X M 

, where βM 

contains the r egr ession coefficie n ts as-
 oci ated with the selected cov ari ates, and X M 

is the n × | M| de-
ign matrix with the co lumn s of X with indices in M. Similarly,
et ̂  θM 

= ( ̂  α, ̂  β
� 

M 

) � . We wi l l base our post-selection infe re nces
n the estimator 

θ̄M 

= ( ̄α, ̄β
� 

M 

) � = 

(
[ 1 n , X M 

] � ˆ W [ 1 n , X M 

] 
)−1 

× [ 1 n , X M 

] � ˆ W ̂

 z , (5)

here ˆ W = diag ( ̂  π1 (1 − ˆ π1 ) , . . . , ˆ πn (1 − ˆ πn )) , and 

ˆ z =
ˆ 1 n + X ̂

 β + 

ˆ W 

−1 ( ̂  Y − ˆ π) , in which 

ˆ Y = ( ̂  Y 1 , . . . , ˆ Y n ) � and
ˆ = ( ̂  π1 , . . . , ˆ πn ) � , with 

ˆ Y i = E ˆ θ[ Y i | Z i ] and 

ˆ πi = E ˆ θ[ Y i | x i ] ,
or i = 1 , . . . , n . The post-se lection e stima tor in Equa tion 5
s motivated by the iteratively rewei gh ted leas t squa res (IRLS)
lgorithm for fitting the log i stic r egr e ssion mode l for Y based on
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the comp le te d ata lo g-l ikel ihood given in Equation 1 evaluated
at ˆ Y . In other w ords, w e use the estim ate d individual respon s es
in 

ˆ Y at c onv e rge nce from the EM algorithm as if they were the
o bs erv e d data, and, with 

ˆ θM 

as an initial estimate in the IRLS
algorithm, we obtain a wei gh ted LSE of θM 

that minimizes
( ̂  z − α − X M 

βM 

) � ˆ W ( ̂  z − α − X M 

βM 

) . W ithout invo lving
mode l se le ction, one m ay c onsider m aking infe re nc es base d on
the MLE of θM 

. But this estimator in logistic r egr ession is not
av ail ab le in clos e d form, which m akes it a d iffic ult s tatis tic to
use as the first ingredie n t for developing conditional selective
infe re nc e. Our choic e of the post-sele ct ion est imator θ̄M 

in
Equation 5 res emb les an LSE in Gaus si an linear r egr ession,
the s e tting in which we ca n es tablish pos t-selection infe re nce
res ults . 

Next, w e ch a racte rize the selection eve n t a nd r ela te this eve n t
to the post-se lection e stimat or t o pr epar e for de riving its condi -
t ional distribut ion giv en the sele ction ev e n t. 

3.2 The s e lectio n eve nt 
T he e ve n t on which we wi l l condition in order to make post-
selection infe re nce is the eve n t that our LAS SO-pe nalized es ti -
ma tion r esults in the selection of the cov ari ate s e t M as well as
in the v e ctor of signs given by sign ( ̂  βM 

) for the estim ate d c oeffi-
cie n ts of the sele cte d c ovariates . Following the work of Lee et al.
( 2016 ), we show next that the selection eve n t ca n be cha racte r-
ized as a s e t of affine cons train ts on the estimator ̄βM 

introduc e d
in Equation 5 . 

The sele cte d model is rev eale d by ̂  θ at c onv e rge nce of the EM
algorithm. If one views the estim ate d individual probabilities of
dis eas e ̂  Y at c onv e rge nce as the actual respon s e d ata, then the M-
step in the last iteration of (4) is equivalent to the minimization
of −� c ( θ; ˆ Y , Z ) plus the LAS SO pe nalty. This ca n be writte n in
wei gh ted leas t squa res form as 

argmin 

(α, β) ∈ R p+1 
( ̂  z − α − X β) � ˆ W ( ̂  z − α − X β) + λ‖ β‖ 1 . (6)

Ac c ording to the K ar ush–K uhn–Tuck er (KKT) conditions,
ˆ θM 

= ( ̂  α, ̂  β
� 

M 

) � satisfies 

1 

� 

n 
ˆ W (1 n ̂  α + X M ̂

 βM 

− ˆ z ) = 0 , (7)

X 

� 

M 

ˆ W (1 n ̂  α + X M ̂

 βM 

− ˆ z ) + λs M 

= 0 , (8)

X 

� 

−M 

ˆ W (1 n ̂  α + X M ̂

 βM 

− ˆ z ) + λs −M 

= 0 , (9)

where X −M 

is the n × (p − | M| ) matrix containing the co lumn s
of X with indices not in M, s M 

= sign ( ̂  βM 

) , and s −M 

is a (p −
| M| ) × 1 v e ctor with each e n try in [ −1 , 1] . The Equations 7 -
9 are similar to the KKT conditions from Taylor and Tibshirani
( 2018 ). Setting J ( ̂  θM 

) = [ 1 n , X M 

] � ˆ W [ 1 n , X M 

] , Equations 7
and 8 allow us to c onne ct the pen alize d estim ator ˆ βM 

and the
post-se lection e stimator β̄M 

with the expression 

( ̂  α, ̂  β
� 

M 

) � = ( ̄α, ̄β
� 

M 

) � − J 

−1 ( ̂  θM 

)[0 , λs � 

M 

] � . (10)

Fr om her e we can tran sl ate the s ele ction ev e n t to cons train ts on
β̄M 

. 
Ada pting the form ulation of a sele ction ev e n t resulting from

leas t squa re s e st imat ion subject to the LAS SO pe nalty in Lee
et al. ( 2016 , Theorem 4.3) to the pen alize d w eighte d least 
squar es pr oblem in Equa t ion 6 , the select ion eve n t ca n be ex-
pres s ed as affine cons train ts on β̄M 

implied by { sign ( ̂  βM 

) = 

s M 

} . Using Equation 10 , one can show that these cons train ts a re 
equivale n t to { A 1 ̄βM 

≤ b 1 } , where A 1 = −diag (s M 

) , and 

b 1 = −diag ( s M 

)[ 0 I | M| ] J 

−1 ( ̂  θM 

)[0 , λs � 

M 

] � . (11) 

We next adjust an appr oxima te pr e-s election s amp l ing d istribu- 
tion of β̄M 

for thes e con s train ts, obtaining a n a ppr oxima te post- 
s election s amp l ing d istribution for a l inea r con tras t ξ� β̄M 

con- 
ditional on the selection eve n t. 

3.3 The distr i bution of the post-s e lectio n estimato r 
Suppose the truth of θ gives { j ∈ { 1 , . . . , p} : β j 
 = 0 } ⊆ M,
that is, the se lected mode l M is c orre ct in the s en s e that it con-
tains all the truly importa n t cova riates. Rea rra n gin g Equation 

10 gives θ̄M 

= 

ˆ θM 

+ J 

−1 ( ̂  θM 

)[0 , λs � 

M 

] � , where J ( ̂  θM 

) can 

be view e d as the o bs erv e d Fisher inform ation c orresponding 
to the wei gh ted leas t squa r es r egr ession for fitting the sele cte d
model, and [0 , λs � 

M 

] � as the corresponding score evaluated at 
ˆ θM 

. Thus, θ̄M 

can be view e d as a 1-step update from the initial 
value ̂  θM 

in the context of an unpen alize d w eighte d least squares 
r egr ession for a correct model. By Theorem 7.3.3 regarding a 1- 

ste p e stimator in Lehmann ( 1999 ), we have 
√ 

n ( ̄θM 

− θM 

) d → 

N( 0 , I 

−1 ( θM 

)) , provided 

ˆ θM 

is 
√ 

n -consis te n t for θM 

, whe re 
I( θM 

) is the Fisher information corresponding to the wei gh ted 

leas t squa r es r egr es sion . The 
√ 

n -con sis te ncy of ˆ θM 

as the so-
lut ion to Equat ion 6 can be achiev e d b y choosing the pe nalty 
pa ra mete r λ such that lim n →∞ 

λ/ 
√ 

n = 0 ( Theore m 2, Kni gh t 
and Fu, 2000 ). 

Hence, the asymptotic s amp l ing d istribution of θ̄M 

without 
conditioning on the selection eve n t is N( θM 

, I 

−1 ( θM 

) /n ) if 
the sele cte d model M contains all truly importa n t cova riates 
and λ/ 

√ 

n → 0 , while v iew ing that ̂  θM 

results from Equation 6 , 
whe re we i gnore the depe nde nce of ˆ z and 

ˆ W on e stimate s for 
θ. Under thes e as sumption s, the asymptot ic distribut ion of β̄M 

is N( βM 

, I 

−1 
M 

( θM 

) /n ) , where I 

−1 
M 

( θM 

) is the lower | M| × | M|
block of I 

−1 ( θM 

) . 
To see how the selection eve n t { A 1 ̄βM 

≤ b 1 } affects the sam- 
pl ing d is tribution of β̄M 

, we in troduce 2 ra ndom qua n t it ies 
tha t ar e independent of each othe r. The firs t is a linear con- 
trast ξ� β̄M 

in β̄M 

, where ξ ∈ R 

| M| is a user-spec i fied vector de- 
pending on one’s inference target. For example, if one wishes to 

make infe re nces on β j for j ∈ M, one s e ts ξ as the jth ele me n-
tary basis v e ctor in R 

| M| . The se c ond quantity is r = (I | M| −
c ξ� ) ̄βM 

, where c = I 

−1 
M 

( θM 

) ξ{ ξ� I 

−1 
M 

( θM 

) ξ} −1 . By Lemma 
5.1 in Lee et al. ( 2016 ), we have { A 1 ̄βM 

≤ b 1 } = { v −(r) ≤
ξ� β̄M 

≤ v + ( r) , v 0 ( r) ≥ 0 } , where 

v −(r) = max 
{ j: (A 1 c ) j < 0 } 

b 1 j − (A 1 r) j 
(A 1 c ) j 

, 

v + (r) = max 
{ j: (A 1 c ) j > 0 } 

b 1 j − (A 1 r) j 
(A 1 c ) j 

, and 

v 0 (r) = max 
{ j: (A 1 c ) j =0 } 

{ b 1 j − (A 1 r) j } . 
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e re, for a ge ne ric v e ctor t ∈ R 

| M| , t j or (t ) j de notes its jth e n-

ry. Now, using “ d = ” to refer to “follows the same distribution as,”
 e h av e 

ξ� β̄M 

| { A 1 ̄βM 

≤ b 1 } 
d = ξ� β̄M 

| { v −(r) ≤ ξ� β̄M 

≤ v + ( r) , v 0 ( r) ≥ 0 } 
d = ξ� β̄M 

| { v −(r) ≤ ξ� β̄M 

≤ v + (r) } , 

here the se c ond e quality ow e s to the inde pe nde nc e betw e en
� β̄M 

and r. From here we see that the selection eve n t corre-
ponds to a truncation of the s amp l ing d istribution of our con-
rast ξ� β̄M 

. Spec i fically, the condit ional asymptot ic distribut ion
f ξ� β̄M 

given the selection eve n t is the truncated Gaus si an dis-
ribution T N( ξ� βM 

, ξ� I 

−1 
M 

( θM 

) ξ/n, v −(r) , v + (r)) , where
 N(μ, σ 2 , a, b) denotes the N(μ, σ 2 ) with support trun-
at ed t o [ a, b] . 

3.4 Post-s e lectio n infe re nce fo r linea r co nt rasts of covariate 
effects 

e note b y F [ a,b] 
μ,σ 2 the cum ulative dis tribut ion funct ion of

 N(μ, σ 2 , a, b) . Then 

F [ 
v −(r) , v + (r) ] 

ξ� βM , ξ
� I −1 

M ( θM ) ξ/n 

(
ξ� β̄M 

)∣∣∣∣ { A 1 ̄βM 

≤ b 1 } ∼ Unif (0 , 1) 

symptotically, which reveals an asymptotic pivotal qua n tity for
� βM 

. An asymptotic (1 − a )100% CI for ξ� βM 

is th us give n
y 

{
μ : a/ 2 ≤ F [ 

v −( ̂ r ) , v + ( ̂ r ) ] 
μ, ξ� ˆ I −1 ξ

(
ξ� β̄M 

) ≤ 1 − a/ 2 

}
, (12) 

here ̂  r = (I | M| − ˆ c ξ� ) ̄βM 

, ̂  c = 

ˆ I 

−1 ξ( ξ� ˆ I 

−1 ξ) −1 , and 

ˆ I is an
stimate of n I M 

( θM 

) . 
Following L oui s’ method (L oui s, 1982 ), w e c on struct ˆ I bas ed

n the o bs erv e d total inform ation afte r the las t ite ration of the
M algorithm that is given by 

I obs ( θM 

; Z ) = E ˆ θM 
[ I c ( θM 

; Y, Z ) | Z ] 

−E ˆ θM 
[ S c ( θM 

; Y, Z ) S 

� 

c ( θM 

; Y, Z ) | Z ] , 

(13) 

here S c ( θM 

; Y, Z ) and I c ( θM 

; Y, Z ) are the comp le te d ata
 core and o bs erv e d inform ation m a trix, r espe ctiv ely, evaluate d
t θM 

. Re call th at ̂  θM 

is the value of the estimator of θM 

at con-
e rge nce of the EM algorithm. From the comp le te d ata lo g-
 ikel ihood in Equation 1 , we have 

S c ( θM 

; Y, Z ) = 

∂� c ( θM 

; Y, Z ) 
∂ θ� 

M 

= 

n ∑ 

i =1 

{ Y i − πi ( θM 

) } 
[ 

1 

x M,i 

] 

, (14) 
I c ( θM 

; Y, Z ) = −∂ 2 � c ( θM 

; Y, Z ) 
∂ θM 

∂ θ� 

M 

= 

n ∑ 

i =1 

πi ( θM 

) { 1 − πi ( θM 

) } 
[ 

1 x � 

M,i 

x M,i x M,i x � 

M,i 

] 

, 

(15)
here x � 

M,i gives the i th row of X M 

. Since Equation 15 does
ot depend on Y, the first expectation in Equation 13 is equal

o Equation 15 . To derive the second expectation in Equa-
ion 13 , let D( θM 

; Y) = { Y − π( θM 

) }{ Y − π( θM 

) } � , where
( θM 

) = ( π1 ( θM 

) , . . . , πn ( θM 

)) � . Then Equation 14 implies
hat 

S c ( θM 

; Y, Z ) S 

� 

c ( θM 

; Y, Z ) 

= 

[
1 

� 

n D( θM 

; Y) 1 n 1 

� 

n D( θM 

; Y) X M 

X 

� 

M 

D( θM 

; Y) 1 n X 

� 

M 

D( θM 

; Y) X M 

]
. 

enc e, the se c ond term in Equation 13 depends on Z only
ia E ˆ θM 

[ D( θM 

; Y) | Z ] , of which the [ i, k] e n try is, for i 
 = k ∈
 1 , . . . , n } , 

E ˆ θM 
[ { Y i − πi ( θM 

) }{ Y k − πk ( θM 

) }| Z ] 

= { ̂  Y i − πi ( θM 

) }{ ̂  Y k − πk ( θM 

) } , (16)
nd, for i = k ∈ { 1 , . . . , n } , 
E ˆ θM 

[ { Y i − πi ( θM 

) } 2 | Z ] = { 1 − 2 πi ( θM 

) } ̂  Y i + π2 
i ( θM 

) , 

(17)

here ̂  Y i = E ˆ θM 
[ Y i | Z i ] i s g ive n b y Equation 3 (with θ(k) there s e t

t ̂  θM 

), for i = 1 , . . . , n . We then use the lower | M| × | M| block
f I obs ( ̂  θM 

; Z ) as a n es timate of n I M 

( θM 

) in Equation 12 , that
s, 

ˆ I = 

n ∑ 

i =1 

πi ( ̂  θM 

) { 1 − πi ( ̂  θM 

) } x M,i x � 

M,i 

−X 

� 

M 

E ˆ θM 
[ D( ̂  θM 

; Y) | Z ] X M 

. (18)

4 A  DA  P TAT I O N  F O R G R O U P  T E ST I N G  DATA  

e now adapt the strategy of Section 3 to group testing data.
u ppose n ind ividuals a re ra ndomly pa rt it ioned in to J pools, a nd

et P 1 , . . . , P J be the part it ion of { 1 , . . . , n } s uch th at P j is the
 e t of indices of the individuals in pool j. Set Y 

∗
j = max i ∈P j Y i ,

hich is the true dis eas e status for pool j (equal to 1 if at least
ne individual is positive), and let Z j be the o bs erv e d testing re-
ult for the pool, where the test has s en sitivity Se and spec i fic ity
p. 
In this s e tting, the comp le te d ata lo g-l ikel ihood will still be of

he form in Equation 1 , so Algorithm 1 can sti l l be used to com-
ute the LAS SO-pe n alize d MLE: The only change is in how we
 ompute the c ondition al expe ctation s of the uno bs erv e d true
is eas e status es Y 1 , . . . , Y n given the o bs erv e d testing outcomes,
hich are now the pooled testing outcomes Z 1 , . . . , Z J . As long

s we can compute these conditional expectations, we can com-
ute ̄θM 

and follow the arguments in Section 3 for making valid
os t-selection infe re nces on con tras ts in β̄M 

. 
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Under group testing, for i ∈ P j , we have 

E θ[ Y i | Z j ] = 

Se Z j (1 − Se ) 1 −Z j πi ( θ) 
{ P θ(Z j = 1) } Z j { P θ(Z j = 0) } 1 −Z j 

, (19)

where P θ(Z j = 0) = (1 − Se )[1 − ∏ 

i ∈P j { 1 − πi ( θ) } ] +
Sp 

∏ 

i ∈P j { 1 − πi ( θ) } , and P θ(Z j = 1) = 1 − P θ(Z j = 0) .
Now, the LAS SO-pe n alize d MLE is c ompute d with Algorithm
1 as in the individual testing case, but with 

ˆ Y 

(k) 
i on line 2 com-

pute d ac c ording to the c ondition al expe ctation in Equation 19 .
The output of the EM algorithm gives the penalized MLE 

ˆ θ of
θ, which reveals a selected model M, under which we obtain
the estim ate d respon s es in 

ˆ Y , ˆ Y i = E ˆ θ[ Y i | Z j ] , for i ∈ P j and
j = 1 , . . . , J, ac c or ding to Equa tion 19 . Using ˆ Y and 

ˆ θ, we
define the post-selection estimator ̄θM 

as in Equation 5 . 
Having obtaine d θ̄M 

, w e follow the steps in Section 3 until
w e c ome to the est imat ion of the o bs erv e d total inform ation
n I M 

( θM 

) . The ide n t ity in Equat ion 13 on which L oui s’ method
is based sti l l holds, only now Z r epr ese n ts the group testing out-
c omes . As a res ult, the estim ate d total inform ation as s oci ated
with β̄M 

is sti l l given by Equation 18 , but with the e n tries in
E ˆ θM 

[ D( θM 

; Y) | Z ] deriv e d differ ently, as elabora ted in Web Ap-
pendix A. The [ i, k] entry of E ˆ θM 

[ D( θM 

; Y) | Z ] is now found as
follows: For i, k ∈ P j with i 
 = k, we have 

E ˆ θM 
[ { Y i − πi ( θM 

) }{ Y k − πk ( θM 

) }| Z ] 

= 

Se Z j (1 − Se ) 1 −Z j πi ( ̂  θM 

) πk ( ̂  θM 

) 
{ P ˆ θM 

(Z j = 1) } Z j { P ˆ θM 
(Z j = 0) } 1 −Z j 

−πk ( θM 

) ̂  Y i − πi ( θM 

) ̂  Y k + πi ( θM 

) πk ( θM 

) , 

whe re ˆ Y i = E ˆ θM 
[ Y i | Z j ] a nd 

ˆ Y k = E ˆ θM 
[ Y k | Z j ] a re give n b y Equa-

tion 19 with ̂

 θM 

rep l a cin g θ; for i ∈ P j and k ∈ P m 

, j 
 = m , the
e n try is sti l l given by Equation 16 , but with 

ˆ Y i = E ˆ θM 
[ Y i | Z j ] and

ˆ 
 k = E ˆ θM 

[ Y k | Z m 

] ; if i = k ∈ P j , the e n try i s al so g ive n b y Equa-
tion 17 , but with the estim ate d respon s e ̂  Y i o btained bas ed on the
gr oup r espon s e Z j ac c ording to Equation 19 . 

If M is an inc orre ct model, th at is, M does not contain all truly
activ e c ov ari ate s, then we vie w θM 

as the “truth” defined b y a n
equation similar to Equation (1.2) in Lee et al. ( 2016 ). Then all
d isc ussions in Sections 3 and 4 sti l l go through, but, in the pres-
ence of model misspec i fication, one would use the sandwich-
form of v ari anc e–c ov ari anc e m atrix estim ation in Elashoff and
Ryan ( 2004 ) to estimate the v ari anc e–c ov ari ance in stead of
L oui s’ method. Thi s estimator, which i s deriv e d in Web Ap-
pendix B , gives some protection against model misspec i fication
in v ari anc e estim ation. 

Our method can be easily extended t o accommodat e more
c omplicate d group testing schemes, for ex ample, w hen individ-
uals in positive pools are ret est e d. While more c omplicate d test-
ing schemes induce more compl icated l ikel ihood functions, one
ca n s ti l l imple me n t the EM al gor ithm descr ibed in Algor ithm 1
and use L oui s’ method for evaluating the observ e d inform ation
m atrix: One ne e ds only t o be able t o comput e c ondition al expe c-
tations of the true, unobserv e d disease st atuse s Y 1 , . . . , Y n given
all the o bs erv e d t esting out c omes . Suppose A i r epr ese n ts all the
t esting out c omes th at p l ay a ro le in the c ondition al probability
that Y i = 1 . For example, if groups of individuals are t est ed in 

pools and then individuals in positive pools are re-t est ed, A i wi l l 
consist of a single negative test if the pool in which individual i 
w as p l ac e d tests ne gativ e; on the other h and, if the pool in which
individual i was plac e d tests positiv e, A i wi l l consist of the pos- 
itive pool test as well as the re-testing outcomes for all individ- 
uals in the pool. To imple me n t our methods in this s e tting, we 
can rep l ac e the c ondition expe ctations giv en in Equation 3 or 19 

by E θ[ Y i |A i ] . See , for example , Gregory et al. ( 2019 ) for details
on how to compute the c ondition al expe ctations E θ[ Y i |A i ] for 
some more c omplicate d testing schemes. 

5 E M P I R I C  A L  E V I D E N C E  

We shall ackno wledg e that several appr oxima tions ar e made in 

developing the proposed pos t-selection infe re nce pr ocedur e in 

Sections 3 and 4 . First, in Equation 6 , we view ̂

 z as respon s e d ata 
and 

ˆ W as the wei gh t matrix even though they depend on an esti- 
mate of θ. The unce rtain ty in this es timate whe n form ulating the 
sele ction ev e n t is i gnored, for ins ta nce, b y v iew ing b 1 in Equa-
tion 11 as fixed given a selected model even though it depends 
on ̂

 θM 

. Se c ond, w e approxim ate the pre-sele ction sampl ing d is- 
tribution of θ̄M 

by a Gaus si an distribution . Effects of these ap- 
pr oxima tions permea te thr ou gh the post-se lect ion distribut ion 

of ξ� β̄M 

and the CI in Equation 12 . Despite being only approx- 
imately valid pos t-selection infe re nce pr ocedur es, they ar e ex- 
pe cte d to improve over their naive coun te rpa rts, which assume 
the selection eve n t to be known and fixed when making infer- 
ences on βM 

. This claim is s upporte d b y e mpirical evide nce from 

our extensive simulation study. 

5.1 S imulat ion des ign 

In our simulation study, we generate true individual respon s es 
{ Y i } n i =1 from a log i stic regression model with p = 10 cov ari ates 
and r egr ession coefficie n ts θ = (−5 , 2 , 1 , 1 , 0 

� ) � , that is, α =
−5 and only the first 3 cov ari a tes ar e truly import ant. Realiza - 
tions of each of the 10 cov ari a tes ar e genera ted independently 
from the N(0 , 1) distribution. We then randomly form J pools 
s uch th at |P j | = m for all j for s ome poo l size m , and com-
pute true poo l respon s es { Y 

∗
j = max i ∈P j Y i } J j=1 . Lastly, we simu- 

la te the impr ecise gr oup testing r espon s e Z j from Bernoulli ( Se ·
 

∗
j + (1 − Sp )(1 − Y 

∗
j )) , for j = 1 , . . . , J, with Se = 0 . 95

and Sp = 0 . 97 . We consider the s amp le sizes n ∈ { 1000 , 2000 }
and the pool sizes m ∈ { 1 , 2 , 4 } , where m = 1 leads to { Z j } J j=1 
as imprecise individual te sting dat a. A tot al of 5000 Monte Carlo 

r eplica tes ar e ge ne ra ted a t each c ombin ation of n and m . 
We s e t the pe nalty pa ra mete r λ at a seque nce of values ran gin g

from 1 to 7 (when n = 1000 ) or 0.5 to 10 (when n = 2000 ) that
are e qually spac e d on the lo garithmic s cale. Usin g ea ch Monte 
Carlo r eplica te da taset, we fit the log i stic r egr e ssion mode l fol-
lo wing Alg orithm 1 at each pre-spec i fied λ; then we carry out 
the propos ed post-s election infe re nce to construct 95% CIs for 
each e n try of βM 

, whe re M is the sele cte d model. We als o o btain
95% CIs n aiv ely in the cl as sical w ay as suming the s ele cte d model 
to be known a pr ior i. 

For each simulated dataset, we compute a r ealiza tion of the 
Type I err or ra te in the fo llowing w ay: After model s ele ction, w e

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae101#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae101#supplementary-data
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uild a CI for each e n try of βM 

, whe re M is the sele cte d model.
f the sele cte d model includes cov ari ates for which the r egr es-
ion coefficie n t is equal to 0, the n for each of these, w e che ck
hether the CI for the r egr ession coefficie n t con tains 0. The re-

lized Type I error rate is the proportion of these CIs that did
ot contain 0. If the sele cte d mode l M doe s not include any “ex-

ra” cov ari ates (cov ari a tes with r egr ession coefficie n t equal to 0),
hen the realized Type I err or ra te is r e c orde d as 0 for tha t da taset.
pec i fically, we compute on each simulated d atas e t the qua n tity

Type I error rate = 

|{ j ∈ M : 0 / ∈ CI ( ̂  β j ) and β j = 0 }| 
|{ j ∈ M : β j = 0 }| , 

here CI ( ̂  β j ) is a 95% CI for β j ac c ording to the c onsidere d in-
e re nc e proc e dure, and w e re c ord 0 if |{ j ∈ M : β j = 0 }| = 0 .
n addition, we r ecor d for each d ata s e t, at each pres e t v alue of λ,
he A kaike infor mation cr iter ion (AIC) a nd Bayesia n informa-
ion cr iter ion (BIC) as s oci ated with the selected model, that is,
ased on the observ e d data log-l ikel ihood evaluated at ̂  θM 

. 

5.2 S imulat ion results 
igure 1 depicts Monte Carlo averages of the realized Type I
rr or ra te as s oci ate d with the n aiv e and sele ction-adjuste d infer-
nc e proc e dures as λ increases. In all 6 simulation settings, our
ropos ed me thod produces Type I error rates closely matching

he nominal level 0.05 across all pre-s e t v alues of λ, whereas
he n aiv e method yields an incr easingly infla ted Type I err or as

increas es. A l a rge r pe n alty λ m akes the re gularization more
ggressive and typically results in a smaller model size | M| .
gnoring the unce rtain ty in va riable selection whe n infe rring
ele cte d c ovariate effe cts does more h a rm whe n 1 mor e pr oac-
iv ely pen alizes la rge models, a nd having group testing data with
 la rge r group size only exace rba tes the pr o b lem . In con tras t, our
ethod a dequately a ccounts for v ari ab le s e lection and provide s
or e r eli ab le infe re nc e on sele cte d c ov ari ate effects bas ed on

ither individual te sting dat a or group te sting dat a with a rbitra ry
roup sizes. 
If one first uses AIC or BIC to choose a value of λ and then

e lects a mode l using the chos en λ, the p lots in Figure 1 su gge st
hat the naive infe re nce wi l l be li ab le to abov e-nomin al Type I
rr or ra tes; this pr o b lem c ould be w ors e under BIC s election
ha n unde r AIC selection, as the BIC t ends t o se lect s maller

odels (la rge r values of λ). In con tras t, the proposed pos t-
selection infe re nce pr ocedur e exhibits good control of the Type
 err or ra te ove r the e n tire ra nge of λ v alues typically chos e n b y
he AIC or BIC. 

Table 1 s umm a rizes the pe rforma nce of 95% CIs for β2 , β4 ,
nd β6 resulting from the proposed method and from the n aiv e
ethod along with those for the corresponding odds ratios

xp (β j ) , j = 2 , 4 , 6 , where the odds ratio CIs are c onstructe d
 y expone n t iat ing the e ndpoin ts of the coefficie n t CIs . Note th at
2 is nonze ro, whe reas β4 and β6 are both equal to 0 in the true
ode l. We re port for each coefficie n t the ave rage of the uppe r

s well as the lower CI bound, the average widths of the CI,
nd the proportions of the CI s tha t contain the true value of
he coefficie n t—whe n the c orresponding c ov ari ate is sele cte d—
r om 5000 simula ted da t asets. Re sults are reported at a single,

xed value of λ chosen as follows: For each of the 5000 data s  
 e ts, w e re c orde d the value of λ that minimized the AIC cr iter ion
cross a grid of λ choices (where the same grid of choices was
 onsidere d for each dataset). Then we set our fixed λ value equal
o the median of these values. This was done at each c ombin a-
ion of n and m . Table 1 shows that the naive CIs are on average
 uch na rrowe r tha n our selection-adjus ted CIs constructed ac-

or ding to Equa tion 12 . This exp l ain s the infla ted Type I err or of
he n aiv e method exhibite d in Fi gure 1 . For β4 a nd β6 , which a re
qual to 0, the coverage probabilities of the naive CI s ar e consid-
 rably lowe r tha n the nominal level, while those of the adjusted
I s ar e close to the nomin al lev el. For β2 , which is nonzero, we

e e th at the c ov erage probability of the propos ed me thod falls a
ittle below the nominal level; this owes to the shrinkage toward
 of the 1-step estimators of the cov ari ate effects, which is not
nexpe cte d. For c oefficie n ts equal to 0, the shrinkage toward 0
f the 1-step estimator does not adversely affect the coverage of

he sele ction-adjuste d CIs, sinc e the shrinkage m ake s the 1-ste p
stima tor mor e accura te for 0-value d c oefficie n ts. 
A pr actical consider ation is how our method for post-sele cte d

djus tme n t wi l l pe rform unde r misspec i fication of the s en sitiv-
ty and spec i fic ity of the tests. Table 2 and Figure 2 s umm arize
he pe rforma nce of naive and selection-adjus ted infe re nce whe n
he true s en sitivity and spec i fic ity of the tests are Se = 0.90 and
p = 0.92, but when the hi ghe r values Se = 0.95 and Sp = 0.97
re ass ume d b y the es t imat ion proc e dure. This c orresponds to
he situation in which w e ass ume the tests are more accurate
han they r eally ar e. Ac c or ding to Figur e 2 , which focuses on
ype I error rates, this kind of misspec i fication does not a ppea r

o degrade the pe rforma nce of our selection-adjus ted infe re nce,
s the pa t tern s we s ee are simil ar to thos e in Figur e 1 . Fr om
a ble 2 , howe ver, we see that for β2 , which is nonzero, the cov-
rage probabilities of both the n aiv e and the sele ction-adjuste d
I s ar e nowher e close to the nominal le vel. T hi s show s that
isspec i fying the sensitivity and spec i fic ity of the tests can

eve rely dis tort both n aiv e and sele ction-adjuste d infe re nces
or nonze ro coefficie n ts; thi s i s not v ery s urpri sing, as thi s k ind
f misspec i fication base s e st imat ion on an inc orre ct l ikel ihood

unction. Somewh at s urprising, how ev er, is th a t Type I err or
a tes (infer enc e on c oefficients th a t ar e truly equal to 0) appear
o be largely un affe cte d by the misspec i fication. 

5.3 Application to chl amydi a d ata 
e now analyze da ta fr om the Na tional Health and Nutrition

xamin ation Surv ey from year 2015 to 2016 on n = 1371 par-
icipa n ts aged 14-39 years. Be side s individual te sting re sults for
hl amydi a infection bas ed on urine specime ns, pa rticipa n ts’ de-
o grap hic information was also c olle cte d, s uch as ethnicity, in-

 ome lev el, and age. For i l lustration purposes, w e c onsider a lo-
 i stic r egr e ssion mode l for the indicator of chl amydi a infection,
ith cov ari at es age, non-H ispanic Whit e, non-H ispanic B la ck,
exica n Ame rica n a nd Hispa nic, fa mily mon thly pove rty level

ndex, new pa rtne r in the pas t 12 mon ths, a n indicator of pove rty
ndex > 5, ge nde r, e ducation lev el, and m arriage status (mar-
ied or never ma rried). Va ri ab le s election w as performed in or-
e r to ide n tify the mos t si gnifica n t risk factors, the reb y improv-

ng the model pe rforma nce a nd in te rpre tability in as s es sing the
 ikel ihood of chl amydi a infection . A s en sitivity of 0.97 and a
pec i fic ity of 0.99 are assumed for the test for the diagnosis of
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(B)(A)

(D)(C)

(F)(E)

FIGURE 1 Averages of Type I error rates across 5000 Mon te Ca rlo re plicate s v ers us λ when the propos ed post-s election infe re nc e proc e dure is 
used to construct 95% confidence in te rvals for sele cte d c ovariate effe cts (s o l id l ines), a nd whe n the n aiv e infe re nc e proc e dure is used (dashed 

lines) as the s amp le size n and pool size m vary. Overlaying the plot of Type I error rate v ers us λ are the histogram of chosen λ ac c ording to 

A kaike infor mation cr iter ion a nd the coun te rpa rt his togra m whe n Bayesia n information crite rion is used to choose λ. 
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chl amydi a, which we take to be reas onab le v alues ac c ording to
Whell am s ( 2021 ). 

We first use the individual testing data to fit the log i stic r egr es-
sion model s ubje ct to the LAS SO pe nalty, with λ chose n b y AIC,
follow e d by constructing 95% CIs for cov ari ate effects in the se-
le cte d model. As in the simulation study, we compar e CI s fr om
the n aiv e me thod to thos e fr om our pr opos ed me thod. To intro-
duce a nothe r compe titor, we pres e n t results from the strategy of
d ata sp littin g, usin g half the data for v ari ab le s ele ction and h alf
for in te rval es t imat ion. Web Appe ndix C con t ains re sults from 

this s trategy imple me n ted in the simulation setting described in 

S ection 5.1 . Ta b le 3 (the upper half) pres e n ts these in te rval es-
timates for a sele cte d model resulting from these 3 approaches. 
Figure 3 provides a pictorial comparison of these CIs. 

Fin ally, w e ra ndomly pa rt it ion the 1371 individuals into J = 

457 groups of size m = 3 a nd a rti fic ially ge ne ra te gr oup testing
respon s es. We r epea t the exercise of model selection followed by 
in te rval es t imat ion using the afore me n tioned 3 s trate gies . The

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae101#supplementary-data
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TABLE 1 Mon te Ca rlo ave rages of e mpirical c ov erage probabilities (C.P.) of 95% c onfidenc e in te rvals (CIs) for β2 , β4 , and β6 , along with the 
c orresponding av erag e C I limits, averag e C I for odds r atio, aver age widths (A.W.), a nd ave rage pa ra mete r es t imates (P.E .). 

n Pa ra m m Propos e d Naive 

CI CI odds A .W. C .P. P .E. CI CI odds A .W. C .P. P .E. 

1 [0.28,1.82] [1.32,6.17] 1 .5 93 .1 0 .93 [0.53,1.68] [1.70,5.37] 1 .2 95 .6 0 .83 
β2 2 [0.19,1.93] [1.21,6.89] 1 .7 92 .4 0 .93 [0.51,1.70] [1.67,5.47] 1 .2 94 .7 0 .83 

4 [0.02,2.16] [1.02,8.67] 2 .1 93 .9 0 .93 [0.47,1.81] [1.60,6.11] 1 .3 95 .3 0 .84 
1 [ −0.89,1.57] [0.41,4.81] 2 .5 94 .9 0 .00 [ −0.46,0.45] [0.63,1.57] 0 .9 92 .8 0 .00 

1000 β4 2 [ −1.02,1.81] [0.36,6.11] 2 .8 94 .1 0 .00 [ −0.50,0.49] [0.61,1.63] 1 .0 91 .2 0 .00 
4 [ −1.19,2.33] [0.30,10.29] 3 .5 94 .2 0 .00 [ −0.56,0.58] [0.57,1.79] 1 .1 90 .1 0 .00 
1 [ −0.88,1.56] [0.41,4.75] 2 .4 95 .0 − 0 .01 [ −0.47,0.45] [0.62,1.57] 0 .9 92 .5 0 .00 

β6 2 [ −0.97,1.91] [0.38,6.75] 2 .9 94 .2 − 0 .01 [ −0.50,0.48] [0.61,1.62] 1 .0 91 .6 0 .00 
4 [ −1.19,2.26] [0.30,9.59] 3 .5 94 .0 0 .00 [ −0.57,0.57] [0.57,1.77] 1 .1 89 .8 0 .00 
1 [0.53,1.53] [1.70,4.62] 1 .0 92 .9 0 .96 [0.67,1.41] [1.96,4.10] 0 .7 94 .9 0 .90 

β2 2 [0.48,1.57] [1.62,4.81] 1 .1 93 .3 0 .95 [0.66,1.43] [1.93,4.18] 0 .8 94 .9 0 .88 
4 [0.37,1.71] [1.45,5.53] 1 .3 93 .9 0 .95 [0.63,1.49] [1.88,4.44] 0 .9 94 .6 0 .89 
1 [ −0.60,1.06] [0.55,2.89] 1 .7 94 .8 0 .00 [ −0.30,0.31] [0.74,1.36] 0 .6 92 .8 0 .00 

2000 β4 2 [ −0.67,1.21] [0.51,3.36] 1 .9 95 .5 0 .00 [ −0.32,0.33] [0.72,1.39] 0 .7 92 .4 0 .00 
4 [ −0.79,1.48] [0.45,4.39] 2 .3 94 .3 0 .00 [ −0.37,0.38] [0.69,1.46] 0 .8 91 .3 0 .00 
1 [ −0.60,1.08] [0.55,2.94] 1 .7 94 .7 0 .00 [ −0.31,0.30] [0.73,1.35] 0 .6 92 .6 0 .00 

β6 2 [ −0.66,1.22] [0.52,3.39] 1 .9 95 .2 0 .00 [ −0.33,0.32] [0.72,1.38] 0 .7 92 .2 0 .00 
4 [ −0.80,1.42] [0.45,4.13] 2 .2 94 .6 0 .00 [ −0.37,0.38] [0.69,1.46] 0 .8 91 .1 0 .00 

The results are based on a single value of λ (the median Akaike information cr iter ion choice of λ) across 5000 Monte Carlo simul ation s at each c ombin ation of n and m . Se = 0.95, Sp 
= 0.97. 

TABLE 2 Mon te Ca rlo ave rages of e mpirical c ov erage probabilities (C.P.) of 95% c onfidenc e in te rvals (CIs) for β2 , β4 , and β6 , along with the 
c orresponding av erag e C I limits, averag e C I for odds r atio, aver age widths (A.W.), a nd ave rage pa ra mete r es t imates (P.E .). 

n Pa ra m m Propos e d Naive 

CI CI odds A .W. C .P. P .E. CI CI odds A .W. C .P. P .E. 

1 [ −0.01,0.86] [0.99,2.36] 0 .9 13 .8 0 .40 [0.15,0.75] [1.16,2.12] 0 .6 10 .5 0 .34 
β2 2 [ −0.06,1.36] [0.94,3.90] 1 .4 53 .4 0 .57 [0.25,1.09] [1.28,2.97] 0 .8 60 .7 0 .51 

4 [ −0.22,1.90] [0.80,6.69] 2 .1 84 .0 0 .72 [0.31,1.44] [1.36,4.22] 1 .1 90 .0 0 .65 
1 [ −0.57,1.01] [0.57,2.75] 1 .6 95 .3 0 .00 [ −0.28,0.28] [0.75,1.32] 0 .6 92 .8 0 .00 

1000 β4 2 [ −0.82,1.52] [0.44,4.58] 2 .3 94 .9 0 .00 [ −0.39,0.38] [0.68,1.46] 0 .8 90 .8 0 .00 
4 [ −1.15,2.05] [0.32,7.77] 3 .2 93 .9 0 .00 [ −0.51,0.52] [0.60,1.68] 1 .0 89 .3 0 .00 
1 [ −0.57,1.00] [0.57,2.72] 1 .6 95 .7 0 .00 [ −0.28,0.27] [0.75,1.31] 0 .5 92 .3 0 .00 

β6 2 [ −0.83,1.50] [0.44,4.48] 2 .3 94 .6 0 .00 [ −0.38,0.39] [0.68,1.48] 0 .8 90 .6 0 .00 
4 [ −1.12,2.17] [0.33,8.76] 3 .3 93 .6 − 0 .01 [ −0.53,0.50] [0.59,1.65] 1 .0 89 .0 − 0 .01 

The results are based on a single value of λ (the median Akaike information cr iter ion choice of λ) across 5000 Monte Carlo simul ation s at each c ombin ation of n and m . Misspec i fied 
Se = 0.90, Sp = 0.92 when ge ne ra ting da ta. 
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 esulting 95% CI s ar e pr ovide d in Table 3 (the low er h alf), with
 visual con tras t give n in Figure 4 . 
From Table 3 , we see that the selection-adjusted method tends

o be most con s erv ativ e when m aking cl aim s r egar ding sta t ist ical
i gnifica nce of a cov ari ate effect, which is reflected in the count
f CIs that exclude 0, as well as in the width of a C I cle arly de-
icted in Figures 3 and 4 . More spec i fically, when m = 1 , the
 ari ab le non-Hispanic B la ck is de eme d significant by all 3 meth-
ds. The v ari ab le new s ex pa rtne r is dee med si gnifica n t b y the
 aiv e method and da ta split t ing method , but not ac c ording to

he sele cte d -adjus ted method. Unde r m = 3 , d ata sp litting and
he sele ction-adjuste d method agre e with the n aiv e method on
he si gnifica nce of the v ari ab le nev er m arrie d, w ith the w idest CI
 esulting fr om the sele ction-adjuste d method. The n aiv e method
nds e ducation lev el to be si gnifica n t, but neithe r the proposed
ele ction-adjuste d method nor da ta split ting finds it si gnifica n t.

hile data splitting is a sound method for obtaining CIs and
 -values that wi l l m aintain nomin al c ov e rage probabilities a nd
ype I error rates, it is importa n t t o not e that in the case of
i ghly unbala nc e d bin ary respon s e d a ta (when the r espon s es
 re mos tly ze ros with a small n umbe r of ones or vic e v ersa),
he s e t of s ele cte d c ov ari ates can v ary wi ld ly with the subs e t
f the data chosen to perform v ari ab le s election . That is, dif-

e re n t ra ndom sp lits of the d a ta can r e sult in se le cte d models
ha t ar e ve ry diffe re n t. In fact, in orde r to compa re our method
nd the n aiv e me thod to the d ata sp litting me thod, w e ne e de d
o try many d ifferent spl its of the data to find a split under
hich the sele cte d model was the same as the sele cte d model

rom the full data s e t. Thes e con sideration s pos e con siderab le
rawbacks to the data splitting method, in pa rticula r whe n one
a n ts r epr oducible r es ults . Las tly, Table 4 prese n ts the odds ra-

io CIs and point e stimate s for the s elected v ari ab le s. This t a -
le is provided for readers who are int erest ed in these additional
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(A) (B)

FIGURE 2 Averages of Type I error rates across 5000 Mon te Ca rlo re plicate s v ers us λ when the propos ed post-s election infe re nc e proc e dure is 
used to construct 95% confidence in te rvals for sele cte d c ovariate effe cts (s o l id l ines), a nd whe n the n aiv e infe re nc e proc e dure is used (dashed 

lines) as the s amp le size n and pool size m vary, with the sensitivity and spec i fic ity of tests misspec i fied. Overlaying the plot of Type I error rate 
v ers us λ are the histogram of chosen λ ac c ording to Akaike information cr iter ion and the counterpart histogram when Bayesian information 

cr iter ion is used to choose λ. 

TAB LE 3 Confidenc e intervals (CIs) and point e stimate s for se lected cov ari a te effects fr om 3 consider ed me thods bas ed on the chl amydi a d ata. 
CIs not containing zero are m arke d with ‘ ∗’. 

m Covariate Propos e d Naive Da ta split ting 

CI PE CI PE CI PE 

1 Age [ −2.62, 1.36] − 1 .22 [ −2.84, 0.17] − 1 .34 [ −2.91, 0.60] − 1 .16 
Non-Hispanic B la ck [0.31, 2.79] ∗ 1 .72 [0.61, 3.41] ∗ 2 .01 [0.41, 3.17] ∗ 1 .79 

New sex pa rtne r [ −0.16, 1.77] 0 .92 [0.07, 1.82] ∗ 0 .95 [0.06, 2.07] ∗ 1 .06 
Hispanic [ −1.16, 2.23] 1 .07 [ −0.03, 2.84] 1 .41 [ −0.63, 2.38] 0 .87 

Poverty index > 5 [ −4.17, 2.53] 1 .06 [0, 2.58] 1 .29 [ −0.89, 2.55] 0 .83 
Ge nde r [ −0.70, 1.60] 0 .72 [ −0.15, 1.75] 0 .80 [ −0.37, 1.77] 0 .70 

Education level [ −1.68, 0.39] − 0 .82 [ −1.70, 0.09] − 0 .80 [ −1.90, 0.11] − 0 .90 
3 Non-H ispanic Whit e [ −1.41, 9.91] − 0 .31 [ −2.55, 1.21] − 0 .67 [ −1.57, 0.24] 1 .05 

New sex pa rtne r [ −5.06, 1.48] 0 .36 [ −0.77, 1.64] 0 .43 [ −1.04, 1.91] 1 .01 
Ge nde r [ −1.44, 4.03] − 0 .42 [ −1.79, 0.48] − 0 .65 [ −1.87, 0.56] − 2 .04 

Education level [ −2.70, 0.05] − 1 .37 [ −2.73, −0.25] ∗ − 1 .49 [ −3.03, 0.05] − 0 .37 
Nev er m arrie d [0.07, 4.16] ∗ 1 .50 [0.19, 2.79] ∗ 1 .49 [0.53, 2.45] ∗ 0 .83 

Ab brevi ation: PE, pa ra mete r es timate. 

FIGURE 3 Naive, sele ction-adjuste d, and data splitting c onfidenc e intervals for the r egr ession coefficie n ts of sele cte d c ov ari a tes under gr oup 

size m = 1 bas ed on the chl amydi a d ata. 
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FIGURE 4 Naive, sele ction-adjuste d, and data splitting c onfidenc e intervals for the r egr ession coefficie n ts of sele cte d c ov ari a tes under gr oup 

size m = 3 bas ed on the chl amydi a d ata. 

TAB LE 4 O dds ratio c onfidenc e in te rvals (CIs) a nd poin t es tim ates for sele cte d c ov ari ate effects from 3 con sidered me thods bas ed on the 
chl amydi a d a ta. CI s not con taining 1 a re ma rked with ‘ ∗’. 

m Covariate Propos e d Naive Da ta split ting 

CI PE CI PE CI PE 

1 Age [0.07, 3.90] 0 .30 [0.06, 1.18] 0 .26 [0.06, 1.82] 0 .31 
Non-Hispanic B la ck [1.36, 16.33] ∗ 5 .59 [1.84, 30.31] ∗ 7 .46 [1.51, 23.82] ∗ 5 .99 

New sex pa rtne r [0.85, 5.87] 2 .51 [1.07, 6.17] ∗ 2 .59 [1.06, 7.93] ∗ 2 .89 
Hispanic [0.31, 9.26] 2 .92 [0.97, 17.13] 4 .10 [0.54, 10.81] 2 .39 

Poverty index > 5 [0.02, 12.56] 2 .89 [1.00, 13.22] 3 .63 [0.41, 12.83] 2 .30 
Ge nde r [0.50, 4.95] 2 .05 [0.86, 5.75] 2 .23 [0.69, 5.87] 2 .01 

Education level [0.19, 1.48] 0 .44 [0.18, 1.09] 0 .45 [0.15, 1.12] 0 .41 
3 Non-H ispanic Whit e [0.24, 20135.96] 0 .73 [0.08, 3.36] 0 .51 [0.21, 1.27] 2 .86 

New sex pa rtne r [0.01, 4.39] 1 .43 [0.46, 5.16] 1 .54 [0.35, 6.77] 2 .75 
Ge nde r [0.24, 56.36] 0 .66 [0.17, 1.62] 0 .52 [0.15, 1.75] 0 .13 

Education level [0.07, 1.05] 0 .25 [0.07, 0.78] ∗ 0 .23 [0.05, 1.05] 0 .69 
Nev er m arrie d [1.07, 64.01] ∗ 4 .48 [1.21, 16.34] ∗ 4 .43 [1.70, 11.60] ∗ 2 .30 

Ab brevi ation: PE, pa ra mete r es timate. 
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6 D I S  C U S S  I O N 

e develop in this study v alid post-s ele ction inferenc e proc e-
ures based on binary respon s e d ata that are partially observ e d
ue t o t es ting e rror a nd/or pooling. The s tra tegy of r ela ting the
en alize d estim ation a nd pos t-se lection e stima tion of r egr ession
oefficie n ts to a wei gh ted leas t squa r es pr o b lem with Gaus si an-
ike respon s e d ata (ie, ˆ z ) w as als o us ed in Taylor a nd Tibshi -
ani ( 2018 ) to develop post-selection inference for LASSO-
en alize d li keli hood model s. Thi s strategy allow s us to draw par-
llels betw e e n the curre n t s e tt ing with a part i ally o bs erv e d non-

Gaus si an respon s e and the s e t ting with a linear r egr e ssion mode l
or a Gaus si an respon s e, s o th at w e can borrow e st ablished re-
ults in the la t ter set ting (Lee et al., 2016 ; Tibshirani et al., 2016 )
o derive v alid post-s election CIs for target parameters. Although
e focus on log i stic r egr ession for a binary respon s e here, we
eliev e this strate gy ca n be ge ne r aliz ed to other non-Gaus si an
espon s es modeled by other gener aliz ed linear r egr ession mod-
ls. The fact that individuals’ true respon s e v alues are uno bs erv-
ble, either due to tes ting e rror or pooling, may need to be ad-
res s ed cas e-by-cas e. We us e the EM algorithm to address this
ro b le m he re; othe r imput ation- bas ed me thods can be vi ab le
ltern ativ es . 
D espite the approxim ations (in formulating respon s e d ata and

 amp l ing d istributions) we invoke in the developme n t of our
os t-selection infe re nce pr ocedur e, their impact on the result-

ng infe re nc e is not notic eab le in our simul ation study, especi ally
hen the penalty parameter λ is pre-s e t at a level such that the
AS SO regula rization is not too aggressive. In the eve n t of more

ggressiv e pen alization, say, by using a penalty chosen by BIC,
he proposed method can h av e the tendency of o ver-a djustin g
or model selection, lea din g to overly con s erv a tive CI s tha t ar e
oo wide and produce Type I error much lower than the nominal
evel. An in te res ting follo w -up rese ar ch pr oblem is the develop-

e n t of valid post(-double)-selection infe re nce pr ocedur es tha t
 dequately a ccount for both the selection of λ and model selec-
ion given the selected λ. 
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