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Abstract: This study considers regression analysis of a circular response with an error-
prone linear covariate. Starting with an existing estimator of the circular regression function
that assumes error-free covariate, three approaches are proposed to revise this estimator,
leading to three nonparametric estimators for the circular regression function accounting
for measurement error. The proposed estimators are intrinsically connected through some
deconvoluting operator that is exploited differently in different estimators. Moreover, a new
bandwidth selection method is developed that is more computationally efficient than an
existing method well-received in the context of tuning parameter selection in the presence
of measurement error. The efficacy of these new estimators and their relative strengths are
demonstrated through a thorough investigation of their asymptotic properties and extensive
empirical study of their finite-sample performance.
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1. Introduction

Circular data are data of a periodic nature that arise in a host of applications. Examples of
circular data include data on the direction of animal movements that are of interest in zoology
and ecology [2, 35], and wind direction data as a subject of investigation in meteorology
[24]. Times of certain events, such as hospital visits and crimes, as observed on the 24-hour
clock can be transformed to circular data, so are dates of certain events on a calendar, such
as births and migration. In these applications, researchers are often interested in studying the
association between a circular response and linear covariates. For instance, Birkett et al. [3]
considered regressing elephant’s movements on rainfall; Hodel and Fieberg [21] analyzed the
association between a moving animal’s turn-angle and step-length; Garcia-Portugués et al. [ 18]
formulated a regression model for wind direction and SO, concentration; Gill and Hangartner



Circular-linear regression with measurement error 4577

[19] developed a circular regression model for the timing of domestic terrorism events, with
linear covariates such as the number of attackers and death count.

Early developments of circular-linear regression analysis led to parametric models that
usually assume a von Mises distribution [28] for the circular response given covariates.
Frequently referenced regression models of this type include those proposed by Gould [20],
Johnson and Wehrly [23], and Fisher and Lee [16]. More recent parametric models that adopt
different distributional assumptions on the circular response include those considered in [43],
[36], and [33], among many others. A complication in formulating such regression models is
the choice of a link function that relates predictors in the Euclidean space to the mean direction
in a circular space. There is also the concern that the actual circular response may violate
parametric assumptions implied by the chosen circular distribution. Nonparametric circular-
linear regression models have been proposed to avoid choosing a link function or imposing
stringent assumptions on the circular response. One of the first notable developments along
this line is the local polynomial regression of a circular response introduced by Di Marzio
et al. [12]. Meilan-Vila et al. [29] generalized this work by allowing a multivariate linear
covariate.

Oftentimes covariates of scientific interest cannot be measured precisely, either due to
human error or imprecise measuring instruments. For example, rainfall measurements from a
rain gauge are affected by the exposure conditions of the rain gauge; the measurement accuracy
of SO, concentration is also highly device-dependent. This motivates our study of circular
regression models with a linear covariate prone to measurement error. The topic of regression
analysis with error-prone covariates has been studied extensively. Comprehensive reviews of
existing methodolgies for dealing with error-in-covariate can be found in [5], [17], [4], [46],
and [45]. Despite the existing extensive research on regression models with error-in-covariate,
parallel problems in the context of regression models for circular responses have received little
attention. Our study contributes in this underinvestigated area. Concurrently, [11] considered
regression models for a response that can be circular or linear, with error-prone covariates that
also can be circular or linear.

Focusing on circular-linear regression models, we propose in this study three methods
based on local linear estimation adapted for a circular response while accounting for covariate
measurement error. To prepare for the methodology development, Section 2 briefly reviews
local polynomial regression of a circular response with error-free covariates proposed by [12].
In Section 3 we develop three strategies to revise their method to account for measurement error
in the linear covariate. Section 4 summarizes asymptotic properties of our proposed estimators.
Bandwidth selection required for local polynomial regression is especially challenging when
covariates are prone to measurement error, which is an important issue not addressed in [11].
We present in Section 5 two bandwidth selection methods utilized in our proposed estimation
methods. Section 6 reports simulation studies where the proposed estimators’ finite-sample
performance is inspected and compared with a naive estimator and a benchmark estimator. We
implement these methods in a real-life application in Section 7. Lastly, Section 8 summarizes
contributions of our study and discuss extensions of the study to different relevant settings.
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2. Local polynomial circular-linear regression
2.1. The circular mean function

Consider n independent bivariate observations, {(®;, X J')}7=1’ identically distributed accord-
ing to the joint distribution of (®, X) supported on [—m, ) X R. Given the linear covariate
X = x, the distribution of the circular response O is specified by

0 = {m(x) + e}(mod 2rx), (1)

where € is an angular error following an unspecified distribution with a circular mean of zero,
and m(x) is the circular mean of @, i.e., the circular regression function that maps from a
linear space to a circular space. The circular mean of a circular random variable © is defined as
the angle @ € [—n, 7r) that minimizes the mean cosine dissimilarity between ® and a, D (@) =
E{1 —cos(® — a)}, which can be shown to be arg min D (@) = atan2[E(sin ©), E(cos ®)] [28,
Chapter 2]. Here, atan2[y, x] is the angle between the x-axis and the vector from the origin to
the point (x, y) in the Cartesian coordinate system.

Because atan2[y, x| depends on (x,y) only via the ratio y/x, one may infer the circular
mean function m(x) via inferring m (x)/m2(x), where m;(x) = E(sin ®|X = x) and my(x) =
E(cos ®|X = x), both functions mapping to a linear space as in the traditional regression
setting.

2.2. Local polynomial estimators

Given the response data @ = (0y,...,0,)" and covariate data X = (Xy,..., X,,)", [12]
proposed kernel-based estimators for m(x) in the form of
m(x) = atan2[g;(x), g2(x)], )
where
1 < 1 <
g =- in(®@;)W(X; —x), & =- O)W(X; —x), 3
ail) =~ ;snm WX =), ga(0) = -~ ;cos( WX =) 3)

in which ‘W (r) is a weight function. For example, if W (¢) = K}, (t), where K, (t) = K(t/h)/h,
K (1) is a kernel function, and /4 is the bandwidth, then

n

8100 == ) Sin(®,)Kn(X; )

j=1
Z;‘zl sin(®;)Kp(X; —x

2o Kn(Xj = x)

) n
X % ZK;,(X]- ~x).
=1

Now one can see that the first factor in the preceding expression is a local constant estimator
[30] for m (x), and the second factor is a traditional kernel density estimator for the probability
density function of X evaluated at x, denoted by fx(x). Hence, with W (t) = K, (1), g1(x)
is a sensible estimator for g1 (x) = m;(x) fx(x); similarly, g,(x) is an estimator for g>(x) =

m(x) fx (x).
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The estimator 7 (x) in (2) acknowledges that the traditional local polynomial estimation
developed for a linear response is inadequate for a circular response, but remains applicable
for estimating g;(x) and g»(x), both functions mapping from R onto another linear space.
This allows estimation of the ratio m(x)/my(x) = gi1(x)/g>(x) based on two rounds of
local polynomial estimation. Besides the local constant weight, [12] also considered using the
following weight function that depends on all covariate data X,

W(t) = Ku(t) X ;Z g

1 < (Xk —x
k=1

2
) Kp(Xk —x)—

%Kh(t) X % D (th_x) Kn(Xs — ).
k=1

This more complicated weight function relates to local linear estimators for the regression
function of a linear response ¥, n~! 7:1 Y;W*(X; — x), with the weight given by [15]

n n 2
{lth(Xk—X)} {l (Xk_x) Kh(Xk_x)}_
n & n & h

k=

(W*(Xj —)C)

Z(W(Xj —X)

&)

-1

. 2
{EZ(Xk_x)Kh(Xk—X)} ,
n h

k=1

where W (X —x) is equal to (4) evaluated at t = X ; —x. We thus call ‘W (X —x) the local linear
weight, and refer to ‘W* (X; —x) as the normalized local linear weight. Plugging in (3) the local
linear weight, one has g, (x) = C(X)#i,(x), where C(X) is the term inside the square brackets
in (5), and ¢ (x) is a local linear estimator of m, (x), for £ = 1,2. Consequently, 7 (x) in (2)
is equal to atan2[si(x), Aia(x)] since g1(x)/g2(x) = m(x)/mz(x). Under mild conditions
that guarantee the consistency of a local linear estimator for the regression function of a linear
response [ 15, Theorem 3.1] and the consistency of a kernel density estimator [37, Section 6.2],
g¢(x) consistently estimates g¢(x) = me(x) fg(x)p2, for € = 1,2, where pp = [ 2K (1) dt.
Unless otherwise stated, all integrals in this article are over the entire real line R.

Following the above two examples of ‘W (¢), one can easily generalize the construction of
i (x) by adopting weight functions that relate to traditional local polynomial estimators of
higher orders. For a more concrete exposition of methodology development and theoretical
derivations, we focus on 71 (x) with the local linear weight as a benchmark estimator that other
estimators brought forth in the next section relate to and compare with.

3. Circular-linear regression with error-in-covariate

Suppose that, instead of X, error-contaminated covariate data W = (Wy,..., W,)T are
observed, where

WJ':XJ'+U]', (6)

in which U; is a mean-zero measurement error following a known distribution with variance
o2, and U ;j is independent of (©;, X;,¢;), for j = 1,...,n. Had one ignored measurement
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error, one would substitute X; with W; in (3) for j = 1,...,n, leading to a naive estimator
of m(x), denoted by m*(x). Because /i*(x) is merely a sensible estimator for the circular
mean of ® given W = x, denoted by m*(x), a function typically different from m(x), so naive
estimation of m(x) using /i1*(x) is usually misleading.

In what follows, we develop three strategies to modify 71" (x) in order to account for covariate
measurement error when inferring m(x). To contrast with the naive estimator *(x), we call
f(x) in (2) an ideal estimator of m(x) to stress that 7ii(x) is only available in the “ideal”
situation when o2 = 0 and thus W = X.

3.1. The deconvoluting kernel estimator

Since the naive substitution of X;’s with W;’s only occurs in the weight, we first propose to
correct /m*(x) for measurement error by correcting the naive local linear weight,

Wi —
h

% (?)Kh(wj ~x) Zn: (W" _X)Kh(Wk - X).
k=1

n 2
(W(Wj_x):%Kh(Wj_x)Z( x) Kp(Wi —x)—
=1

h

More specifically, we replace the above naive weight by

1 t (W —x )2
L(Wj-x)= ;LO,h(Wj - X) Z ( - x) Ly n(Wi —x)-
k=1
(7
1(W; - "W, —
. ( ]h x) Ly n(W; —X);( kh x) Ly n (W —x),
where, for £ =0,1,2, L ,(x) = L¢(x/h)/h, and
(&)

_ ;= —fi/‘ —itx ¢K (t)

Le(x)=i""x ol —¢U(—t/h) dt, 3)

in which i = V-1, ¢y (7) is the characteristic function of the measurement error U, ¢ (1)
is the Fourier transform of the kernel, and ¢g) (1) = (0¢/0t") ¢k (¢). In this paper, we use
¢4 (1) to denote the characteristic function of A if A is a random variable, and to denote the
Fourier transform of A if A(-) is a function. Setting £ = 0 in (8) gives the deconvoluting kernel
used in the deconvoluting kernel density estimator estimator for fx(x) based on W [41]. [8]
generalized the deconvoluting kernel by introducing (8) for £ = 0,1,2,..., and used it to
construct local polynomial estimators for the regression function of a linear response with
error-in-covariate.
Under suitable conditions (to be stated in Section 4), [8] showed that

E{(W = x) Ly (W = x)|X} = (X =)’ Ky (X = x), for £=0,1,2. 9)

Because {(X — x)‘K,(X —x), £ = 0,1,2} are building blocks of the local linear weight
WI(X; —x), (9) sheds light on the rationale behind the new weight L(W; —x) in (7): instead
of naively using {(W —x) K, (W —x), £ = 0, 1, 2} to substitute these building blocks, one uses
{(W=x)L¢n(W=x), £ =0,1,2} as unbiased estimators of them. In this line of arguments,
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as in (9), we treat X, or X;’s, as if they were unknown parameters, and we estimate functions
of them using W.

Using the new weight L(W; — x) in (7), we have our first proposed estimator of m(x)
referred to as the deconvoluting kernel estimator, riipk (x) = atan2[ g pk(x), §2.pk (x)], where
g1pk(x) = n7! 2y sin(0;) L(W; — x) and & pk(w) = n-! 21 cos(©;) L(W; — x) are
estimators for gi(x) = m;(x)fz(x)u2 and gr(x) = ma(x) f)%(x)pz, respectively. Instead of
correcting the naive local linear weight for measurement error as we do here, the estimator
proposed by Di Marzio et al. [11, see Section 4.1.2] in the same context results from using
(8) with £ = 0 to correct the naive local constant weight.

3.2. The complex error estimator

Following a similar direction leading to ripk (x), we propose a second strategy where one
corrects the naive normalized local linear weight, as the naive counterpart of W*(X; — x) in
(5), for measurement error. This new strategy is motivated by the result in Lemma 3.1 given
next, which we prove in Appendix A. Denote by C the set of complex numbers, by N the set
of natural numbers, and define Ny = N U {0}.

Lemma 3.1. For an entire function g : C"* — C, if E(V¥) =0, Vf N{ such that €] > 0,
then E{g(t +V)} = g(t), where t = (t,...,t,)" € R", andV = (V{,...,V,)  isann X 1
random vector. Here, for € = (1, ..., ¢6,) e N?, Vi = Vfl el V,f”, and |l =61 +...+¢,.

This result generalizes a similar result for a univariate entire function g(-) that was exploited
in [40], [32], and [39] in measurement error problems. An entire function is a complex-valued
function that is complex differentiable on the whole complex plane [26]. By Lemma 3.1,
if measurement errors {U i}’]’.zl in (6) are independent normal errors, then E{g(X + U +
ioc,Z)|X) = g(X), whereU = (Uy,...,U,)" and Z = (Z,,...,Z,)", in which {Z;})_, are
independent standard normal errors that are also independent of X and U. This is because,
now with V = U + io, Z, E(V) = ;?:1 E{(U; + i(rqu)[f} = 0 for all £ € Njj as long as
|€] # 0 in this case [40]. In conclusion, with normal measurement errors in (6), g(W +io, Z)
is an unbiased estimator of g(X).

Now return to our goal of formulating a new weight using W that estimates W*(X; — x)
unbiasedly. Since (5) depends on all true covariate data, we re-write W*(X; —x) as W*(X; -
x; X), viewed as a function of X, and we estimate this function in its entirety. In other words,
we have

n n 2
W (1 X) =W (1) H% D Kn(Xe —x)} {% D (th—x) Kn (X —x)} _
k=1

k=1

-1

; 2
{lZ(Xk_x)Kh(Xk—x)} ,
n h

k=1

where ‘W () is given in (4), and ¢ depends on X via one of its entry. Assuming normal
measurement errors and that ‘W*(X; — x; X) is an entire function, by Lemma 3.1, W* (W; -
x; W¥) is an unbiased estimator of W*(X; —x; X), where W]"f =W;+io,Zj,forj=1,...,n,
and W* = (W7, ..., W;)T. Recognizing that both W and Z contribute to the variability of
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this unbiased estimator, we employ an average of it across B realizations of Z to obtain a less
variable unbiased estimator for W*(X; — x), leading to the new weight,

B*
* 1 * ¥ ¥
LYW -x) = EZ(W (W, —x; W), (10)
b=1
where W]’f’b =W;+ioyZjp,forj=1,...,n, Wy = (Wl*’b, .. .,W;b)T, forb=1,...,B,and
{Zip,j=1,..., n}bB:1 are independent standard normal errors.

Using the new weight in (10) yields our second proposed estimator of m(x) referred
to as the complex error estimator, riicg(x) = atan2[g;.ce(x), §2.ce(x)], where g; ce(x) =
n! Z;.‘:l sin(®;)L*(W; — x) estimates m; (x), and g»,ce(w) = n~! 2_’;:1 cos(®;).L*(W; —x)
estimate mj(x). In a separate study reported in Woolsey and Huang [44], we extended this
idea to account for non-normal measurement error by introducing hypercomplex quantities.

3.3. The one-step correction estimator

The common thread running through the first two strategies of correcting /i (x) for mea-
surement error is to adopt some weight that considers measurement error. Each new weight
leads to non-naive estimators for some functions g;(x) and g»>(x) such that g;(x)/g2(x) =
my(x)/my(x). Deviating from this theme of weight correction, we now propose a third strategy
that exploits a one-step correction of a naive estimator for go(x) as a whole, for £ € {1,2}.
This one-step correction is motivated by Lemma 3.2 that we prove in Appendix B. A similar
result was also utilized by [22] for local polynomial regression of a linear response with
error-in-covariate.

Lemma 3.2. Define g¢(x) = me(x)fx(x) and g;(x) = mj(x) fw(x), for £ = 1,2, where
mj(x) = E(sin®|W = x), m;(x) = E(cos ®|W = x), and fw(x) is the probability density of
W evaluated at x. Then, assuming all integrals are well-defined,

— 1 —itx¢g;(t) _
8[(36)—%/6 mdt,forf_l,l

Motivated by Lemma 3.2, we propose to estimate g, (x) by first obtaining a naive estimator
of it that essentially estimates g,(x), then transforming the naive estimator using the integral
transform suggested in Lemma 3.2. In this article, we use a local linear estimator denoted
by 1} (x) to estimate m(x), onr ¢ = 1,2, and use the traditional kernel density estimator to
estimatAe fw(x), denoted by fw (x), leading to a naive estimator of g¢(x) given by &;(x) =
1y (x) fw (x). Our third proposed estimator of m(x) referred to as the one-step correction
estimator is then given by riios(x) = atan2[g os(x), §2,0s(x)], where

1 - Bg: (1)
§£,os(x)=§/€_”x%dt (1)

is an estimator of ge(x) = me(x) fx(x), for € = 1,2. Henceforth, we use 757 (A)(x) to refer to
the integral transform in Lemma 3.2 of a function A : R — R, i.e.,

%(A)(x):%‘/e_i’xzz—igdt. (12)

Then (11) is equivalent to g7 0s(x) = Ty (g;) (x), for £ = 1,2.
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3.4. Comparisons between proposed estimators

With three estimators of the circular regression function m(x) accounting for measurement
error proposed, some remarks on comparisons between them are in order. Among the three,
mcg(x) stands out as the only one that is developed under the assumption of normal mea-
surement error. Both riipk (x) and rigs(x) are practically applicable as long as ¢ (¢) never
vanishes since #ipk (x) depends on the integral in (8), and r1pg(x) hinges on the integral in
(11), both integrals involve ¢y (-) at the denominator of the integrand.

By construction, rips(x) corrects naive estimation for measurement error at a higher level
in the sense that, unlike riipk (x) that accounts for measurement error by correcting the naive
weight, mios (x) corrects naive estimation of g,(x) via transforming the naive estimator as a
whole. Similar to mipg (x), ficg(x) results from correcting the normalized naive weight, but
we correct it in its entirety instead of correcting it term-by-term as done in deriving the new
weight for ipk (x). In summary, we correct the naive estimator /71" (x) at an increasingly higher
level as we progress from the first non-naive estimator to the third one in Section 3.1-3.3, i.e.,
from riipk (x) to micg(x), then to riips (x).

On the other hand, ripk (x) and riipg (x) exploit integral transforms of a similar form, with
the former using (8) to correct a naive weight, while the latter utilizing (11) to correct a
naive estimator of g¢(x). Although no integral transform is involved in ricg(x), it intrinsically
relates to a similar integral transform because of Lemma 3.1 that motivates it. To see this
connection, consider the special case with n = 1 in Lemma 3.1 and let V = U + A, where
U is the measurement error. The key there to deriving an unbiased estimator of g(X) based
on W is to find a random variable A such that all moments of V = U + A are equal to zero,
because then one has E{g(W + A)|X} = E{g(X + U + A)|X} = E{g(X + V)| X} = g(X)
according to Lemma 3.1. If one further assumes A L U, then ¢y (t) = ¢y (t)da(t), and thus
da(t) = ¢y (t)/pu (). By the Fourier inversion theorem, the probability density function of
Ais fa(a) = (2r)~! f e~y (1) /¢y (1) dt, which is an integral transform similar to (8) and
(11). Depending on the distribution of U, there may not exist such a V (with all moments equal
to zero); consequently, the so-obtained f4(a) may not be well-defined. But, it has been shown
that, if U ~ N(0, 072), then letting A = io,Z gives rise to a desired V, with Z ~ N(0, 1) and
Z L (U, X) [40]. In conclusion, all three proposed estimators have connections with some
integral transform relating to deconvolution. After comparing the three proposed estimators
in regard to assumptions, constructions, and rationales, we present more formally technical
conditions imposed on these estimators next, under which we investigate their asymptotic
properties.

4. Asymptotic analysis
4.1. Conditions and notations

When studying properties of their proposed local polynomial estimators with error in covari-
ates, [8] imposed different sets of conditions on the kernel K (¢) depending on the measurement
error distribution characterized by ¢, (¢). These conditions are also needed for our proposed
estimators depending on the smoothness of U [14]. More specifically, if lim, o, ? ¢y (1) = ¢
and lim; tﬁ“(pb(t) = —¢f for some constants ¢ > 0 and 8 > 1, then we say that (the
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distribution of) U is ordinary smooth of order . The Laplace distribution is an example of
ordinary smooth distribution of order 2. If, for some positive constants dy, d, ¥, and 8, and
some real-valued constants 8o and B, do|t|% exp(=|t|?/y) < oy (2)| < di|t|P exp(=|t|B/y),
as t — oo, then we say that U is super smooth of order 8. A normal distribution is super
smooth of order 2.

Because all proposed estimators are of the form /. (x) = atan2[g; .(x), &»..(x)], where “.”
generically refers to an acronym (“DK”, “CE”, or “OS”) relating to a proposed estimator,
we first study asymptotic properties of g;.(x) and g .(x). We then use these findings to
establish the asymptotic moments and distribution of 7. (x) through a Taylor expansion of the
atan2 function. Conditions frequently referenced in theorems presented next are listed below.
Similar conditions are included in [8] and [22] in their asymptotic analyses.

Condition O: For ¢ = 0,1,2,3, |6\ (1)l < co and [ (J1]F + 118~ ))|¢\ (1)|dr < co.
For0 < k, € <2, [ 11221 (01190 (1)ldr < oo, and ||}, (1) || < co.
Condition S: For £ = 0, 1,2, [|¢'" (1)||e < co0; ¢ (¢) is supported on [~1, 1].

The first set of conditions is imposed for asymptotic analysis when U is ordinary smooth, and
the latter set is imposed when U is super smooth. For example, the characteristic function of a
mean-zero Laplace distribution with variance 02, ¢y (t) = 1/(1+0°2t?/2), satisfies Condition
0. As for the kernel K(-), the Gaussian kernel satisfies constraints under Condition O
because, with ¢ (1) = e 2
and both integral constraints relate to integrals that define moments of normal or half normal
distributions, which are well-defined at all orders. An example of kernels satisfying Condition
S that we use in our simulation experiments has its Fourier transform given by ¢x () =
(1 =23 1_1<,<1y. Lastly, for £ € Ny, define ps = [ 1*K(t)dt and v, = [ t“K*(r)dt.

, ¢k () is continuously differentiable with bounded derivatives,

4.2. Asymptotic results

We derive the asymptotic bias and variance of riipk (x), ficg (x), and riips (x) in Appendices D,
E, and F, respectively. For ease of comparison, we subsume results relating to the asymptotic
bias of these estimators in Theorem 4.1, followed by results regarding their asymptotic variance
summarized in Theorem 4.2.

Theorem 4.1. When U is ordinary smooth of order B, then under Condition O, ifnh'**f — co
asn —>ocoand h — 0,

(i)
Bias{rpg(x)| X}

my (x)m} (x) +mo(x)m)(x)

h2
= % {m(z) (x) +2m’ (x)

2
m%(x)+m§(x) } +o(h)
fw(x)  [{n(0,2) = n(1, ) H{m](x)m2(x) — mi(x)m5(x)}
nh1 f2 (x) 2 {m? () + m2 ()}
mi(x)ma(x) {£](x) = & ()} +y* (x) {m3(x) - m%(X)}]

{m} () +m3(x)}?

- 77(0> 0)




(it)
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1

where &7(x) = E{(sin®)?|W = x}, &(x) = E{(cos O |W = x}, y*(x) =
E(sin®cos®|W = x), and, for k,t € {0,1,2}, n(k,&) = {i"*0/2nc?)}
f %8 ¢§<k)(t)¢§f) (=1)dt, in which c is the positive constant appearing in the definition
of ordinary smooth U;

Bias{mps(x)| X}

_ R o | mo(x) T (My) (x) — my (x) Ty (M) (x) to (hz)
2 fx(x) {m?(x) + m3(x)}

1(0,0) fw (x) [ 2w
nh1+26 £2(x) {m%(x)+m%(x)}2 my (x)ma(x) {o*(x) — 057 (x)}

+ {m3(x) =m0} {y* (x) = m} ()m; ()}

1

where Ty is the integral transform defined in (12), M¢(x) = mj,(x) f‘fvz ) (x) +
m;(z) (x) fw (x), for € = 1,2, 0'1*2()6) = Var(sin ®|W = x), and 0'2*2(x) = Var(cos ®|W =

X).

When U is super smooth of order B, if nh'=P> exp(=2h™F |y) — coasn — co and h — 0,
where B, = Bol (Bo < 0.5), then, under Condition S,

(i)

(ii)

Bias {mpk(x)| X}

_ P {m<2> () + 2’ () 2L 0 2 (I () } +o(h?)

2 m%(x) +m%(x)
(2hFy)
*0p (%) :
Bias {mos(x)| X}
_ P | ma() T (M) (x) - m1<x>7a<Mz><x>] r o)
2 fx(x) {m3(x) + m3(x)}
(2h P y)
Op (exihl—Zﬁzy ) 5

(iii) more specifically assuming U ~ N(0,02), and thus 8 = 2, B = 0, and y = 202, then,

if B/n tends to a positive constant as n — oo,
Bias {rice(x)| X}

_ h2M2
2

{m<2> (x) + 2’ () DML () + m2(x)m3 () }

m% (x) + m%(x)
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hZ
+ 2
Sx(x) {m}(x) + m3(x)}
—my(x)m (x)} + p2 { fx(x) = fr ()} {m7(x) = m3(0)} {m1 (x)m) (x)

+m'1(x)m2(x)}] +o(h?) + 0, (%) .

|21 = ) fic om0 x) oy (oym] (+)

According to Theorem 4.1, the dominating bias of each proposed estimator consists of a
term of order O(h?) and a term of order depending on the smoothness of U. In particular,
the term of order O(h?) in the dominating bias of siipk (x) coincides with that of 71 (x)
[see Theorem 4 in 12], which depends on the curvature of m(x). The term that depends on
the smoothness of U can involve naive counterparts of m,(x) and other functionals, which is
dominated by the first term provided that n — oo much faster than 4 — 0, and the requirement
on n to achieve this is more demanding when U is super smooth than when it is ordinary
smooth, or when the order of smoothness 3 is larger.

Theorem 4.2. When U is ordinary smooth of order B, under Condition O, if nh'**f — oo as
n— ocoandh — 0, then

(i)
Var {mipk(x)| X}
_ Sw (x) {m2 (%) &5 (x) + m3(x)€; (x) = 2my (x)ma (x)y* (x) } n(0,0)
nh“zﬁf)%(x) {m%(x) + m%(x)}2
1
o v
(ii)

Var{mos(x)| X}

i fw ()n(0,0) (m%(x)gz*(x) + M) ()

nh!+28 f2(x) {m%(x) + m%()c)}2
= 2my (X)ma ()¢ (x) = {m) (x)m}(x) - mT()C)mz(x)}2

+4m(x) [ml (0)ma(x) {037 (x) = 072 (x0) } + ¢* () {m7 (x)

1
Jop i)

where ¢*(x) = Cov(sin ®, cos O|W = x).

—m}(x)}

When U is super smooth of order 8, if nh' =% exp(=2h™B /y) — o0 asn — oo and h — 0,
then under Condition S,

(i) Var(ipk(x)|X} = 0, (M)

nhl=2p2
exp(2hF [y)
nh!'=28

>

(ii) Var{mos(x)|X} = 0, (
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(iii) more specifically assuming U ~ N(0,02), and thus 8 = 2, B = 0, and y = 2/ 02, then,
if B/n tends to a positive constant as n — oo,
Var{rmce(x)|X}

) _nIxx }ml(x)mz(x){ml(x)mé(x)+m'1(x)m2(x)}
2h {(2/12 l)fx(X) M2 {m%(x)er%(x)}z

exp (aﬁh‘z)) ‘

+o(h*)+0, p
n

According to Theorem 4.2, having super smooth U tends to lead to a more variable 7. (x).
When U is ordinary smooth, the dominating variance of 7iog (x) is equal to that of riipk (x) plus
additional terms depending on m(x), m¢(x), and other functions relating to naive inference.
Having these additional terms implies that the variability of rigs(x) is more affected by
discrepancies between functionals of actual interest when drawing inference and their naive
counterparts, such as how m(x) differs from m; (x). Our asymptotic results regarding riipx (x)
elaborate on the impacts of measurement error when compared with findings in Di Marzio
etal. [11, see Result 5 in Section 4.1.2] for a similar estimator that uses a local constant weight
in place of our local linear weight. Similar to the comparison between the Nadaraya-Watson
estimator and a local linear estimator of a regression function for a linear response [see Table
2.1 in 15], the dominating variance of the estimator in Di Marzio et al. [11] is of the same
order as that of ripg (x); and, although of the same order (of O( h?)), the dominating bias of
the former has an extra term given by 2m’(x) fy (x)/ fx(x) compared with the multiplier of
h?u>/2 in the asymototic bias of riipk (x). Besides the results summarized in Theorems 4.1
and 4.2, we also derived in Appendices E and F more general results for ricg(x) and rips(x)
when local polynomial weights of order p are used in general.

Finally, we establish asymptotic normality of 7. (x) in Appendix G by exploiting established
normality results in existing literature regarding the same type of estimators as ¢ .(x) and
8»..(x) involved in our estimators.

5. Bandwidth selection
5.1. Bandwidth selection in the absence of measurement error

The performance of local polynomial estimators is sensitive to the bandwidth 4. Compared
to deriving a plug-in type of bandwidth, a more practically feasible and widely applicable
bandwidth selection method is cross validation (CV) based a risk function for assessing
estimation quality, such as k-fold or leave-one-out CV. We focus on 5-fold CV in this article
for illustration purposes.

In the context of estimating a circular regression function m(x) in the absence of measure-
ment error, a sensible risk function associated with the estimator 71(x) is the mean cosine
dissimilarity, E{1 — cos(® — (X)) }. To highlight the dependence of 7i(x) on & and the data
used to construct the estimator, we re-express the estimator in (2) as i (x; @, X, k). A 5-fold
CV entails first randomly splitting the raw data into five data sets of (approximately) equal
size, then computing the following loss function formulated using cosine dissimilarity at each



4588 N. Woolsey and X. Huang

candidate h,

D(m(X); X, h) = Z Z {1-cos(®; — i (X;;00, xR myl,  (13)
k

Jelk

where I is the index set of the k-th subsample of size |I|, and (@~%), X=X include all
data in the original sample except for those in the k-th subsample, for k = 1,...,5. Then
hiwe = argming,cq, D(M(X); X, h) is the chosen bandwidth based on true covariate data,
where H is the set of candidate values of 4.

In the presence of covariate measurement error, an immediate hurdle in implementing the
traditional CV outlined above is that, for a non-naive estimator of the regression function
m.(x), the cosine dissimilarity between ©; and 7.(X;) cannot be computed now that X
is unobserved but W; is instead. Naively substituting X; with W; again does not solve the
problem here because the cosine dissimilarity between ©; and 7. (W;) is a misrepresentation
of the actual loss associated with the j-th observation. We present two approaches to overcome
the hurdle next.

5.2. Bandwidth selection using SIMEX

The first approach is proposed by [9] as a combination of simulation-extrapolation [SIMEX,
5, Chapter 5] and CV. Ideally, one would follow the traditional CV to find

5

higeal = arg min Z

gmi T Z {1-cos(®; —.(X;;0 0 Wk )}, (14)
€ k=1

Jelk

where we stress that 772. (x) is a non-naive estimator of m(x) constructed using error contami-
nated data, but we evaluate x at X;’s when computing the loss in (14). Compared with (13),
a major distinction in the ideal CV in the presence of measurement error is the mismatch
between the training data and the validation data exhibited in (14): while error-contaminated
data (@0, W(=0)) are used to train the estimator 7. (x), the error-free data (@), x (k)
are used to validate the estimator. Clearly, the “ideal” bandwidth hj4e, is not attainable with
X now unobserved. Naive CV yields

5

hnaive = arg min Z

1 -cos(®; — . (W;; 0% W=k 1))
heH k1|k|Z{ b

Jelk

which is expected to distort Ajdea due to evaluating x in 1. (x) at W;’s instead of X;’s. To learn
how higear takes into consideration that, even though the estimator 7. (x) is constructed based
on error-contaminated data, 7. (x) should be evaluated at error-free data when computing the
loss, we “simulate” twice the ideal CV mimicking (14) to obtain two bandwidths.

The first simulated version of ideal bandwidth is

hy = argmm—zz

> {1 - cos(®; - (w00, Wi L, as)

Jel

where, for b = 1,...,B, W, = (W} h,...,W;b)T = W + U}, in which U}, = (U7 ...,
U? )" is a random sample generated from the distribution that errors in U = (U Lo Un)T
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follow, and /i1* (x) is the same type of estimator as 7. (x) but for estimating m* (x). For example,
when selecting a bandwidth used in the deconvoluting kernel estimator, the estimator in (14)
is mmipk (x), which is constructed based on (@, W) to estimate m(x) as the circular mean of
O given X = x. Accordingly, the estimator in (15) is 7y, (x) as the deconvoluting kernel
estimator constructed based on (@, W}) to estimate m*(x) as the mean of © given W = x.
The CV leading to & is parallel to that leading to Ajgea in the sense that, like W being a noisy
surrogate of X in (14), W, is also a noisy surrogate of W in (15) with the same severity of error
contamination since Var(WJ*f’ »IW;j) = Var(W;|X;) = o2; and, more importantly, (15) also has
a mismatch between training data and validation data, with the former involving the (further)
contaminated data WZ(_k), whereas the latter being the data before (further) contamination,
W) Similarly, the second simulated bandwidth results from yet another round of CV parallel
to that producing /1,
RCESN e (k) ()
hgzargmln—ZZ—Z {l—cos(®j—m, (Wj’b,(i) W, ,h))},
- ;

heH B 1 k=1 |Ik| jele

where W' = W, +U;", U, is generated in the same way as Uy, with U;*, Uy, and U all
independent of each other, for b = 1, ..., B, and m1**(-) is the same type of estimator as #.(-),
but for estimating the regression function when regressing ®;’s on W;‘ b S-

The simulation step of SIMEX ends with outputting /; and /,. At the extrapolation step
of SIMEX, one attempts to recover higea by learning from the connection between £ and /h;
because, with the parallel design in the two rounds of ideal CV leading to /1 and h;, how A
compares with /1, should be similar to how Ajgeq compares with £;. In particular, [9] showed
that log higeas — log hy ~ log by — log hy, when o, is small, and thus proposed to approximate
hideal BY hsiMEX = h% /h,. This completes the process of bandwidth selection that we refer
to as CV-SIMEX that yields hsmvex as the selected bandwidth. An obvious concern of this
method is the computational burden. Even the traditional CV without the measurement error
complication is computationally demanding in general; and this method requires 2 X B rounds
of such CV based on data noisier than the original data.

5.3. Bandwidth selection using complex error

Acknowledging that Aigea1 in (14) is not attainable solely because the loss function there cannot
be computed based on observed data (®, W), we propose a second approach for bandwidth
selection where we first estimate this loss function, then we choose a bandwidth by minimizing
the estimated loss.

Recall that the loss function in (14) is

5
D(#.(X); W, h) = Z 1 Z {1-cos(®; —m.(X;;0F Wb ) (16)

= 1l jelk

With observed data (@, W) plugged in, along with a candidate /4, (16) is unknown purely due to
its dependence on X. If we view this unknown loss as a function of X, like g(X) in Lemma 3.1,
then we can formulate an unbiased estimator of this loss function when U ~ N (0, o2). This
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yields an estimated loss given by
(17)

where { W]"f’ p=WiticuZjp, j=1,..., n}bB:] are generated in the same way as the complex-
valued covariate data in (10). If D(:.(X); W, h) in (16) is an entire function of X, and W
results from additive normal error contamination of X, then, by Lemma 3.1, D (m.(W*); W, h)
in (17) is an unbiased estimator of D(/f1.(X); W, h). Minimizing D (/#.(W*); W, h) with
respect to i gives a bandwidth that is expected to improve over hp,ive and be closer to higea.
Compared with CV-SIMEX, this bandwidth selection procedure is less cumbersome but it still
demands heavy computation because, for each of the five validation data sets, one estimates
m(x) based on the corresponding training data at | I | X B complex-valued x’s, i.e., at {W;, b J €
Iy }le. Next, we propose a revised procedure to drastically lighten the computational burden.
The idea is to move the averaging in (17) “B~! Zle” further inside the summand so that one
can use the trick inspired by Lemma 3.1 to estimate 7. (X ; ®(‘k), W(‘k), h) in (16) instead
of estimating the loss function as a whole.

Take the complex error estimator #icg(x) as an example. In (17), the estimate of riicg(X;;
QK WK n)is, foreach b € {1,...,B},

ce (W, 0, W )
(18)
= atan2 gl,CE(W;,b; ®(_k), W(_k), h), §2,CE(W;,]9; ®(_k), W(_k)7 h) 5

where g[,CE(W;’b; 0K, WK b is the estimate gg,CE(W]"f’b) based on data (@), W(5))
with the bandwidth set at 4, for £ = 1, 2. By moving the outer averaging in (17) towards ricg(-)
and further passing through the atan2 function in (18), we have a different estimate of the loss
function given by

D* (riice(W*); W, h)

2]
IZWZ{I—COS
B

B
1 N . _ _
0; —atan2 [E E gl,CE(Wj,b;G)( D wR p),
b=

=1 il 1 (19)
1 R . _ B
3 Z 2.cE(W} ;@0 Wb, h)D} ,
b=1
where, using the weight function £*(-) defined in (10), the first argument of atan2|-, -] is

1 &
- §1,CE(W;b;@(_k),W(_k),h)
B4 ’

1 1 . ¥ *
=3 Z T Z sin(®¢) L™ (We = W} 1)
b=1 | | Le](-k)
1 , —
=By Z sin(©7) L., (20)

tel(-k)
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in which 7(-%) is the index set of the training data (@5, W(=%)) of size |I(-%)|, and
L j =B IyB et LT (We — W* »)- In other words, (20) is an estimate of the same form as

gl,CE(Wj,b, ek Wik, h) in (18), but uses a different weight, L*g,]. Similarly, the second
argument of atan2[-, -] in (19) is an estimate of the same form as gz,CE(Wj.’b; QR W=k p)
in (18) but uses the weight F[’j. Define gl,CE(Wj.; QK WK h) as the estimate in (20),
and similarly define gz,CE(W;; (-)(_k), w (k) h), where Wj = (W;f’l, AU W;’B)T; and using
these two estimates we have the corresponding estimate of the regression function, denoted
by ﬁzCE(VV;; ®(‘k), w-k) h). Now the new estimated loss in (19) can be re-expressed as

A

D*(imcg(W*); W, h)

= 25: IL Z {1 —cos(®; - mCE(W;;Q(_k)’W(_k)’h))} :

J€lk

21)

It is clear from (21) that D* (siicg (W*); W, h) is similar to D (siicg(X); W, h) in (16) in terms
of computation burden, and clearly much less burdensome than the initial estimated loss
D (hicg(W*); W, h) in (17).

Admittedly, by passing the averaging operation through nonlinear functions like we did
to modify D (siicg(W*); W, h), we introduce bias as an estimator of D (riicg(X); W, h). This
is a small price we pay for a substantial computational gain. Regardless, by construction,
D*(imce(W*); W, h) is a sensible estimator that consistently estimates D (iicg(X); W, h)
given (@, W) as B — oo. Consequently, icg = arg miny,cqq D* (1iicg (W*); W, h) still tends
to be closer to higear than hp,ive 1s. We call this proposed bandwidth selection method that
involves complex error CV-CE, henceforth.

All bandwidth selection methods considered here require a pre-specified set of candidate
values H. A practically effective approach to specify H is to first find an optimal bandwidth
ho for a simpler (to compute) estimator, such as the naive estimator. Then one creates a range
of bandwidths surrounding hg, for instance, [0.8hg, 1.3h¢]. If it is always, say, the upper
bound that is selected in a cross-validation for a non-naive estimator, which can happen in
the presence of severe error contamination in the covariate data, we recommend adjusting the
initial search window by enlarging the upper bound slightly. We find this practice of specifying
‘H via trial-and-error more effective and feasible than alternative approaches, such as those
based on minimizing the mean integrated squared error (MISE) of a non-naive estimator. As
we show in Appendix H, even when the asymptotic MISE can be derived in some model
settings, unknown functionals related to m(x) that the asymptotic MISE depends on make it
a practically difficult to use quantity for the search of suitable bandwidths.

6. Simulation study
6.1. Design of simulation

We are now in the position to inspect the finite sample performance of our proposed non-
naive estimators for the circular regression function m(x). Simulation experiments presented
in this section are designed to address three issues: (i) comparisons between four non-naive
estimators, mipg(x), Mice(x), Mos(x), and the deconvoluting kernel estimator with a local
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constant weight proposed by Di Marzio et al. [11], and the naive estimator /" (x), using the
ideal estimator 7z (x) as a benchmark; (ii) comparisons between different bandwidth selection
methods, using some optimal bandwidth /i to be defined momentarily as a benchmark; (iii)
impacts of the measurement error distribution on different estimators.

For each Monte Carlo replicate, we first generate true covariate data {X; };.‘Zl of size
n € {50, 100,250} from a covariate distribution; then we generate circular responses {® j};.‘:l
according to (1) with a regression function m(x) we design and €; ~ von Mises(0, 3); lastly,
error-contaminated covariate data {W_i};“.: , are generated according to (6) with U following

a mean-zero normal distribution or Laplace distribution, and o> set at a value to achieve
a reliability ratio 2 € {0.8,0.9}, where 2 = Var(X)/Var(W). In particular, two covariate
distributions are considered, uniform(-5,5) and N (0, 4); two regression functions are used,
m(x) = 2atan(x) and m(x) = 2atan(1/x). The first regression function is simpler from the
perspective of model fitting because it is smooth and monotone; the second regression function
brings forth a more challenging model due to the singularity of m(x) at x = O that creates a
jump discontinuity.

At each simulation setting specified by m(x), the covariate distribution, the value of ,
and the distribution of U, we generate 100 data sets, based on each of which we implement
estimation procedures determined by the choice of estimator and the bandwidth selection
method. For each estimation procedure, we estimate m(x) at a predetermined grid of values
evenly spaced within the support of X, x, ..., x,, over which m(x) exhibits major features
such as different degrees of curvature. The metric employed to assess the quality of esti-
mation using . (x) is the empirical mean cosine dissimilarity as an empirical risk function,
D, (. (x); W, h) = 1-n"" Z;f:l cos(m(x;)—r.(x;)). The aforementioned optimal bandwidth
hop minimizes D, (7. (x); W, h).

Finally, we comment on some details imperative for the actual implementation of each
estimation procedure. When computing the complex-valued weight L*(W; — x) in (10) for
mce(x), we set B* = 250, and we extract the real part of L*(W; — x) as the actual weight
because, by construction, the imaginary part of £*(W; —x) has a mean of zero. We choose for
all three proposed estimators the kernel K (x) = 96{x (x> —15) cos x+3(5-2x?) sinx} / (27x7),
with ¢g (¢) = (1 - 12)31{—1stsl}- Although this particular choice of the kernel is made to
satisfy the more stringent Condition S to safeguard against ill-defined integral transforms in
(8) and (11) when U is super smooth, computing these integrals with this ¢g (¢) also tends
to be more numerically stable when U is ordinary smooth. More specifically, we employ
the fractional fast Fourier transform [1] to compute the integral transforms in (8) and (11) as
described in detail in [22]. When implementing CV-SIMEX and CV-CE to select a bandwidth,
we set B = 30.

6.2. Simulation results

Figure 1 provides boxplots of the empirical risk associated with each considered estimation
procedure as n varies when m(x) = 2atan(1/x), X ~ N(0,4), and U ~ N(0,072). It is
evident from Figure 1 that all non-naive estimation procedures outperform naive estimation.
Among the non-naive estimators when /Ay is used, ricg(x) outperforms the rest in this more
challenging model fitting exercise. This can be thanks to the (corrected) local linear weight
used in Mice(x) that is unbiased, in contrast to the other non-naive estimators with weights
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Normal Measurement Error, m(x)=2atan(1/x) (A=0.8)
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Fig 1. Boxplots of empirical risk across 100 Monte Carlo replicates at each level of n € {50, 100,250} when
X ~ N(0,4), m(x) = 2atan(1/x), and U ~ N(0O, 0',%) with A = 0.8 (top panel) and 0.9 (bottom panel) for thirteen
estimation procedures, each specified by the estimator and the bandwidth selection method that are linked by a
hyphen. Labels for estimators are: T for the ideal estimator m(x), N for the naive estimator m* (x), CE for the
complex error estimator mcg(x), DKC for the deconvoluting kernel estimator with the local constant weight,
DKL for our deconvoluting kernel estimator mipg(x) (with the local linear weight), and OS for the one-step
correction estimator mos(x). Labels for bandwidth selection methods are: O for the optimal bandwidth, CV for
cross validation, C for CV-CE, and S for SIMEX.

that are biased (although consistent) estimators for their error-free counterparts. Between
the two types of deconvoluting kernel estimators, our estimator 7iipk (x) that uses the local
linear weight improves over the estimator with the local constant weight. The two bandwidth
selection methods, CV-SIMEX and CV-CE, for choosing a bandwidth in ricg(x) produce
mostly comparable results. However, CV-CE substantially shortens the computation time. This
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Table 1
Computation times (in seconds) different procedures take to estimate m(x) based on a sample of size
n € {50, 100, 250}, including the time to choose a bandwidth h out of 50 candidates in H. The considered
procedures are naive estimation via m*(x) paired with cross validation (N-CV), estimation via mcg(x) paired
with CV-CE (CE-C), and with CV-SIMEX (CE-S), estimation via mpg(x) using the local constant weight paired
with CV-SIMEX (DKC-S), via mpg(x) using the local linear weight paired with CV-SIMEX (DKL-S), and
estimation via mpg(x) paired CV-SIMEX (OS-S).

n N-CV CE-C CE-S DKC-S DKL-S OS-S

50  0.06 66.04 219 34.7 113 2470
100 0.16 130 625 127 371 4975
250 0.21 188 1250 192 433 12754

Laplace Measurement Error, m(x)=2atan(1/x) (A=0.9)
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Fig 2. Boxplots of empirical risk across 100 Monte Carlo replicates at each level of n € {50, 100,250} when
X ~ N(0,4), m(x) = 2atan(1/x), and U follows a mean-zero Laplace distribution with A = 0.9 for thirteen
estimation procedures, each specified by the estimator and the bandwidth selection method that are linked by a
hyphen. Labels for estimators are: T for the ideal estimator i(x), N for the naive estimator im*(x), CE for the
complex error estimator mcg(x), DKC for the deconvoluting kernel estimator with the local constant weight,
DKL for our deconvoluting kernel estimator mpg(x) (with the local linear weight), and OS for the one-step
correction estimator mps(x). Labels for bandwidth selection methods are: O for the optimal bandwidth, CV for
cross validation, C for CV-CE, and S for SIMEX.

is evidenced in Table 1 that presents computation times for implementing different bandwidth
selection methods, with H containing 50 candidate bandwidths, on a computer with an Intel
Core i5 12600KF processor and a core speed of 4.5 GHz, followed by estimating m(x) via
various estimators based on one Monte Carlo replicate data set of size n € {50, 100, 250}.
Although time-consuming, CV-SIMEX substantially outperforms the naive CV as evidenced
in a simulation study presented in Appendix I where we fitted the same regression model
using ripg (x) with bandwidths chosen by CV-SIMEX and the naive CV.

Figure 2 provides results under the same simulation setting as that for Figure 1, except that U
follows a Laplace distribution and we focus on a reliability ratio of 0.9. Most observed patterns
in Figure 1 in how different estimators compare are similarly observed here. Interestingly, even
though the construction of riicg(x) imposes the normality assumption on U, violating this
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Fig 3. Boxplots of empirical risk across 100 Monte Carlo replicates at each level of n € {50, 100,250} when
X ~ Uniform(-5,5), m(x) = 2atan(x), and U ~ N(0, 100(1 — 2)/122) with A = 0.8 (top panel) and 0.9 (bottom
panel) for thirteen estimation procedures, each specified by the estimator and the bandwidth selection method
that are linked by a hyphen. Labels for estimators are: T for the ideal estimator iii(x), N for the naive estimator
m*(x), CE for the complex error estimator mcg(x), DKC for the deconvoluting kernel estimator with the local
constant weight, DKL for our deconvoluting kernel estimator mpg(x) (with the local linear weight), and OS
for the one-step correction estimator mog(x). Labels for bandwidth selection methods are: O for the optimal
bandwidth, CV for cross validation, C for CV-CE, and S for SIMEX.

assumption does not noticeably compromise its performance, and it still tends to perform
better than the other non-naive estimators.

Figure 3 repeats the simulation experiment summarized in Figure 1 using a simpler model
with m(x) = 2arctan(x) and X ~ uniform(-5,5). Now the non-naive estimations are more
similar to each other than when fitting a more challenging model as in Figures 1 and 2. Figure 4
presents (in the top row) boxplots of fitted values for m(x) = 2atan(x) based on the estimated
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Fig 4. Boxplots of each fitted point (top panels) and circular boxplots of errors (bottom panels) for each of four methods: mpg(x), Rce(x), mos(x), m*(x), and i (x), based
on 100 Monte Carlo replicates when X ~ uniform(-5,5), m(x) = 2atan(x). An error here is the fitted value minus the true value of m(x).
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circular regression functions from various estimation procedures for a grid of x’s, along with
circular boxplots (in the bottom row) of the corresponding errors defined as the fitted value
minus the truth of m(x), when n = 100 and hspvex is used for non-naive estimation. The
former collection of boxplots shows that our proposed estimators substantially improve over
m*(x) in capturing the curvature of m(x). The circular boxplots, on the other hand, reveal that
many more errors from naive estimation (see the fourth panel in the bottom row of Figure 4),
m*(x) — m(x), deviate from zero and approach +x, whereas such drastic deviation from zero
is much less observed for our proposed estimates (see the first three panels in the bottom row
of Figure 4).

7. Application to wind data
7.1. Texas wind data

Now we turn to a real-life application and analyze wind direction data from the Texas Natural
Resources Conservation Commission [42]. The data, available athttps://doi.org/10.
26023/ZQEZ-ENSF-T009, contains n = 1756 records of wind directions @ and times of
day X collected by a single weather vein from May 20 to July 31 in 2003. The understanding
of tendencies for wind direction relative to the time of day is crucial in meteorological studies
in order to detect aberrations and predict large-scale weather events. For illustration purposes,
we contaminate X with additive normal measurement errors to produce surrogate measures,
W, such that an estimated reliability ratio, given by S2/52 , is equal to 0.9, where S and S2,
are the sample variance of X and the sample variance of W, respectively.

We first fit the regression model in (1) using data (@, X) to obtain the ideal estimate
m(x) with the bandwidth selected via the traditional 5-fold CV. Then we use data (@, W) to
carry out naive estimation to obtain /2*(x) using /naive. Lastly, we compute three non-naive
estimates, /mipk (x), Mice(x), and Mg (x), based on data (@, W) using hspvex. The resultant
five estimated circular regression functions are plotted in Figure 5.

Contrasting the five estimated circular regression functions depicted in Figure 5, we see that
the naive estimate 7/2*(x) has a diminished signal strength, flattening the relationship captured
by the ideal estimate 72 (x). Each of the proposed estimators improves on this by mimicking the
pattern of 771 (x) more closely, with riicg (x) being the closest to 77 (x) among the four estimates
based on error-contaminated data. Like in the simulation study, we set B = 100 in the complex-
valued weight in (10) when obtaining ricg(x), which does display some instability, resulting
in the estimated regression function less smooth than those from the other two proposed
estimators. This may suggest that a larger number of Monte Carlo replicates B in the weight
function for riicg(x) is needed, which is consistent with our asymptotic analysis for this
estimator (see Theorems 4.1 and 4.2), where it is assumed that B grows as n increases.

7.2. Santiago de Compostela wind data

The Galician Meteorological Agency of Spain collects climate data, available at the website
of the Ministry for the Ecological Transition and the Demographic Challenge (https://
www.miteco.gob.es/es.html). To more closely mirror our simulation settings, we
downloaded n = 100 records of wind direction in radians from this website along with
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Fig 5. Five estimated circular mean of the wind direction given time of day including the three proposed estimators,
mpg(x) (blue line running through circles o), mcg(x) (orange line running through triangles 1), and mipg(x)
(purple line running through diamonds <), the naive estimate m*(x) (red line passing through squares 0), and the
ideal estimate i(x) (black line).

measurements of gust wind speed above average in miles per hour from a weather vein in
Santiago de Compostela, Spain. The quality of gust wind speed measurements depends on the
response characteristics of anemometers and the effects of signal processing, besides other
external factors that can introduce errors [34]. The goal of our analysis is to regress the
wind direction (®) on the gust wind speed above average (X), while acknowledging that the
measured gust wind speed (W) is contaminated by unknown measurement errors.

The proposed methods for estimating the regression function m (x) remain applicable when
the measurement error distribution is unknown but replicate measures of the true covariate
are available. In particular, because the complex error estimator, #icg(x), is formulated under
the assumption of normal measurement error, it depends on the error distribution only via
0',%, which can be easily estimated based on replicates measurements [as in equation (4.3), 5].
The deconvoluting kernel estimator, 7ipg (x), and the one-step correction estimator, #ios (x),
involve the measurement error characteristic function ¢(-). Under the assumption of a
symmetric distribution, [10] provided an estimator for ¢¢; () based on repeated measurements,
whereas Comte and Kappus [6] proposed an estimator without assuming symmetry of U.
These estimated characteristic functions can be used in place of ¢y (+) in riipk (x) and s (x).
The study of asymptotic properties of the resultant estimators for m(x) is beyond the scope
of this manuscript. We conjecture that, with an estimated ¢y (-) plugged in, finite sample
performance of riipk (x) and igs(x) will deteriorate as reported in previous empirical study
in a similar context with linear response data [22].

Without repeated measures of the gust wind speed at any given occasion when the wind
direction was recorded in this application, we resort to a sensitivity analysis, by fitting the
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Fig 6. Five estimated circular mean of the wind direction given the gust wind speed above average including the
three proposed estimators assuming normal measurement error, Mipg(x) (blue line running through circles o),
mcp(x) using the bandwidth chosen by CV-SIMEX (orange line running through upright triangles /), mcg(x)
using the bandwidth chosen by CV-CE (green line running through down facing triangles V) and rmpg(x) (purple
line running through diamonds <), and the naive estimate m* (x) (red line passing through squares 0).

nonparametric regression model under different assumed levels of error contamination corre-
sponding to four levels of reliability ratio, 1 € {0.75,0.8,0.85,0.9}, and two assumed error
distributions: normal and Laplace errors. Figure 6 shows the estimated regression functions
using our proposed methods, contrasting with the naive estimate when normal measurement
errors are assumed. Besides using CV-SIMEX to select bandwidths in our estimates, we
also repeated the complex error estimation using CV-CE to select the bandwidth in riicg(x).
The two variants of ricg(x) are similar to each other but are more distinct from the other
estimates, especially when a more severe error contamination is assumed. It is at the lower
levels of (assumed) A where one witnesses the non-naive estimates differ from the naive
one more noticeably. The abrupt jump of 7icg(x) near the lower bound of the covariate when
A =0.75, 0.8 should not be interpreted as a phenomenon of discontinuity because the response
is circular. With this in mind, ricg(x) appears to be more sensitive to what one assumes for
the level of error contamination. The other two estimates, riipg (x) and ips(x), are closer to
the naive estimate 772" (x) in comparison, especially at a higher assumed value of A, although
they both exhibit slightly more curvature than m*(x).
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Fig 7. Five estimated circular mean of the wind direction given the gust wind speed above average including the
three proposed estimators assuming Laplace measurement error, mpg(x) (blue line running through circles o),
mcp(x) using the bandwidth chose by CV-SIMEX (orange line running through upright triangles ), mcg(x)
using the bandwidth chosen by CV-CE (green line running through down facing triangles V) and rips(x) (purple
line running through diamonds <), and the naive estimate m*(x) (red line passing through squares O).

Figure 7 provides the counterpart estimates when assuming Laplace measurement errors,
which are mostly similar to those in Figure 6. The sensitivity analysis thus suggests that the
proposed estimators are more reliant on the assumed level of error contamination and relatively
robust to the assumed error distribution. Although one cannot conclude which estimated
regression function is closest to the (nonexistent) ideal estimate 77 (x) or the (unknown) truth
m(x) in this application, some lessons can be learnt from this exercise. First, unless one has
strong data or scientific evidence indicating non-Gaussian measurement error, we recommend
using the complex error estimator 72cg(x) that is most computationally convenient to obtain,
especially when paired with CV-CE bandwidth selection. Second, when confronted with
serious concern or doubt regarding the normality assumption for measurement error, the
one-step correction estimator rips(x) is the next in line as a contender that tends to be
numerically more stable than the deconvoluting kernel estimator riipk (x). Third, even when
using rips (x) or Aipk (x), one may consider using the Laplace characteristic function for ¢ (-)
when computing the estimator for a smoother implementation of the deconvoluting operator.
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8. Discussion

In this study, we develop three methods to extend local polynomial regression of a linear
response to local polynomial regression of a circular response while accounting for measure-
ment error in a linear covariate. An R package NPMEDD for implementing these methods is
available to download at https://github.com/nwwoolsey/NPMEDD, where the data
and the R code for reproducing results in Section 7 are also available. The proposed methods
lead to novel estimators for the circular regression function that use three different strategies
to achieve the common goal of correcting naive estimators for covariate measurement error. A
common thread running through the novel estimators is a certain form of integral transforms
relating to a deconvoluting operation. Besides adapting CV-SIMEX to the circular regression
model to select bandwidths in the novel estimators, we propose the CV-CE procedure to
enhance the computational efficiency and feasibility of bandwidth selection in the presence of
measurement error. Moreover, we thoroughly study the asymptotic properties of the proposed
estimators, and establish consistency and asymptotic normality under suitable conditions. Our
theoretical investigation provides a generic recipe for studying nonparametric estimators of a
circular regression function with error-in-covariate.

Generalization of the proposed methods to incorporate multiple covariates with some prone
to measurement error can be realized by using the multivariate generalization for deconvoluting
kernels as outlined in Yi et al. [45, Section 10.7.4]. In the real-life application in Section 7.1,
the time of day can be transformed into a directional covariate as the time on the 24-hour clock,
and the proposed methods can be revised by the simple adaptation of a directional kernel as
opposed to a linear kernel as in [12] and [11]. Bandwidth selection in the presence of covariate
measurement error remains a challenging task. Although CV-CE saves a tremendous amount
of computation time compared to CV-SIMEX, we acknowledge room for improvement for
CV-CE by improving the estimated loss function. Recently, in the context of local polynomial
regression of a linear response with error-in-covariate, [13] proposed bandwidth selection
procedures that also strive for estimating a loss function, which is the mean squared prediction
error, by accounting for measurement error in the estimated regression function and also the
estimated density of error-prone covariates. Our preliminary experiments on their methods
suggest an increased computational intensity and instability, without noticeable gain in the final
estimation quality. Lastly, we assume fully known measurement error distribution throughout
the study to avoid identifiability issues for measurement error models. In practice, one would
have to count on replicate data or external/validation data to estimate the error distribution,
or to conduct sensitivity analysis if such data are unavailable to estimate o2 or ¢ (1).

Appendix A: Proof of Lemma 3.1

Proof. By the multivariate version of Taylor’s theorem, one has a Taylor expansion of g(¢+V)
around V = 0 given by

(o9

Dig(t) ,
g(t+V)=|;O n v



https://github.com/nwwoolsey/NPMEDD

4602 N. Woolsey and X. Huang

where £1 = {11 ... ¢, and Dfg(t) = (8 ... 9% 91 ... 917)g(¢). Tt follows that

0 Dig()
B{s(t+V)} =g(0)+ ) ——E(V).
|€]>0 ’
which reduces to g(¢) if E(V¥) = 0, V€ with |£| > 0. This completes the proof. O

Appendix B: Proof of Lemma 3.2

The proof is similar to that given in Delaigle [7, Appendix A.2].

Proof. Define Y = sin®. Because U L X, we have Y L W|X, thus

1
E(¥|W = w) = /1 ¥yt (v1w) dy

1
:/_ y'fY,W(y’W) dy

1 fw(w)
1 )
) fWI(W) ./—1 y,/_ Sr.wix(y, wix) fx (x) dx dy
1 o el
= /_ /_1 Yyrix(1x) fwix (wlx) dy fx (x) dx
o pl
B fWI(W) /_ /_l v frix(ylx) dy fx (x) fu(w — x) dx
B fwl(w) ‘/_ my(x) fx (x) fu(w — x) dx.
Hence,
mi(w) fw(w) = ‘/_ mi(x) fx(x) fu(w —x) dx. (B.1)

Applying the Fourier transform on both sides of (B.1) yields
buip 0= [ ™ [ ) f) fw - ) o
= / m (x)fx(x)e”x/ "W £ (w - x) dw dx

(&9

_ / (0 fx (e / " e fy ) du dx

(o8]

= by (1) / " () fe (X)€" d
= B 1 (00 (1),

where ¢,: fw (t) is the Fourier transform of mj(w)fw(w), and ¢, 1, (¢) is the Fourier
transform of mj(x) fx(x). Finally, applying the inverse Fourier transform on both sides of

Gmy 1 (1) = St 1y (1) Pu (1) gives

Do fiw (1)

oo

) (o) = 5 / eitx
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A similar result can be derived for m3(w) = E(cos ®|W = w). This completes the proof of
Lemma 3.2. m|

Even though we consider Y = sin® and Y = cos © in this proof, the arguments leading up
to (B.1) hold for any linear random variable Y as long as all relevant integrals are well-defined.
This point is important for later development, e.g, in Appendix D.4, where we consider Y
to be other linear random variables. To recap, provided that all relevant integrals (including
expectations) are well-defined and assuming a classical additive measurement error model
relating W and X, then we have, for any linear random variable Y, that

ECYIW = w) i) = [ BOVX =) (6 (oo = ) d,
or, equivalently,

E{E(Y|X) fu(w = X)} = EY|W = w) fw(w). (B.2)

Appendix C: Notations and important results
C.1. Notations

For easy reference, we provide a list of notations next.

e For € = 1,2, 77(x) = m¢(x) fx(x), 7, (x) = my(x) fw(x), where m;(x) = E(sin®|X =
x), ma(x) = E(cos B|X = x), mj(x) = E(sin®|W = x), and m}(x) = E(cos O|W = x).

o £1(x) = E{(sin®)*X = x}, £&(x) = E{(cos ®)*|X = x},

e y(x) =E{(sin®)(cos®)|X = x}.

o For £ € No, e = [1*K(t)dt, ve = [ 1*K?(t)dL.

e For £ € Ny, KU,(,h(x) = KU,[(x/h)/h, where

(£)
_ e ey _ix Pk ()
Kuy.e(x) =x"Le(x) =i o / e —¢U(—t/h) dt, (C.1)

in which L, (x) is given in Equation (8).

C.2. Important lemmas
Several results that we heavily rely on in our asymptotic analyses are listed below. Some of
these results are established in existing literature, while others generalize existing results.

Lemma C.1. Ifasequence of Borel functions {G,,(t) } which satisfy the limit lim,_,., G, (t) =
G(t) and sup, |G,(t)] < G*(t), where G*(t) is an integrable function satisfying
lim; o |G*(2)| = 0, then

lim / 1) (x — hi)di = f(x) / G (1),

where h — 0 as n — oo, and x is a continuity point of function f(-).

This is Lemma 2.1 in [14].
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Lemma C.2. IfU is ordinary smooth of order 8 with a non-vanishing characteristic function
du (), 16 (Dlleo < 00, and [ |t1P¢L (1)dr < oo, then
it : ()
lim #Kuo(0 = 3 [ ol (ar
n—oo 2nc
where ¢ = lim; e Py ().
This is Lemma B.3 in [8].
Lemma C.3. For { = ((),...,4p)" € NQ with Q > 2, suppose the kernel K(-) satisfies
ty) £,+1 ) )
0 Dl < o0, 184" ()l < o0, [ WL 1t < o, and f (1= 195 )+

|¢(€ +1)(t)|}dt < oo, forqg=1,...,0, also, U is ordinary smooth of order 3 with ¢y;(t) # 0,
forallt, and ||¢7,(1)|le < 00, then

o
lim hQ'B/ {l—[ KU,t’q(V)} f(x=hv)dv = f(x)n(t,....lo),
g=1

where h — 0 as n — oo, x is a continuity point of a bounded function f(-), and

T](f],...,fQ)
i—1€l o-1 0-1
_ (£q)
et IS ()
0o-1
‘o) (— Z tq) dty ...dig 1,
q=1

where ¢ = lim; _,e0 tﬁ¢U(t).
This is a generalization of Lemma B.4 in [8] that we prove next.

Proof. Firstly, by Lemma C.2,

0 0
im 12 [ | _ 32 1 [1/ e (tq)
nlglgoh i Ko, (v) =i = (27c)@ g=1 ¢ e ndr

Secondly, by Lemma C.1,

9
,}Lngo hQﬁ/ {l_[ Ku.e, (v)} f(x—hv)dv
q=1

Q
_ 1 .
=) xi el (2mc)@ / ] I./ e_mltlﬁ¢;<€q)(t) drds

. ‘
:i—qug"(;;:))g/ / / Tl P (1) eT et i P

(EQ)(Z‘Q) dty . dtQ ds

B c(g) l@n)Ql/ / 1_[ {itg P 1)} x
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1 - 0-1
> / / e islot ’q)|tQ|ﬁ¢§fQ)(rQ)er dsdty ...ds,_,. (C.2)
T

Thirdly, the inner double integral in (C.2) can be simplified using the Fourier integral theorem.
Recall that the Fourier integral theorem [27, Section 3.2.1] states that, if a function g(v)
satisfies the Dirichlet conditions in every finite interval centering at zero, and / lg(v)|dv < oo,

then
1 .
g(v):T//e_’s(t_v)g(t)dtds.
n

By the Fourier integral theorem,

B

0-1 0-1
1 —i o-1
- f / e is(tg+2,_ tq)|tQ|ﬁ¢;fQ)(tQ) dip ds = Z 1y ;fQ) (_ tq) ‘
Vi3
q=1 q=1
Using this result in (C.2) gives the result stated in Lemma C.3. m|

Lemma C4. For ({y,...,0p) € Ng with Q > 2, suppose that ¢ (t) is supported on [—1, 1],

||q5§f")(t)||OO <oo,forqg=1,...,0, and U is super smooth of order B with ¢y (t) # 0, for all

t, then

o
/ l_[ Ky, (v)dv| < Ch2P exp (Qh_ﬁ/)/) )
q=1

where C is some positive constant and B> = Bol (B < 0.5).

This is a generalization of Lemma B.9 in [8], and can be proved using Lemma B.8 in [8].

Appendix D: Asymptotic properties of the deconvoluting kernel estimator ripk (x)
D.1. The mean of the local linear weight L(W; — x)

Using (C.1), we re-express the new weight £(W; — x) in Equation (7) as

L(W; -x)

1 - 1 -
= ;KU,O,h(Wj - X) Z Kyon(Wi —x) = ;KU,l,h(Wj - X) Z Ky 1,n(Wi —x).
k=1 k=1

The result in Equation (9) is equivalent to

X—x

t
E{Ky.cn(W —x)|X} = ( ) Kn(X;—x), for£=0,1,2. (D.1)

Using this result and the new expression of the weight given above, we have

E{L(W; - x)|X}

1
= ~E{ Ku.on(Wj = 0)Ku20(W; =) + KuonWj =) ) Kuon(We =)
k#j
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~Kg 1 (W =x) = Ky i nWy = x) Y Ky n(We = x)| X

kzj
= 25 Ky (W) = 0Ky (W =) - K, % =0 X} +
% Kn(X; x)Z( )Kh(Xk—x)—
k#j
[ =0 Y (B Rt -0
k#j
%E{KUOh(W — XKy 2n(W; - )| X; }—%E{Kg’l’h(wj—x)|xj}+ (D.2)
n _ X, —
%{Kh(xj—x)Z(X"h x) Kh(Xk—x)—( / X)Kh(Xj—x)x D3)
k=1

3 (th‘x)Kh<Xk —x)} ,

k=1

where (D.3) is the original local linear weight ‘W (X; — x). To derive the two expectations in
(D.2) and other similar expectations arising in later derivations in this appendix, we derive a
more general result next.

For £ = ({1,...,6p)" € N with Q > 2, by Lemmas C.3 and C.4,

o
l—[ KU,l’q,h(W - x) X
g=1

o
= / { Ku.c,.n(w —x)} fuw = X)dw, nextletv = (w —x)/h,
1

q:
1 o
= 7000 / l_[KU,[q(v) fulx+hv—-X)dv
g=1
1 o
=501 / {l—[ Ky.e,(v) ¢ fu(X —x — hv) dv, assuming fy(-u) = fy(u),
n(t,....¢o) 1 o
B Wﬁ](x x)+0p (hQTQﬁ) if U is ordinary smooth, o
exp(Qh*[y) - (D-4)
O, —0-108 ) if U is super smooth.

Using (D.4) with £ = (0,2) T, we have, for the first expectation in (D.2),

E{Ku,0n(W; —x)Ku 2.0 (W; —x)| X;}
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0,2 1 R .
% fu(Xj—x)+op (thzB) if U is ordinary smooth of order 3,
- 2h™P
0, (@(p](ql_izﬁz/y)) , if U is super smooth of order 3;

similarly, the second expectation in (D.2) is, with £ = (1, 1) T in (D.4),

B{ K1 (W) - )| X}

1,1 1 R, .
nh(1+2ﬁ) fulX;—x)+op (m), if U is ordinary smooth of order 3,
2h7F
0, (%) , if U is super smooth of order .

It follows that

E{L(W; - x)|X}
77(0’ 2) B 7](1’ 1)

(W(Xj l—x) + PYSEST: fU(Xj —x)+ 03)
. . . D.
op (nhl—ﬂﬁ)’ if U is ordinary smooth,
exp(2h~F /y) . .
W(X;-x)+0, (W , if U is super smooth.

Hence, the new weight based on W, L(W; — x), is a consistent estimator of the local linear
weight based on X, W (X, — x), under suitable conditions. In particular, if U is ordinary
smooth of order g, then the condition is nh'*8 — oo, asn — oo and h — 0;if U is super
smooth of order 4, then the condition is nh' =22 exp(=2h = /y) — c0,asn — coand h — 0.
We impose these conditions throughout this appendix.

D.2. The mean of L*(W; —x)

To derive the asymptotic variance of g, pk (x), for £ = 1,2, we derive the mean of £? (W;—x)
given X,

E{L%WQ—xﬂX}:gﬂJ—2H+IHL

where
; 2
I= {KU,O,h(Wj —-X) Z Ky 2.0 (Wi — X)} ,
=1

n
11 = {KU,O,h(Wj - X) Z Ky 2n(Wi — x)}x

k=1
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{KU,I,h(Wj - X) Z Ky 1,n(We — x)},

=1

2
n
111 = {KU,],h(Wj —X)ZKU,I,h(Wk —x)} :

k=1

E(I1X)
= E{Kczj,o,h(wj - X)Kzzz,z,h(wj - x)‘ Xj}

+E{K (W —x)’ X} Y B{KE (Wi —x)’Xk} +

2E {KLZ/',O,h(Wj _X)KU,Z,h(Wj —X)‘ Xj} Z E {KU,Z,h(Wk - x)| Xk} +

k#j

E{Klzl,o,h(wj —x)’Xj} Z E{Ku2n(Wi —x)| Xi} E{Ku2.s(We —x)| X¢} .

(+k+]

Applying (D.1) and (D.4) to expectations in the above elaboration of E (7| X), we have, if U is
ordinary smooth of order S,

E(1]X)

77(0];30;42,_2) Ju(Xj=x)+op (h341r4ﬁ) * 77(0,]?2):1;2, 2 Jo(Xj = x)x
2=+ (i5)+ (b0
I [ = PN

#j
{”,ff’;z?fwxf—xﬂ% (h%ﬁ)} 5 (xkh—x)zm,(xk—m
C4kt]
(Xg —x)th(Xg . (D.8)

which can be further simplified by keeping only the dominating term as we explain next. Using

the approximation for a random variable A with a finite variance, A = E(A) + O, (+/Var(A)),
one can show that

(55 ¢ =0 = o + 00+ 0,1 VR
D.9)

2
(X};x) Kn(X = x) = fx(x)ua + O(h*) + 0, (1/Vh),
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asn — oo and & — 0, and thus

Z (th_x) Kp(Xy — x) (?) Kpn(Xe —x)

C+k+]

=(n-1)(n-2) [hz (@} i3 +0, (%)} ’

2
( ) Kn(Xi - x) (X‘
(#k#j (D.10)

(- 1)(n-2) {hfx(X)f;}(X)u§ +0, (%)}

) Kp(X¢ —x)

2
) Kh(xk—x>(x‘

€¢k¢1(

~ - -2 2end+ 0, (1))

which are of order 12/ h, and hence dominate 2k {(Xk=x) [ h}Kp (X —k—x) and 35 i {(Xi —
x)/hY2Kn(X — k — x) that are of order n/Vh. Now one can see that, with nh!'*% — oo, (D.6)
is of order n/h**#, which is dominated by (D.8) that is of order n>/h**?#; and, if 8 > 0.5
as we assume henceforth, (D.6) dominates (D.7) that is of order n/h>>**#. We thus conclude
that

E(]X)
(0,0) !
- {’wau(sz—xHOp (m)}x 2 (D.11)
2 (th_x) Kh(Xk‘x)(X[h_x) e,
C+k+j

If U is super smooth of order 3, assuming nh' =252 exp(=2h~8 /) — oo, we have

E(I|X) (D.12)
4hP 4hP 3nA
~0, (M) ro, (" ro, (ME
-B
2Z(X" ) Kn(Xi —x)+0, (e)cp}(ﬁftizﬁz/y))x
k#j
Xk—x 2 X[—x 2
>, ( p ) Kh(Xk—x)( ) Kn(X¢ - )
C+k#j
-B _ 2 _ 2
-0, (%%/7)) 5 (%) Kh(Xk_x)(X[h x) Kn(X,—x).  (D.13)

C#k#j

Second,

E(I1|X)
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=E {KU,O,h(Wj ~ K5, (Wi =x)Ky 20 (W) - x)‘ Xj} +
E{Ku,0n(W; = x)Ky,1.0(W; —x)| X;} x

Z E{Ku,1,n(Wi = x)Ku2,n (Wi —x)| Xic} +
Py

E{KU,O,h(Wj_ OKG (W, X)| }ZE{Kuzh(Wk—x)ka}+
k#j

E{ Ku.0.e(Wj = X)Ku,1.6(Wj = X)Ky 2.0 (Wj — )| X} X

ZE{KU,I,h(Wt’ — )| Xe} +E{Kv.o.n(Wj = 0)Ky 10 (W) = 0)| X} x

l#j

Z E{Ku.1.,0(We = x)| Xe} E{Ku 2.0 (Wi — x)| X} .
C+k#j

By (D.1) and (D.4), if U is ordinary smooth of order 3, then

E(/1|1X)
0,1,1,2 1 0,1 1,2
:%fU(Xj—x)+op(h3+4ﬁ) n( hZ)JZ’(B )fU(Xj—X)X
0,1,1 1
-0 ) [ o s
k#j
X —x\? n(0,1,2) 1
;( kh X) Kh(Xk_x)"‘{ pEr fu(X; x)+0p(hZTB)}X
X, — 7(0,1) 1
;( fh X)Kh(X[_X)+{WfU(X]'—X)+Op (}ZITZB)}X
2
Z (th_x)Kh(Xf_x) (%) Kp(Xg —x)
C+k#]
0,1 1
= {nh(l.,.zﬁ)fU(Xj —x)+0p (m)}x
2
2:(&{ﬁKﬂ&‘”(&;x)mW“‘”’ (D.14)
C+k#]

which is of the same order as that of (D.11). If U is super smooth of order 3,

E(I11X)

exp(4h=F |y) nexp(4h=F [y)
:OP( 13-4B: ) ( 2= )

B
0, (expghwz/)’)) Z ( ) Ki(Xy — )+

exp(3hF [y)
p h2-3B2
%)

( ) Kp(Xr — x)+

J



Circular-linear regression with measurement error 4611

B -X —x\*
()P(Eg%§?55122) }: (X}h )5%(3%-—X)(X%h ) Kn(Xi = x)

k%]

-B _ B 2
=0, (W) > (%)m(&—@(%) Kn(Xg-x),  (D.15)

C£kE]

which is of the same order as that of (D.13). Third,
E(I11|X)
=B{K} (W) - 0| X} +

2E{Kz3]1h(W X)‘ }ZE{KU 1n (Wi = )| X} +
k#j

E {Klzj,l,h(Wj —x)’ Xj} ZE {Klzj,l’h(wk —X)’Xk} +
=y

B{ K1 Wy =) X} D B{K1n(We = 01XV E{K,1 0 (Wi - )| Xk ).
(k]

By (D.1) and (D.4), if U is ordinary smooth of order §, then
E(IIIX)

n(1,1,1,1) 1 n(1,1,1)
:WfU(Xj—x)+0p e + pEr fu(X; —x)+

P (}ﬂ%)} sz (th—x) Kp(Xp —x) + {%ﬁ,(xj —X)+

k#j
1 (1, 1) 1
SR E—_—
{nh(llJrz;la)fU(XJ_x)JfOp (hl%)} Z (X[h_x)Kh(Xf—x)X
C#k#]
(X"‘X)Khm—x)
{n}fllﬂ?fu(xj —x) +0, (111%23)} Z (th_x)Kh(xg—x)x
C+k#j
(th_x)Kh(Xk—x), (D.16)

which is of the same order as that of (D.11). If U is super smooth of order S, then

E(IIX)
w: 5
zop(expgf’—%m)Jrop(eXp}(jhw/y)) 22( hx)Kh(Xk—x)+

k#j

-B _ -
0, (e)(p;(jfl—zﬁzm) x Z (%) Kn (X, —x) (th x) Kn(Xx —x)+

C+k#]
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nexp(4h=F/y)
O\ ™ m

exp(2hB /y) Xp—x X —x
:0p(w)€;i(T)Kh(Xg—x)( ; )Kh(Xk—x), (D.17)

which is of the same order as that of (D.13). Combining (D.11), (D.14), and (D.16) for
ordinary smooth U, we have
E{L*(W;-x)| X}
fb(xb'_x) Xk —x 2 Xr—x 2
= ——157 17(0.0) Z ; Kn(Xie =x) | ——] Kn(Xe —x)

2p1428
n-h C+kt)

2
~m0.n) Y (X"h‘x) Kn(Xi ) (M)Kh(xg—x)

Pyl h (D.18)
X —x Xr—x
(1) Y ( : )Kh(xk —x)( ‘ )mxf - )
h h
C+k+]
1
+top h+2B |’
and, using (D.13), (D.15), and (D.17) for super smooth U gives
2 exp(2h”/y)
E{L*(W,; -x)| X} =op(W : (D.19)

D.3. Expectations of g1,pk(x) and £ pk(x)

For ¢1 pk(x) = n~! 2?21 sin®; L(W; —x) and g, pk(x) = n~! Z?:l cos®; L(W; —x), by
(D.5),

E{ &0k (x)| X}
_ % > me(X)E{ LW, - x)| X}
=1
_ % 3 me(X)WX; - x)+
=1

POD D S e (X)) o (X~
j=1

1
Op nhiv2B |’ if U is ordinary smooth, (D.20)

exp(2hF [y)
Op nh'=2% |’

if U is super smooth.

Using existing results (e.g., those in (D.9)), one can show that

2
E (me (X)W (X — )} = 72 (0) (o + (2 () fe ()
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70(x) 2 (s = 275 (x) ()3} + O (W),

where 7,(x) = m¢(x) fx(x). In addition, by (B.1), E{m¢(X) fu(X - x)} = 7;(x), where
77 (x) = m}(x) fw (x). It follows that

E {¢px(x)| X}

2
= 700 fx (g + o {2 (e + 700 £

272(X)f>’<(x)ﬂ§} +o(h)+ (D.21)
0,2) —=n(1,1) , 1 N .
n( n)hlgﬁ( )T€ (x) +0p (rzhl—+2/3)’ if U is ordinary smooth,
exp(2hF [y) —
0, (W , if U is super smooth.

Hence, §¢,pk(x) is an asymptotically unbiased estimator of m¢ (x) fg(x)pz if nh'*%# — oo
for ordinary smooth U, or nh'=2%2 exp(=2h™# /y) — oo for super smooth U. If we further
assume that nh**?# — oo for ordinary smooth U, or nh?~52 exp(—2h~# /) — oo for super
smooth U, then the dominating bias of ¢, pk(x) (as an estimator for m,(x) f}% (x)up) is equal
to that of g,(x), i.e., the counterpart estimator based on error-free data.

D.4. Variances and covariance of §1,pk(x) and g2 pk(x)

Because Var{g, pk(x)|X} is dominated by E{g 7.DK (x)| X}, we focus on this conditional
expectation next.

Define £ (x) = E{(sin ©)?|X = x} and & (x) = E{(cos ®)?|X = x}. Results in Sections D.1
and D.2 regarding moments of £ (W —x) are now helpful in deriving the following expectation,

2
n

1 .
E{gl ok (0| X} = 5B 1> sin@, LW, —x) ¢ | X
j=1
1 S
=2 D (sin®)> L2(W; - x)| X

Jj=1

1 . .
+ ;E Z;( sin®; L(W; —x)sin®; L(Wi —x)| X
i*

- % > a(x)E{ LW, —x)| X} +
=

> (X)my (XOB(LOW; = x) LWy = 0)[X),

Jj#k

where the second summation is dominated by the first summation and thus is absorbed in the
non-dominating (lower-order) terms of the first summation that is elaborated next.
When U is ordinary smooth, by (D.18), we have

E {g%,DK(x)l X}
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1 < X —x\?
:;@ﬁ§E§S§MXﬂﬁKXj—X)7KQ0)22 (kﬁ;w Kp(Xi — x)%
J=1

C#kE]

2 2 B
(=] a0 =20 3 (B K- (X

h
L#k]

(Xk—x X, —x

Kn(Xe = x) +n(1,1) )

C+k+]

)Kﬂﬁ—ﬂ( )KM&—ﬂ

1
vor =)
Finally, using (B.2) and (D.10), one can show that

B8 e (I} = L0 w000+ 0 ().

where &7 (x) = E{(sin ©)?|W = x}. Similarly,

0,0) . 1
B8 e (01X} = D500 w000 + 0 ().

where &5 (x) = E{(cos ©®)2|W = x}. Hence, when U is ordinary smooth,

1n(0,0)

1
Var{ge,ok (0| X} = 27526 (%) fiv () fx (D43 + 0 (nhl—zﬁ) ore=1,2. (D22)

When U is super smooth, by (D.19), one has

exp(2h P |y)

Var{ge,DK(x)lX}zop( PYNESTS ),for€:1,2. (D.23)

Because Cov(g pk (x), 2.0k (x)|X) is dominated by E{g px (x)&2.px (x)| X}, we focus on
deriving this conditional expectation next.
Define i (x) = E(sin ® cos ®| X = x), then we have

E {81,k (x)&2.0k (x)| X }

n

Z]E{sin(aj cos®; L*(W; —x)| X} +

J=1

1
s Z E { sin®; L(W; — x) cos O L(Wy — x)| X}
j#k

1
n2

= Y WOE{ LW, - 0| X} +
J=1

1

= > mi(X))my(Xi)E { LW; = x) LWy - x)| X} .

ek
Using earlier findings for the above two conditional expectations, we obtain that, when U is
ordinary smooth,

0,0) , 1
D A 0 4o (s | @29

Cov{g1pk(x), 820k (x)| X} =
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where ¢*(x) = E(sin ® cos ®|W = x); and, when U is super smooth,

exp(2hF |y) ) (D.25)

Cov{g1,pk (x), §2.0k (X)|X} = O)p, ( PYSET:S

D.5. Asymptotic bias of mpg(x)

With the first and second asymptotic moments of g, pk (x) derived, we are ready to derive the
asymptotic bias of riipk (x). Suppressing the dependence on x for simpler notations, we view
. as a bivariate function with arguments (.., 82..), i.e., fi1. = atan2[g; ., §»..]. A Taylor
expansion of 7. around (g1.., >..) = (g1, g2) is given by

m.—m
1 R 1
82 1\81,- —81) — 81182, — &2
gl Prp te: )-an - 5 +g2)2 D26
, 5 A (D.26)
[8182{ g1,~ —gl) - (g2,~ —gz) } + (82 - gl) (g1,~ —gl) (g2,~ —gz)] +
Op {(§1,~ - g1)3} +0)p {(ﬁz,‘ - g2)3} :
Taking the expectation of both sides of (D.26) gives

Bias (#1.)

1 1
= —5—— 182E(@1, —81) - 81E(&2,. - 82) 1 - —5—— (8182 E{(¢1. - g1)
g2 +g2 { } (g7 +83)* =1 ) (D.27)

~E{(&,. — 82)*}] + (83 _g%)E{(gl,- -g1) (82, - 82)})
+0{(81,. - 1)’} +O{(82. — &2)*}

We consider the asymptotic results conditioning on X in this appendix, and (D.27) still holds
when all the moments are conditional moments given X.

For the deconvoluting kernel estimator ripk (x), g¢(x) = mg(x) f}%(x)uz, for £ = 1,2, in
(D.27); E(ge.pk — 8¢|X) as the bias of g, pk is revealed by (D.21); E{(g,.pk — g0 X} =
Var(g,.pk|X) + {Bias(g, pk|X)}? is dominated by Var(g, pk|X) given (D.22) and (D.23),
with {Bias(g,pk|X)}> absorbed in lower-order terms in Bias(g, px|X); lastly, E{(§; —
gl)(gz - g2)|X} 18 equal to COV(g]’DK,gz,D]dX) + Bias(gl,DK|X)Bias(§2’DK|X), which is
dominated by the first tem Cov(g pk, £2.pk|X) given in (D.24) and (D.25), with the second
term absorbed in lower order terms in Bias(g, pk|X). Therefore, putting (D.21), (D.22), and
(D.24) in (D.27), we have, for ordinary smooth U,

Bias {riipk (x)| X}
- Wy {miz’ (x)ma(x) — ml(X)mf) (X)} +o(h*)+

2 m3(x) +m3(x)
Jw (x) %
nh1¥28 £2(x) o {m?(x) + m3(x)}

[{77(0, 2) = n(1, D H{mi(x)ma(x) = my (x)m;(x)} -

(D.28)
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my ()ma(x) {€] (x) = & ()} +y* (x) {m3 (x) = m7(x)} .

m% (x) + m%(x)

1

Viewing m(x) = atan2[m(x), m2(x)] as a univariate function with argument x, one has

1(0,0)up X

_ my(x)ma(x) —my(x)mj(x)

m’(x) =

>

m% (x) + m%(x)
following which one can show that

(2) (2)
m? o) =m0 W
m%(x) + m% (x) =m ) +2m' (%) C(x)

my (x)m} (x) +ma(x)m} (x)

=m® (x) +2m’ (x)

bl

m%(x) + m% (x)

where C(x) = /m%(x) + m% (x). This reveals that the dominating term in (D.28) coincides
with the dominating bias of the ideal estimator i (x) stated in [12, see Theorem 4]. For the
second part of the dominating bias that is of order 1/(nh'*?8) following (D.28) above, one
can see that parts of it reduce to zero if W = X, i.e., in the absence of measurement error so
that, for instance, mj (x) = m(x). This second part of the dominating bias reflects the effect
of measurement error on the bias of rfipk (x). Certainly, if nh’*% — coasn — coand h — 0,
then this second term is absorbed in o(4?) in (D.28), suggesting that a larger sample size is
required if we want /iipk (x) to achieve a comparable level of bias as that of 71 (x).

Similarly, if U is super smooth, incorporating (D.21), (D.23), and (D.25) in (D.27), we have

Pua {mi” (x)ma(x) = mi (xymS” (x)}

2 m3(x) + m3(x)

Bias {riipk (x)| X} =

s (D.30)

+o(h)+0, (M) ,
where the effect of measurement error is (relatively more) vaguely reflected in the last term that
depends on the order of smoothness 3. However it is easy to see that if nh*=252 exp(=2h 2 /)
— oo asn — oo and i — 0, then the dominating bias of riipk (x) again coincides with that
of 7it(x). In other words, in the presence of super smooth measurement error, an even larger
sample size than what is needed when U is ordinary smooth would be required for the bias
of mpk (x) to be comparable with that of 7i2(x). These give the results in Theorem 4.1 in the

main article regarding the asymptotic bias of mpg (x).

D.6. Asymptotic variance of mpg(x)

Now viewing 22 as a bivariate function with arguments (¢ .., &>..), we have a Taylor expansion
of /2 around (81,., &2,) = (g1, g2) given by

i’



Circular-linear regression with measurement error 4617
2m 2m
2 A A
=m +—5——= 182 (81— g1) — g1 (&2 — &)} + ———5X%
e N
[8182 {(éz,- - 82)2 - (&1, - 81)2} + (g% - g%) (81 —21) (82 - 82)] +

1 . 2 . 2 . .
—— {g§ (81, —81) + g7 (82 —82)" — 28182 (81, — &1) (82, - 82)} +
(e7 +&3)
A 3 R 3
0p (@1 =21’} + 0, {(82 - 20)}
Taking conditional expectations of both sides of the above equation and dropping terms that
can be absorbed in lower-order terms of E(g,,. — g¢|X) in (D.21), we have

E (m? X)
2m . N . A
=m?+ o2 {g:Bias (¢1,.]1X) — g1Bias (22,.1X)} +
178
1 ) A (D.31)
o {g1(2mgs + g1) Var (82,.|X) — g2(2mgy — g2) Var (81,.|X) } +
(87 +83)
2
———3 {m (g% - g%) - glgz} Cov (81,.,£2,-1X) + lower-order terms.
(87 +83)
Using results in Sections D.3 and D.4, we have, for ordinary smooth U,
E {id (x)| X}
C/
=m?(x) + K2 m(x) 2 {m® (x) + 2m’ (x) *) + op(h2)+
C(x)
2 fw (x) { .
m(x){n(0,2) = n(1,1)} {m} (x)mz(x)-
nh'*28 £2(x) {m?(x) + m3(x)} :
10,0 032)

ml(x)mZ(x)} [ua + (m(x)ml(x)mz(x) {f; (x) — & (x)} +

m% (x) + m%(x)

m} (0)€; (x) +m3 ()€} (x)
2

m@ma) ||+ op i ).

and, for super smooth U,

+ 4" (x) [m(x) {m (x) = m3(x)}

E {ii (01X}
2 2 2 , O (x)
=m~(x) + h"m(x)up {m( ) (x) + 2m’ (x)

C(x)

exp(2h P /7))

} +o,(h*)+0, ( —

Focusing on the term of order O(4?) and the term of order O(1/(nh'*?#)) for ordinary
smooth U, we have

E{id ()| X} = m?(x) + h* X A + x B+ o(h?) +op( (D.33)

1 1
nh1+2B nh1+28
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and, with Bias{ripk (x)| X} = h* X C + {1/(nh'*?P)} x D + 0,,(1/(nh'*?F)),

[E {sfipk (x)| X }]*
= [Bias{ripk (x)| X} + m(x)]*
= Bias*{riipk (x)| X} + m>(x) + 2m(x)Bias{ripk (x)| X }

=m?(x) +2m(x) [h® x C +

1 2
pAFY: XD) +o(h”) +o0p, (

1
nhl+28 |’

where A and B are indicated by (D.32), C and D are implied by (D.28) and (D.29). In fact,
A —2m(x)C = 0, and thus, for ordinary smooth U,

Var{ripk (x)| X}

= h*{A - 2m(x)C} + {B—2m(x)D}+0(h2)+0p(

1
nh1+2,8)

{m} ()& (x) + m5 ()& (x)

nh1+ZB

) fw(@)n(0,0)
nh12B £2(x) (] (x) +m3 (x) 2

= 2m(x)ma ()Y (X)} + 0p (nhl%zﬁ) ;

and, for super smooth U,

exp(2hF [y)
nh'=282

Var{iipk (x)| X} = O (

Appendix E: Asymptotic properties of the complex error estimator i cg(x)

We consider the p-th order local polynomial weight used in sicg(x) in this appendix, for
p = 0. Throughout this appendix, we assume normal measurement error and conditions
imposed in Lemma 3.1 in the main article are satisfied, such as relevant functions being entire
functions.

E.1. Expectations of g1,ce(x) and > cg(x)

Recall that

n

1
: =~ > sin®; L"(W; -
81,ce(x) pa sin@®; L*(W; —x)

1 & 13 .
:—Zsin(aijZ(W*(W;b—x;W};)

n3 b=1

1 &1 &

=— —Zsin@fW*(W}‘,h—x;W};)
b=1" j=I

=
3

gib('x)v

|~
M=

S
Il



Circular-linear regression with measurement error 4619

where g;’ p(X) = n! 27:1 sin®; W= (W]’f’ » —X; W) is the same type of estimator as the ideal
local linear estimator g (x) for g;(x) = m;(x) = E(sin®|X = x), with the complex-valued
weight W *(W]’f, , — X W) in place of the normalized local linear weight W*(X; —x; X) in
(5) in the main article, or, more generically, in place of the naive local polynomial weight of
order p. By Lemma 3.1, E{g}"b(x)lX, O} = g1(x), and thus E{g; ce(x)|X,0} = g;(x). It
follows that, if 0'12(-) = Var(sin®|X =) = &((-) — m%(-) is continuous in a neighborhood of
x, and that nh — oo as n — oo and h — 0, then

E{&1.ce(x)[X}
=E|E{81.ce(x)|X,0}| X]
E{g1(x)|X}, next use Theorem 3.1 in [15],

1. 2
mi(x)+e/S lcpm {mi’” )(x)+

(p+2)mP*) (X)M} WP + 0, (hP*2), if piseven,  (E.D)

Sx(x)

mi(x) +e] S~ e, hm (P (1) hPH 4 0, (P, if p s odd,

where S = (Ur+m)0<r,m<ps €p = (Hp+ls - Hops1) s €p = (Hps2, .., H2p+2) T, and e
is the (p + 1) X 1 unit-norm vector with the first entry equal to 1. Similarly, if 0'22(-) =
Var(cos®|X = ) = &(7) — m%(-) is continuous in a neighborhood of x, and nh — oo as
n — oo and h — 0, then

E{&2,ce(x)|X}
“lx 2
my(x) +e]S 1cpm {mé’” ) (x)+
=1(p+ Z)MEPH)(X)%} hP*2 + op(hp+2), if p is even, (E.2)
my(x) +elS7c), (pil)!mép“)hl’“ +0,(hP*h), if pis odd,

In the special case considered in the main article with p = 1, we have

. "
B{8e.ce()1X) = me(x) + =-pam” () + 0, (h*), for £ = 1.2.

E.2. Variances of g1,ce(x) and g2,cp(x)
By Lemma 3.1, E{g] ,(x)|X, ©®} = §1(x), and E[{&] b(x)}le, 0] = g%(x), thus

Var{g;b(x)|x} -E [{g;’b(x)}2|x] - [E {§’f,b(x)|XHz

=E{g](x)| X} - [E {g1(x)| X}]?
= Var{g: (x)| X}

o} (x) 1
— Ts—l *S—l 1 - E3
e/ Sy elnhfx(x)+0p | (E.3)

where v* = (Vy,+r,)0<r,r<p, and the last equation comes from the asymptotic variance of a
local polynomial estimator of m(x) in Theorem 3.1 in [15] under the assumption that 0'12(-)
is continuous in a neighborhood of x, and that nh — co as n — oo and & — 0. It follows that

Var {g1,ce(x)| X}
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X},

B
1 " 1 - -
=3 E Var{gl’b(x)|X}+E E Cov{gl’a(x),gl’b(x)|X}
a#b
1

B
1 <
= Var{g ;glyb(x)

b=1

=g Var {&1(x)| X} + 51 [E{gia(x)éi‘,b(x)k} -

B{g], | X}E{e],@)|x}|, wherea # b,
ot (x) L), B-1_

anZfX(x) Top (Bnh) * B {gl “(x)gl’b(x)‘ X} h

E LB (a1 X0, by (E3) E4)

Assume that nhP*3 — oo, if p is even, or, if p is odd, assume nh”*?> — oo, then the
first two terms (of order 1/(nh) at a fixed B) are included in op(hp”” (piseven)) that is
the order of the last term. In what follows, we look into the only expectation left unsolved
above, E{gria(x) g*l" » (X)X}, which requires new tactics to solve due to its dependence on two
sets of complex-valued error-contaminated covariate values, = (Wy W )" and

= (W) .., Wi )T,
Adopting notations for weighted least squares estimators as in [Chapter 3, 15], we have

81.aM81 () = €] (G104G o) G QY Y Gy (G 2Gp) ey
where Y = (sin®y, . ..,sin®,)", Q, = diag(K,(W; , - x),....Kn(W; , — X)),

=e;S™'v'S7 e

la,...,

LWy, —x ... Wy, —-x)P
Ga={: 1 - SN
L Wo,—x ... (Wy,—x)P

and Qj, and G, are similarly defined. Recall that, for j = 1,...,n, W* =W;+io,Z; , and
W] =W;+io,Zjp,, withZ; , 1 Z;; from N(0, 1) for a # b Utlhzlng the law of iterated
expectation, we first look into the expectation conditioning on W, W, and X,

2 {gia(x)gslﬂ,b(x)’ W, W, X}
=] (G]Q4G,) 'GLQEXYT|X)Q,G,(GIQGp) ey

=e/ (n7'G Q,G.) " (1’ G Q. 2Q,G,) (n7 G} QG ) ey, (E.5)
where
§1(X1) my(X)mi(X2) ... mi(X))mi(Xn)
L=E(YY'|X)= ml(XZ)'ml(Xl) 51(')(2) ml(XZ).ml(Xn) '
[ (Xomi(X) i (E)m(X) —. 6(X)
Because

1 n
-1 TQ N w* - é’+q—2K ko
n Ga aGa - n Zl( j.a X) h(”j,a X) s

1<l,q<(p+1)
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with the expectation of the (¢, q) entry conditioning on X equal to, by Lemma 3.1, for
tg=1,....p+1,

1+ . _ .
T2 {w; =002 K(W;, - )| X
J:
1 n
=~ D (X =) 1K (X; ~ )
j=1
= h€+q_2ﬂ€+q—2fx(x) + h€+q_1/l£+q—1f}/((x) + hhq:ul’ﬂ]f}?) (x)/2

h[+q—2
w”(m)’

therefore,
B(n7'G104Ga| X)

(E.6)
“H {fX(x)S +hfp ()8 + 2 FP (0)82/2+ 0, (\/%)} H,

where H = diag(1,h,...,h”), S¢ = (fr+r+6)0<r,r<p, for £ = 1,2, This also gives
E{n"'G}Q,G,|X}.
Next we study the middle portion of (E.5), n72G [ Q,XQ,G. The (¢, g)- entry of this

matrix is

(n*GLQ,XQ,Gp) .

1 n n . .
= s} Z Z Kh(Wj,b _X)Kh(Wk,a - X)X (E.7)
=1 k=l

E(Y; Yk X) (W), —x)T (Wi, =) fort,q=1,...,p+1.
For the summand of the above double sum, we have, if j # k, the expectation of the summand
given X is
mi(X;)(X; = x)? K (X; = x)my (Xe) (Xe =) Ky (X = x)
= W2 pg e 7 (x) + R (g1 pte + pgpe—1) T (0)T] (x)+
hq+€
2
£-3
0, (h).

[1tg- 110171 7 () + g 11 ()7 () + 2pgpe (] ()] +

If j = k, the expectation of the summand given X is
B{ KW}, = 0 Kn(W] , = x) (W7, =)0~ (W}, =0 1| X} &1(X))
=E[e{ (W}, -0 KW}, —0)| W, X | x
B{(W;, - 00 KW, - 0| Wi X x| &)

=E [B{ (W), -0 Kn(W} , - 0)| W} x
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B{ (W, -0 Ku(W;, - 0| Wi} | x5 & x). (E3)
To find the inner expectation in (E.8), we consider the following Fourier transform,
D W —x)k Ky (W —x) (1) = /(W* — ) K (W* = x)e'™ dx
= exp(itW*)h* / u*K (u)e” " du

_k ak¢K(s)

= exp(itW*)h*i
exp(itW*)h"i 94k

s=—ht

= exp(itW*) h*i % ¢ (=hr). (E.9)

Using the inverse Fourier transform, we elaborate the inner expectation in (E.8) as follows,
E { (Wi, =0 Kn(W; —x)| Wj}
= ‘/(WJ +ioyz — x)g_lKh(Wj +ioyz — x)fz(Z) dz

1 _ 1 _2p
= /E,/e ”x¢(Wj+ia'UZ—x)[‘1Kh(Wj+iauz—x)(f) dl‘X\/T_ﬂ-e 7/ dz

—ihf—li—“—l)/exp{n(w — )} (—hr)x

S 2n
vz_/exp( —toyz — 22/2) dzdt, by (E.9),
T
:ﬂh‘)_li_(‘)—” / exp{it(W; — )} " (=ht) exp(202 [2) di
(l’ 1)
1 (—ht)
_pl-1—(e-1) 1 W — d
h 2ﬂ/exp{lt( f x)} o0 t

(é’ 1
o e2—(e-1) L (Wi (5)
=h"""i 2ﬂ‘/exp{ zs( A )} o0 (=sTh) ds

= h"'Ky.e-1.n(Wj - x), by (C.1).
Similarly, E{(W;,b —x)q‘]Kh(W;’b -x)|W;} = hq‘lKU,q_l,h(Wj —x). Hence, (E.8) reduces
to, by (D.4),
R 2EAKy o1 wn (Wi = X) Ky g-1.0(W; = %)X} €1(X))

eXP(Zh‘ﬁ/Y))

_ {+q-2
_fl(XJ')h X Op ( h1-282

Finally, we have the expectation of (E.7) given X and assuming &;(X) = O, (1),
)

E { (n_zGZQaZQbi)€ )

= hT 2 et () + R (g1 pe + pgite—1) T (0T (X)+
h(]+f 2 2 ’
— [Ham 1m0 () + gerptem (0T () + 2pagme 7] ()

+0-3 exp(2hF |y)
0, (hq ) +0, (7,1}13_(1_[_%2 .
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Putting these entries in the matrix, we have
B (1G] QuEQ,G)| X)

= H(le(x)cocg + hti (x)7](x) (coc] +cicq)
2 ) i (E.10)
o [Tl (X)Tl( ) (x) (cocy +e2¢q) +2{7](x)} ClclT]

exp(2h‘5/7)))

+0,(1/h)+ 0, ( YRS

where ¢o = (o, 1, - 1p) s €1 = (M1, 2y - pe1) s €2 = (M2, M3, - - s fHpe1) |
Using (E.6), (E.10), and that fact that elTH‘l = e/, we have

E[§) ,(x)&] ,(x)|X]
hm (x)
fx(x)

71 (x)(coc| +cicg )}

=m3(x) +e] S [ {—ml () £ (x) (coco S7IS+818  eoe] ) +

|71 () (coe] +eaef) +

1
2fx(x) (fX( )

2{7’1’(x)}201c1T] 2]’:“(();) x)1(x)(coc| +cicq) (S_lSl +S1S_l)+

2
m ){fx( )} S1S7'eoe) SIS - ml(X)f)(()(x) (C()COS So+

fx(x)
-B

£ mi(x)+e! ST'C(h,m,p)S ey,

where we use C(h,m1, p) to denote the expression between elTS_1 and S~ ley, with its
dependence on 4, p, and the function m (-) highlighted. Using this result in (E.4) yields, if p
is odd,

Var{g,cg(x)|X}

1 pp! (E.11)
= (1 - E) elTS_1 {C(h,p,ml)S_lel - 2m1(x)m§p+1)(x) } ;

WCP s
and, if p is even,
Var {g1,ce(x)| X }
- (1 - %) el S [C(h,p,ml)S_lel - 2m1(x){m§1’+2) (x)+
fox)| mP
fﬂw}Gﬁiﬂ%}

Results for Var{g> cg(x)|X} are given by the same expressions but with m(x) and m}(x)
replacing m (x) and m/ (x), respectively. Because U is assumed to be normal when formulating
81.ce(x) and g5.cg(x), we have 8 = 2, B, = 0 (because By = 0), and y = 2/02 in these
asymptotic variance results.

(p+2)m'P* (x)
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In the special case considered in the main article with p = 1, (E.11) reduces to

Var{g ce(x)|X}

2
) (1 - %) hf’::(lg) [(ﬂz + pa) p2) ) (0)my (x) = 2 fr (x)m' (x)x

{1 Jx(¥)m (x) 2} eXp(2h’B/7))

+ e —
K om) (x) nh1 =262

+0,,(h4)+0,,(

Similarly,

Var{g> ce(x)|X}
_ (1 _ l) h%m> (x)
- fx(x)

3 |2+ pa 1) £ (oo () = 2 () ()%

Jx(x)m2(x) exp(oph™?)
{1 + 'uz—fx(x)m’z(x) - ,uz} B — )

+0p(h4)+0p(

E.3. Covariance of g1,ce(x) and g2,ce(x)

Using similar tactics adopted in the previous two subsections, one can derive expectations
involved in the covariance of g cg(x) and g ce(x). In particular,

Cov { §1.ce(x), g2.cE(x)| X}
=E{81.ce(®)&2.ce(x)| X} —E{g1.ce(®)| X} E{82.ce(x)| X}

1 1

= 2B {21, (08, 0| X} + ( —E) {81,083, 0| X -

E{g1(x)| X} E{&2(x)| X}, where a # b,

- SR (BWRI XL+ (1= 3) 2,008, 0] X} -
E (210 XV E{£20)| X). (E.12)

The term in (E.12) as the products of two expectations can be elaborated using (E.1). The first
expectation in (E.12) only concerns estimators in the absence of measurement error and can be
derived using a similar strategy employed to derive (E.5) without involving error-contaminated
covariates, which gives

E{21(x)&:(x)| X}

T -1
fz()

//12
S1S_ICQCg) +my(x)Ty(X)e1eq + Tl,(x)mZ(x)coclT} 2

(hfx<x> fmi (ma () f.(6) (coeg 57181+

=my(x)ma(x) + ——

71 ()73 ()%

cacq +71 )(x)‘rz(x)coc2 +27](x)T5(x)ere] —2fx(x) {ml(x)ré(x)x
(SlS_ cicy +eieyS” Sl) + 77 (x)m2 (x) (SlS coc| +coc(S” Sl)}
2my ()ma(x) { fx ()} 187 eoed SIS — my (x)ma(x) fx (x) £ (x)x
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(CQC(—)FS_ISZ + SQS_ICOC(—)I—)

+o(h*) +0, (%) )s—le1
£ my(x)mo(x) +e—1rS_1 {@(h,p) +0, (%)} S‘lel.

The second expectation in (E.12) is also similar to (E.5) and involves error-contaminated co-
variates in W, and W}, and thus has the same dominating terms as those in E { g1 (x)g2(x)| X}
above but with the last term being O, (exp(2h™2 [y)/(nh'=?2)) in place of O p(1/h). Putting
the four expectations in (E.12) together reveals that, if p is odd,

Cov { g1,ce(x), §2,CE(X)| X}

=e/S! [ {@(h,p) +0, (i) +0, (w)} S~ 'e;—

= T (E.13)
{m(p+1)(x)m (x)+m (X)m(pﬂ)(x)} h Cpls
| 2 1)1 (p+DI7]
and, if p is even,
Cov { &1,ce(x), &2,ce(x)| X}
-B
_ e-lrS—l({@(h, p) +Op (Bih) + OP (e)q;l(hzlh——wz/y))} S—lel_
’ E.14
mi(x) {mépﬂ) X)) +(p+ Z)mépﬂ)(x) ;};3 } " | |

/ 2
(p+2) ) (p+1) fx(x) hPt -

my(x) {ml (x) +(p+2)m, (X)fX(X) (p+2)!cp .
Let B/n tend to a positive constant asn — oo so that the term O ,(1/(Bh)) in (E.13) and (E.14)
is included in O, (exp(2h 77 /) /(nh'=?P2)). This also allows dropping the factor (1 — 1/B)

in the dominating terms in (E.11).
In the special case with p = 1, following algebraic simplifications, we have

Cov {§1,CE(X), §2,CE(X)| X}

2
) fzh(x) (ml (x)m> (x) [(,uz + pa/ 12) fx () f2) (x) = 2u2 {f;((x)}z]
X

+ 12 fx (x) {fx(x) = fx () } {m1 (x)m) (x) + m] (x)ma (x) } )

exp(oﬁh‘z)
nh '

+0(h"+0, (ﬁ) +0p(

E.4. Asymptotic bias and variance of micg(x)

Using the biases of §; cg(x) and g, ce(x) in Appendix E.1, their variances in Appendix E.2,
and the covariance of them in Appendix E.3 in (D.27), we have, if p is odd,

Bias {riicg(x)| X}

Tl P! (p+1) (p+1)
=e/S ((p D) {m%(x) +m§(x)} (mz(x)m1 (x) = my(x)my"" 7 (x)+
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___
m%(x) + m%(x)
{m%(x) - m%(x)} {mgpﬂ)(x)mz(x) + ml(x)mépﬂ)(x)”) cp+op (hp+1) -
1

{m% (x) + m%(x)}

~ -B
{m30) =m0} {Etn 4 0 (SEELE s 1e )

|21 (ma ) fm oom (P () = ma (m$P D () |+

5 [m1(x)ma(x) {C(h, p,m1) = C(h, p,m2)} +

and, if p is even,

Bias {rficg (x)| X}

_ el hP*2 ( { (p+2) (p+1)
=e/S ((p+2)!{m%(x)+m§(x)} ma(x){m, (x)+(p+2)m,; (x)x
Jx(x)

fx(x)} —m(x) {m£P+2) ) + (p +2mP*Y (x)

2+ m%(x) - m%(x)

£(x) }
oI

m (x) {mf”*z) (x) + (p +2)m'P* (x)

f)’((X)} N

m%(x) + m%(x) Jx(x)

m(x) {mépﬂ) (x)+(p+ 2)m§p+l)(x)%}] )Ep +0, (hp+2) -

: my (x)ma(x) {C(h, p.my) = C(h, p.ma)} +

{m% (x) + m% (x)}2

- -
(e~} 2oy 0, (22T ).

In the special case with p =1,
Bias {riicg(x)| X}

_ h2 iy
2

{m(z) (x) + 2m’ (x) ma (xX)m; (x) + ma (x)m; (x) } +

m%(x) + m%(x)
2
Sx() {md(x) + md(x)}
— ma(x)m5 ()} + pa{ fx (x) = fx (¥) Hmi (x) = m3(x) Homy (x)m) (x)
exp(o2h=2)
nh

Using these bias results, along with the biases of §; cg(x) and g cg(x) in Appendix E.1,
their variances in Appendix E.2, and the covariance of them in Appendix E.3, in (D.31)
reveals Var{micg(x)|X}. In the special case with p =1,

|21 = ) fic om1 (xyma ) my (e (x)

+m'1(x)m2(x)}] +0,(h*) +0,( ). (E.15)

Var{ricg(x)| X}
my (x)ma(x) {my (x)m}(x) + m} (x)ma(x)}

{m%(x) + mg ()c)}2

=202 {22 = ) fr (1) fx (x) = o}
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exp (Uﬁh‘z))

+0,(hY+0, P’
n

(E.16)

E.5. Asymptotic normality of §1,cr and g ck

Our complex-error corrected estimator falls under a larger umbrella of Monte-Carlo corrected
score estimators. To this end, [31] proved than these Monte-Carlo corrected score estimators
are asymptotically identical to SIMEX estimators under the same model. Further, [38] showed
that the SIMEX estimator applied to the nonparametric regression model with normal errors,
and utilizing a local linear kernel, is asymptotically normally distributed. With this in mind, it
can be shown that our method is asymptotically equivalent to a Monte-Carlo corrected score,
specifically one that arises from the objective function

n 2
i=1

Thus the complex-error estimators, g1 cg and > cg, are asymptotically equivalent to the
SIMEX estimator, which is asymptotically normal.

Appendix F: Asymptotic properties of the one-step correction estimator riog (x)

We consider the p-th order local polynomial weight used in Aipg(x) in this appendix, for
p > 0. For this generalization, one needs to change “¢ = 0, 1, 2,3” in Condition O stated in
Section4 to “¢ =0,1,...,2p + 17; similarly, one needs to change “/ = 0, 1,2” in Condition
Sto“=0,1,...,2p".

F.1. The first two moments of g1,0s(x) and g, 0s(x)

Because the one-step correction estimator g, os(x) for g¢(x) = me(x) fx(x) is precisely the
estimator for, in notations used in Huang and Zhou [22], B(x) = E(Y|X = x) fx(x) with
a linear response Y, the bias and variance of g, os(x) are readily available in Huang and
Zhou [22]. In particular, recall that S = (Ur,4r))0<r,m<ps €p = (Upsls---s H2ps1) ', and
¢p = (Up+2, ..., M2p+2) T, by Equation (A.5) in [22], we have for £ = 1,2,

E {g¢,0s(x)| W}

hp+l . )
ge(x) + (Ne,p * D) (x) + (Mg, * D)(x)m +0,(hP*), if pisodd, (F.1)
- w2 o
ge(x) + (Ne,p * D) (x) + (Mg, ), * D)(X)m +0,(hP*?), if p is even,

where Ny, (w) = m3(w) P, £ (w)p b [r!, and, if p is odd,
Mqp(w) = ms(w) fP*D ) s +m P () v (w)eT S e, (F.2)
and, if p is even,

Mf,p(w)

F.3
= my ) £ )tz + {7 00) fr o0 + (0 +2m PV f ()] e 5712, (F3)
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with the Fourier transform of N, ,,(w) and M, ,(w) compactly supported on /;, and D(x) =
(2n)~! /I, e~ ¢y, (t)dt. Because the Fourier transform of Me,p(W), ¢, , (1), is compactly
supported on I;, the convolution of My ,(-) and D(-) is

(Mg, + D)(x) = / M ,(w)D(x —w)dw

1 .
=5 / Me,,(w) /1 e T 160 (1) didw

1 —itx 1 / it
=— [ e — | "M, ,(w)dwdt
b ep(w)

_ 1 —itx¢M€,P(t)
—ﬂ‘/l;e —¢U(l‘) dt.

In other words, (M , * D)(x) is the same integral transform of M, ,(-) appearing in Lemma
3.2 in the main article but expressed in the form of convolution, that is, (M, , * D)(x) =
Tu(M¢,p)(x) by adopting the integral transform 7y defined in Section 3.3 in the main article.
Similarly, (N¢,p * D)(x) = Tu(Ne,p) (x).

Define $* = (n(r1,72))o<r,,»<p- Then, according to Appendix B in [22], we have, for
t=1,2,

%2
. C rerlerant. 07O fw(x) 1
Var{gg,os(x)|W} —eIS S*S elnhl—"'zﬁ +op nhl—"’zﬁ , (F4)
if U is ordinary smooth, and Var {gws (x)| W} is bounded from above by
Co?(x x) exp(2hP 2hB
eTs1571e, S ( )J;W( ) exp( /v) 0 (exp( /y) ’ ES)
fx(x)nh!=25 nhl=2p

if U is super smooth, where 8, = Bol(Bo < 0.5), 0'1*2(x) = Var(sin®|W =x) = fT(x)—mTz(x)
and 0';2 (x) = Var(cos ©|W =x) = &} (x) — mzz (x).
Lastly, adopting the same strategy elaborated in Appendix B in [22], one can show that

¢ (x) fw (x) 1
nhHVZVB +0,, (nh1+2ﬁ) . (F6)

Cov { 81,05 (x), §2.0s(x)| W} =€/ S7'8*S e,

if U is ordinary smooth, and Cov {gl,os (x), &2.0s (x)| W} is bounded from above by

O pQILY (502
f2(x)nh'=2p> P\ nnt-28 )7

if U is super smooth, where ¢*(x) = Cov(sin ®, cos ®|W = x) = " (x) — m](x)m}(x).

e/ S!S ey (E.7)

F.2. Asymptotic bias and variance of rips(x)
By (D.27), with g¢(x) = me(x) fx(x), for £ = 1,2,
Bias {Iﬂos (x)l W}

= P a0 B {g1os@IW - g1 (@B {22050 W] -
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1
(22(0) + g2 ()}

{g% (x) - g%(x)} Cov {gl,os (x), &2.0s (x)| W}) + lower-order terms,

(g1(x)g2(x) [Var { 81,05 (x)| W} — Var { 2,05 (x)| W}] +

where the lower-order terms refer to the non-dominating terms of E{g; os(x) — g¢(x)|W}
indicated in (F.1). By (F.1), (F.4), and (F.6), if U is ordinary smooth,
Bias {Iﬁos (x)lW}
ST
= ma(x) Ty (N1, p) (x) = mi (x) Ty (N2, p) (x)
fx (o) {m} () +m3(x)} ! '

hp+l+I(p is even)
+{ma ()T (M1 ) (x) = m1 ()Tt (M2, ) (x) }

(p+1+1I(piseven))!
el S7'S*S e fw (x)

X
P18 £2(x) {m2(x) + m3(x) )

Pm@ﬁh@”ﬁ%ﬂ—U¥@H+W@Hﬁﬂﬂ—mﬁﬂﬂ+%%E%§y

+0, (hp+l+1(p iseven)) +

and, if U is super smooth, using (F.1), (F.5), and (F.7), we have

Bias {rfios (x)|W}
1
) {mA () +mi(x)}

ma(X)Tu (N1,p) (x) = m1(x) Ty (N2, p) (x)

hp+]+1(p is even)

im0 (M) () = mi ()T (M, p) 0} o

-B
+1+I(pi ) exp(2h™" /y)
+ op (hP p 1s even ) + OP ( R

In the special case we focus on in our study with a local linear weight, i.e., with p = 1, because
Nei(w) =my(w) fy,(w)urh =0, for £ = 1,2, we have, if U is ordinary smooth,

Bias {105 (x)| W}

hzﬂz
= 2fX()C) {m%(x) + m%(x)} {mZ(x)(]Z](Ml,l)(x) - ml(x)%(MZ,l)(X)} + 017 (hZ)

L fw@n(0,0) [m (ma(x) {2 (x) = 320} + ¢ () {mi () - i)}
nh'+28 £2(x) {m?(x) + m%(X)}2

1
+0p (—nh”zﬁ) 5

and, if U is super smooth,

. A _ h2ﬂ2
Bias {rfios (x)| W} = 2 () + 2 )] {m2(x) Ty (My,1) (x)

-B
— ()T (Map)(x)} + 0, (hz) +0, (%) . (F8)
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Since the dominating terms in these asymptotic bias do not depend on W, they can be

interpreted as the unconditional asymptotic dominating bias.

Using (F.1), (F.4), and (F.6) in (D.31) gives that, for ordinary smooth U,

E { s ()| W}

2m(x)
fx(x) {m3(x) + m3(x)}
+{ma () Tu (M1 p) (x) = m1 (x) Ty (M2, ) (x) } (o + 1+ 1(p is oven))]
2¢]S7'S* S ey fw (x)

nh8 200 {3 () + m3 ()}

(m(X)ml(X)mz(X) {0320 o ()} + % {mi(x)o3> () +m3(x)ori? (x) }

= mz(x) +

ma(x)Tu (N1,p) (x) = m1(x) Ty (N2, p) (x)

hp+l+l(p is even) ]

+0, (hp+1+l(p iseven)) +

+¢" (%) [m(x) {m?(x) — m%(x)} - ml(x)mg(x)] ) +0p (nh]%zﬁ) ;

and, for super smooth U,

E {més(x)| W}

=m? (x) + 2m(x)

fx(x) {m3(x) + m3(x)}
+{ma () o (M1,p) (x) = m1 (x) T (M2, p) () }

-B
+1+I(pi ) exp(2h7F [y)
+0, (hl’ p is even ) +0, ( e

[m(x)'ru(zvl,p)(x) ()T (Nap) ()

hp+1+I(p is even)

(p+1+1(piseven))!

It follows that, for ordinary smooth U,

Var {rios (x)|W}
_ el S7'S* S ey fv(x)
nh1+2ﬁf§(x) {m%(x) + m%(x)}2

+2¢"(x) [2m(x) {m](x) = m5(x)} = m1 (X)ma(x)] + m7(x) 057 (x)

2 %2 _ 0_*2 N
fx(x) {m?(x) + m3(x)} [ml(x)m2(x) {o1?(x) - 052 (0)}

+¢* () {m3(x) = m (O} | {m2 () To (N1,p) (x) = m1 () Tor (N2, ) () }

(4m(x)m1(x)m2(x) (022(5) - 2(0)

*

+ m%(x)O'] 2(x) -

~ 1
p+1+I(p is even)
+o0p (h )+0p (—nh”zﬂ)’
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which reduces to, when p =1,
Var {rios (x)| W}

) fw()n(0,0)
A F2(0) (2 () + ()2

Qﬁumym+mQMﬁu>

2my (x)ma (X (x) = {my ()m (x) = m’ (x)ma ()} (E9)

+4m(x) [ml ()m2(x) {052 (x) = 07 (0) } + 6" () {m7 (x)

1
J+op (o)

—m3(x)}

For super smooth U,
Var {rios (x)|W}
B (exp(Zh_B/y) ma(x)Ty (N1, p) (x) = mi(X)T (N2, p) (x)
TP\ ant ) 2 2 20012 %
Sz {mi(x) +m3(x) }
[mz(X)%(NLp)(X) —mi(x)T (N2,p)(x) + 2{m2(x)Tu (M, ) (x)

hp+]+1(p is even)

—mi ()T (My,p)(x)}

p+1+I(p is even)
(p+1+1(piseven))! op (h )’

which reduces to, when p =1,

-B
Var {ios (x)| W} = 0, (%).

Appendix G: Asymptotic normality of 7. (x)

< . . . C . . P
Let “—” denote “converges in law to,” i.e., “converges in distribution to,” and let “—”
denote “converges in probability to.” A lemma is established next in preparation for proving
the asymptotic normality of our proposed estimators for m (x).
Lemma G.1. Consider three sequences of random variables indexed by n, A,, B, and

<
Cn, =atan2[A,, B,). If d,(A, — s, By —ug)" — N(0,,X) asn — oo, where u% +,uzB # 0,
0, is a 2 X 1 vector of zeros, X is a 2 X 2 variance-covariance matrix, and d, is a positive

non-random sequence that diverges to co as n — oo, then d,(C,, — atan2[ua, ugl) i
N(O, (A Z[2,2] + pBE[1,1] = 2uappX(1,2])/ (12 + p%)?) as n — eo.

Proof. Because d, (A, — ua) =, N(0,X[1,1]), where d, — o0 as n — oo, by Theorem
2.3.4 1n [25], A, i Ua. Similarly, B, i up. By the continuous mapping theorem [25,
Theorem 2.1.4], (A, — ,uA)" & Oand (B, — ,uB)" ﬁ 0,for{ e N, as n — oo.

Using a Taylor expansion of C,, around (A, B,) = (ua, ug), we have

d,(Cy —atan2[ua, pgl) G.1)

1
= ———5 {updn(An — pa) — padn(Bn — uB)} (G.2)
Mgt Hp
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. taps {dn(An = pa)?* = dn(By — up)*} + (u% — 1) dn(An = a) (B — pip) (G.3)

+ Op{dn(An - /~1A)3} + Op{dn(Bn - ,113)3}.

By Slutsky’s theorem, (G.2), which is equal to (ug, —pta)dn(An — pa, By — 1p) "/ (U5 + 1%),
converges in distribution to N (0, (ug, —ua)X(ug, —/JA)T/(/J2A+/1%)2). In (G.3),since d, (A, —

. < P
ﬂA)2 = dn(An — pa) X (An — pa), with d, (A, — pa) — N(0,2[1,1]) and A, — pua — 0,
we have d, (A, — ua)? 2, 0 by Slutsky’s theorem. Similarly, d,,(B, — ug)> 2, 0 and

dn(An — ua)(By — up) ﬁ 0. Hence, (G.3) and the remainder terms following (G.3) all
converge in probability to zero. Putting these together and using Slutsky’s theorem again, we
establish the limiting distribution of d,,(C,, — atan2[p, ug]). O

Now return to our context of estimating the circular mean function m(x). By letting
A, = g1,.(x) and B, = $».(x) in Lemma G.1, we have C,, = mi.(x), where “” refers
to one of the acronyms (“DK,” “CE,” and “OS”) relating to our proposed estimators for
m(x). According to Lemma G. 1, the asymptotic normality of our proposed estimators follows
directly from the established asymptotic normality of g;_.(x) and g,..(x). For example, by the
asymptotic normality of the one-step correction estimators established in [22] for g os(x) and
82.0s (x), we can immediately conclude that d,, {#igs (x) —atan2 [m (x) fx (x), ma(x) fx(x)]} =
dy{mos(x) — m(x)} converges in distribution to a mean-zero normal distribution as n — oo,
where d,, = \/nh'/**8 if U is ordinary smooth of order 3, and d,, = \nh' P2 exp(-h~F /y) if
U is super smooth of order 8. Similar conclusions for ipk (x) and /icg(x) can be established
by the asymptotic normality of g, pk(x) according to [8] and that of g, cg(x) shown in
Section E.5.

Appendix H: Mean integrated square error and optimal bandwidths

A commonly employed strategy for choosing the bandwidth in local polynomial estimation is
through the minimization of the mean integrated square error (MISE),

MISE = / ([Bias{n%.(x)|X}]2+Var{nA1.(x)|X})w(x) dx, (H.1)
R

following the definition in Fan and Gijbels [Section 2.1, 15], where w(x) > 0 is a weight
function that we set to one in our study, and 7. (x) generically refers to one of our proposed
estimator. With the asymptotic bias and variance of our proposed estimators in the presence
of ordinary smooth measurement error derived, the asymptotic MISE (AMISE) of #ipg (x)
and ripg(x) in this case can be used to find an asymptotically optimal bandwidth. In the
presence of super smooth measurement error, we only have the order for some upper bound
of the asymptotic variance of riipk (x) and r2os (x), which is less useful for optimal bandwidth
derivation based on AMISE. Even though the dominating bias and dominating variance of
rice (x) presented in Theorems 4.1 and 4.2 include elaborated terms of order O (h?), they also
implicitly depend on terms of order O, (exp(c-2h~2)/(nh)) that prohibit one from recovering
a useful AMISE for this estimator. In what follows, we present the AMISEs of riipg (x) and
s (x), and the corresponding optimal bandwidths when local linear weights are used while
assuming ordinary smooth measurement errors.
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By Theorem 4.1, the dominating bias of Aipk (x) and rigs(x) are of the same form given
by DB(x)h? + DB*(x)/(nh'*?#), where DB(x) is the dominating terms in rfipk (x) or riios (x)
that multiply /2, which depends on functionals of m(x) and u», and DB*(x) is the dominating
terms in these estimators that multiply 1/(nh'*?#), which depends on naive counterparts
of functionals of m(x) besides these functionals. By Theorem 4.2, the dominating variance
of ripk (x) and riips(x) also share a common form given by DV (x)/(nh'*?8), with DV (x)
involving many of the aforementioned functionals. These dominating terms, DB (x), DB*(x),
and DV (x), are free of n and h.

Using these generic forms of the dominating bias and dominating variance of an estimator
in (H.1), we have

dx.

DB*(x) }2 DV (x)

- 2
AMISE—/R {DB(x)h + BYRYGT: BYRYGT:

Using the dominating terms in the above AMISE, we find an asymptotic optimal % given by

(1+28) [LDV(x)dx |V/G+28
4n [ {DB(x)}’ dx] ‘

hOptimal = (H.2)

Using this asymptotic optimal bandwidth in the bias results in Theorems 4.1 and 4.2 gives the
bias of riipk (x) and 7iog (x) both in the order of O (n~%/5+28)), whereas the variance of them
are in the order of O, (n=%/+28)y when U is ordinary smooth.

Appendix I: Using naive bandwidths in a non-naive estimator

Focusing on the deconvoluting kernel estimator, riipk (x), we conducted a simulation study to
compare the naive 5-fold cross-validation bandwidth selection, which ignores measurement
errors in the naive loss function, and our proposed CV-SIMEX, with the optimal bandwidth
hopte defined in Section 6.1 serving as a reference. In this experiment, we have m(x) =
2atan(1/x) as the regression function, with X ~ N(0,4) and U ~ N(0, 1), yielding 1 = 0.8.
Figure I.1 presents the empirical risk of ipk (x) when different bandwidths are used based on
100 Monte Carlo replicates at each considered sample size. The empirical risk is computed
based on fitted values of m(x) at a sequence of x ranging from —3 to 3 at increments of 0.1.
The improvement in the estimation when using a bandwidth chosen by CV-SIMEX is evident
compared to when one implements a naive CV. As n increases, CV-SIMEX becomes closer
in performance to the optimal choice of bandwidth.
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Comparison of Naive and Non-Naive Bandwidth Selections
n=50 n=100 n=250

SIMEX }_D—¢ o SIMEX }_[]—‘ o SIMEX %* o
}-m—F * Optimal H:[{*** Optimal % *

T T T T T T T T T T T T T T T
0.00 0.05 0.10 0.15 0.00 0.02 0.04 0.06 0.08 0.00 0.01 0.02 0.03 0.04 0.05

Risk

Method

Optimal

Fig L.1. Boxplots of empirical risk across 100 Monte Carlo replicates at each level of n € {50, 100,250} for
mpg(x) when three bandwidth selection methods are used: a naive cross-validation (CV), the proposed CV-
SIMEX (SIMEX), and the optimal bandwidth (Optimal).
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