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A comprehensive toolkit is developed for regression analysis of directional data based on a 
flexible class of angular Gaussian distributions. Informative testing procedures to assess rotational 
symmetry around the mean direction, and the dependence of model parameters on covariates are 
proposed. Bootstrap-based algorithms are provided to assess the significance of the proposed test 
statistics. Moreover, a prediction region that achieves the smallest volume in a class of ellipsoidal 
prediction regions of the same coverage probability is constructed. The efficacy of these inference 
procedures is demonstrated in simulation experiments. Finally, this new toolkit is used to analyze 
directional data originating from a hydrology study and a bioinformatics application.

1. Introduction

Directional data naturally arise in many scientific disciplines, such as flight directions of migrating birds, the directions of wind 
and waves in the ocean, and geomagnetic field directions. These examples of directional data as the original form of observed data 
are typically of low dimensions. High dimensional directional data typically result from preprocessing high dimensional features 
collected in genetic study (Banerjee et al., 2005), computer vision (Ryali et al., 2013), and text analysis (Ennajari et al., 2021), among 
many other fields of study. In these instances, the raw data vectors in some 𝑑-dimensional Euclidean space ℝ𝑑 are often normalized 
to lie on a hypersphere 𝕊𝑑−1 = {𝐲 ∈ℝ𝑑 ∶ ‖𝐲‖ = 1}, where ‖𝐲‖ denotes the Euclidean norm of 𝐲.

Regression analysis of directional data is relatively underdeveloped compared to regression analysis of response data in the 
linear (Euclidean) space. One of the most notable early developments of regression models for directional data is given by Johnson 
and Wehrly (1978), who formulated parametric models for the joint distribution of a circular response (i.e., 𝑑 = 2) and a linear 
covariate. Later, Presnell et al. (1998) introduced the spherically projected multivariate linear model based on the projected Gaussian 
distribution for the circular response with a mean direction depending on covariates linearly. Mimicking the least squares method in 
regression analysis for a linear response, Lund (1999) proposed a least circular-distance method for regression analysis of a circular 
response. Scealy and Wood (2019) proposed a transformation of the von Mises-Fisher distribution to study paleomagnetic data, 
following which they built regression models using the proposed directional distribution. Paine et al. (2018) proposed the elliptically 
symmetric angular Gaussian distribution (ESAG), focusing on directional data on 𝕊2 . In a follow-up work (Paine et al., 2020), the 
authors formulated regression models based on ESAG of low dimensions.

The formulation of ESAG results from imposing constraints on the mean 𝝁 and variance-covariance matrix 𝐕 of a multivariate 
Gaussian distribution 𝑑 (𝝁,𝐕) to resolve the identifiability issue. Such an identifiability issue emerges inevitably when normalizing a 
multivariate Gaussian vector to yield an angular Gaussian random variable, since two Gaussian vectors, 𝐖 and 𝑐𝐖, are normalized to 
the same vector when 𝑐 > 0, yet they follow different Gaussian distributions whenever 𝑐 ≠ 1. For most angular Gaussian distributions, 
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constraints are imposed on 𝐕 that often translate to stringent assumptions on the resultant directional distribution. The constraints on 
𝝁 and 𝐕 that lead to ESAG give rise to a probability density function (pdf) that does not involve a complicated normalization constant, 
and the resultant distribution remains flexible in that it is not limited to isotropic distributions. These are virtues of ESAG that make 
it stand out among many existing named directional distributions. Section 2 provides a brief review of ESAG and its parameterization 
that facilitates regression analysis of directional data. We then address three inference problems that are theoretically and practically 
important in the context of directional distributions and regression analysis. More specifically, Section 3 presents a novel diagnostic 
test for isotropy around the mean. This is equivalent to testing if a distribution supported on a hypersphere is rotationally symmetric 
around its mean direction. Isotropy is similar to symmetry for a distribution supported on a linear space, and thus testing isotropy is 
of interest from the perspective of distribution theory like testing the symmetry of a distribution. In Section 4, we propose methods 
for testing covariate dependence of ESAG model parameters. Section 5 reports simulation experiments for studying the operating 
characteristics of the proposed testing procedures. Section 6 provides prediction regions of the directional response. We apply these 
new inference procedures to two real-life applications in Section 7. Section 8 recapitulates the contributions of our study and points 
out some limitations of the proposed regression framework that motivate follow-up research.

2. The ESAG regression model and likelihood-based inference

2.1. The model and data

A 𝑑-dimensional random variable 𝐘 supported on 𝕊𝑑−1 follows an angular Gaussian distribution, AG(𝝁, 𝐕), if 𝐘=𝐖∕‖𝐖‖ with 
𝐖 ∼𝑑 (𝝁, 𝐕). To guarantee the identifiability of the distribution AG(𝝁, 𝐕), constraints on (𝝁,𝐕) are needed to avoid overparam-

eterization. For example, Presnell et al. (1998) assumed 𝐕 = 𝐈𝑑 that leads to an isotropic directional distribution, where 𝐈𝑑 is the 
𝑑-dimensional identity matrix. Less stringent assumptions are also considered, for example, in Wang and Gelfand (2013) where a 
sub-block of 𝐕 is assumed known. We adopt the ESAG distribution (Paine et al., 2018) resulting from imposing the following con-

straints that we refer to as ESAG constraints henceforth, 𝐕𝝁 = 𝝁 and det(𝐕) = 1, where det(𝐕) dentoes the determinant of 𝐕. These 
constraints leave more room for flexible modeling of 𝐘 than most previously considered constraints at the price of creating a more 
complex constrained parameter space. The pdf of the ESAG distribution is

𝑓 (𝐘|𝝁,𝐕) = (2𝜋)−(𝑑−1)∕2

(𝐘T𝐕−1𝐘)𝑑∕2
exp

[
1
2

{
(𝐘T𝝁)2

𝐘T𝐕−1𝐘
− 𝝁T𝝁

}]
𝑀𝑑−1

{
𝐘T𝝁√
𝐘T𝐕−1𝐘

}
, (1)

where 𝑀𝑑−1(𝑡) = (2𝜋)−1∕2 ∫ ∞
0 𝑥𝑑−1 exp{−(𝑥− 𝑡)2∕2}𝑑𝑥.

We recently reparameterized ESAG by introducing constraint-free parameters 𝜸 ∈ ℝ(𝑑−2)(𝑑+1)∕2 so that 𝐕 that satisfies ESAG 
constraints can be determined by (𝝁,𝜸) via an eigendecomposition (Yu and Huang, 2024). This new parameterization is suitable for 
directional data on 𝕊𝑑−1 for an arbitrary 𝑑 ≥ 3, the range of dimensions we focus on in this study. Appendix A the Supplementary 
Material details this parameterization when 𝑑 = 4. Henceforth, we use 𝐘∼ ESAG(𝝁, 𝜸) to refer to 𝐘 ∼ AG(𝝁, 𝐕) with ESAG constraints 
imposed on (𝝁,𝐕).

The benefits of modeling ESAG via constraint-free parameters are at least twofold. First, maximum likelihood estimation of model 
parameters becomes more straightforward than directly estimating (𝝁,𝐕) subject to the nonlinear ESAG constraints, such as the 
constraint of det(𝐕) = 1. Second, a covariate-dependent ESAG can be easily formulated without introducing link functions to relate 
covariates to constrained model parameters as done in earlier regression models for directional responses (Lund, 1999; Scealy and 
Welsh, 2011, 2017). In this study, we consider an ESAG regression model specified by 𝐘|𝐗 ∼ ESAG(𝝁 = 𝜶0 + 𝐀1𝐗, 𝜸 = 𝜷0 + 𝐁1𝐗), 
where 𝐗 = (𝑋1, ...,𝑋𝑞)⊤ is the 𝑞-dimensional covariate vector, 𝜶0 is the intercept for modeling 𝝁, 𝐀1 = [𝜶1 ∣ … ∣ 𝜶𝑞] is the 𝑑 × 𝑞
matrix of regression coefficients representing covariates effects on 𝝁, 𝜷0 is the intercept parameter in 𝜸, and 𝐁1 = [𝜷1 ∣ … ∣ 𝜷𝑞] is 
the (𝑑 − 2)(𝑑 + 1)∕2 × 𝑞 matrix of covariates effects on 𝜸, in which 𝜶𝑘 ∈ℝ𝑑 and 𝜷𝑘 ∈ℝ(𝑑−2)(𝑑+1)∕2, for 𝑘 = 0,1, ..., 𝑞. This regression 
model generalizes the one in Paine et al. (2020, Section 3.2) that focuses on the case with 𝑑 = 3.

Suppose the observed data include directional responses {𝐘1,… ,𝐘𝑛} from 𝑛 independent experimental units along with their 
covariates data {𝐗1,… ,𝐗𝑛}. Similar to the treatment on covariates data in Scealy and Wood (2019), we standardize covariates 
data via (𝑋𝑖,𝑘 −𝑋(1),𝑘)∕(𝑋(𝑛),𝑘 −𝑋(1),𝑘) + 1, for 𝑖 = 1,… , 𝑛, where 𝑋(1),𝑘 and 𝑋(𝑛),𝑘 are the minimum and maximum order statistics 
corresponding to covariate 𝑋𝑘, for 𝑘 = 1,… , 𝑞. The resultant standardized covariates data are more comparable in scale with the 
response of a unit Euclidean norm, which helps to stabilize the numerical implementation of maximum likelihood estimation without 
distorting the underlying association between the response and covariates. With a slight abuse of notation, we use {𝐗𝑖}𝑛𝑖=1 to refer to 
the standardized covariates data. These standardized covariates data fall in the 𝑞-dimensional unit cube [1,2]𝑞 . If a new experimental 
unit possesses a covariate value falling outside of the original data range, then this subject’s standardized covariates data fall outside 
of the unit cube, which can be problematic when predicting the subject’s outcome. To alleviate this concern in prediction, one may 
consider alternative standardization, such as the more traditional approach of centering and scaling the covariates data to achieve 
zero-mean and unit-variance. On the other hand, when predicting a directional response based on linear covariates, extrapolation 
can be even more unreliable than when the response is also linear. Hence, extrapolation using our regression models is especially 
discouraged, without which the current data standardization poses no complication in prediction.
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2.2. Maximum likelihood estimation

To parameterize 𝐕 in AG(𝝁, 𝐕) that satisfies ESAG constraints, we introduced longitude and latitude angle parameters to specify 
eigenvectors of 𝐕 after 𝝁 is specified (as explained in detail in Appendix A in the Supplementary Material). We showed that 𝜸 or 
a certain subvector of it being zero amounts to some latitude angles falling on the boundary of 0 or 𝜋 and some other latitude and 
longitude angles being non-identifiable (see Appendix B in Yu and Huang, 2024, for details). This suggests violations of regularity 
conditions in the context of drawing likelihood-based inference for model parameters even though the parameter space of ESAG(𝝁,𝜸)
is the entire real space ℝ(𝑑−1)(𝑑+2)∕2. The irregularity carries over to the ESAG regression model. As a result, maximum likelihood 
estimators (MLE) of some regression coefficients may converge in distribution to Gaussian at a slower rate than 

√
𝑛, or may not be 

asymptotically Gaussian, depending on where the true model parameters fall in the parameter space. Regardless, numerical imple-

mentation of maximum likelihood estimation is straightforward under the current parameterization of ESAG, as demonstrated in our 
earlier work (and thus omitted here), and a simple resample-based bootstrap procedure can be used to quantify the uncertainty of 
the MLEs.

When it comes to hypothesis testing, the conventional likelihood ratio test is inadequate when regularity conditions are not 
satisfied because the asymptotic null distribution of a likelihood ratio (LR) statistic is no longer a 𝜒2 (Chernoff, 1954). Most existing 
strategies for addressing this complication with LR aim at estimating the exact distribution of LR or its limiting distribution under the 
null using some simulation-based methods, such as the method proposed by Drton (2009) and the approach developed in Mitchell et 
al. (2019). Instead of using LR, we propose different test statistics that exploit unique properties of the ESAG distribution. These are 
elaborated in the next two sections, one focusing on testing for isotropy, and the other considering tests for covariate dependence of 
𝝁 and 𝜸.

3. Hypothesis testing for isotropy

If 𝐘 follows an isotropic distribution around its mean, then 𝐑𝐘 and 𝐘 are identically distributed for any given 𝑑 × 𝑑 rotation 
matrix 𝐑 such that 𝐑𝝁 = 𝝁. By the parameterization of 𝐕 via 𝜸 after 𝝁 is specified, ESAG(𝝁,𝜸) is isotropic when 𝜸 = 𝟎, which gives 
𝐕 = 𝐈𝑑 . Hence, testing isotropy is relevant to inferring correlations of the components in 𝐖, i.e., the pre-normalization version of 
𝐘, and also relates to model selection between the more parsimonious isotropic ESAG and a generic ESAG distribution. Outside of 
the ESAG family, isotropy can be manifested in different forms other than having 𝐕 = 𝐈𝑑 . In what follows, we propose a strategy for 
testing the null hypothesis 𝐻 (𝐕)

0 ∶𝐘 ∼ ESAG(𝝁,𝜸 = 𝟎), where potential dependence of 𝝁 on covariates 𝐗 is suppressed for notational 
simplicity. The proposed strategy is motivated by properties of the MLE for the concentration parameter in the presence of model 
misspecification.

3.1. Concentration estimation

For the distribution ESAG(𝝁,𝜸), ‖𝝁‖ quantifies the overall concentration of the distribution, with 𝐕 (or 𝜸) controlling the variation 
in different subspaces on the unit sphere. A data cloud generated from an isotropic ESAG supported on 𝕊𝑑−1 visually tends to be 
ball-shaped, whereas a data cloud from an anisotropic ESAG distribution takes the shape of an elliptical disc. Intuitively, when fitting 
an isotropic ESAG model to data from an anisotropic ESAG, one essentially tries to find a ball that can best resemble (in some sense) 
the elliptical disc. To accomplish this, the radius of the ball tends to be some weighted average of the axes of the elliptical disc, leading 
to a lower concentration of the fitted isotropic ESAG compared to the concentration of the true anisotropic distribution. In the context 
of model comparison, two ESAG distributions, ESAG(𝝁1,𝜸1 = 𝟎) and ESAG(𝝁2,𝜸2 ≠ 𝟎), are more alike when ‖𝝁1‖ < ‖𝝁2‖ than when ‖𝝁1‖ ≥ ‖𝝁2‖. We demonstrate this phenomenon next by exploiting the properties of MLEs in the presence of model misspecification.

Let 𝑃 denote a generic ESAG distribution with pdf 𝑃 (𝐘;𝝁𝑎,𝜸𝑎), which specifies the true data-generating mechanism with true 
model parameters 𝝁𝑎 and 𝜸𝑎. Let 𝑄 denote an isotropic ESAG distribution with pdf 𝑄(𝐘;𝝁). Using the density function in (1), we 
have 𝑃 (𝐘;𝝁𝑎,𝜸𝑎) = 𝑓 (𝐘|𝝁𝑎,𝐕(𝜸𝑎)) and 𝑄(𝐘;𝝁) = 𝑓 (𝐘|𝝁, 𝐈𝑑 ), where we use 𝐕(𝜸𝑎) to highlight the dependence of 𝐕 on 𝜸𝑎 after 𝝁𝑎 is 
specified in the true pdf. The Kullback–Leibler divergence of 𝑄 from 𝑃 is defined as 𝐷KL(𝑃‖𝑄;𝝁) =𝐸𝑃 [log{𝑃 (𝐘;𝝁𝑎,𝜸𝑎)∕𝑄(𝐘;𝝁)}], 
where the subscript “𝑃 ” signifies that the expectation is with respect to the distribution 𝑃 . Under regularity conditions (White, 
1982), if one fits the model 𝑄 to data from 𝑃 , then the MLE for 𝝁 converges in probability to 𝝁0 = argmin𝝁𝐷KL(𝑃‖𝑄;𝝁) =
argmax𝝁𝐸𝑃 {log𝑄(𝐘;𝝁)}. We show next that ‖𝝁0‖ ≤ ‖𝝁𝑎‖, or, equivalently, in the presence of model misspecification (i.e., 𝑃 ≠𝑄), 
𝐸𝑃 {log𝑄(𝐘;𝝁)} is maximized when the ratio of concentrations (RoC) ‖𝝁𝑎‖∕‖𝝁0‖ exceeds 1. To single out the concentration, we 
view 𝝁𝑎 = 𝑐𝑎𝐑𝑎𝝁

∗ and 𝝁0 = 𝑐0𝐑0𝝁
∗ for some rotation matrices, 𝐑𝑎 and 𝐑0, and some positive constants, 𝑐𝑎 and 𝑐0, where 𝝁∗ is a 

unit vector. In other words, 𝝁𝑎 and 𝝁0 may differ in concentration, quantified by 𝑐𝑎 and 𝑐0 respectively, or differ in orientation when 
𝐑𝑎 ≠𝐑0. Using this factorization of the mean direction parameter, we have ‖𝝁𝑎‖∕‖𝝁0‖ = 𝑐𝑎∕𝑐0 since ‖𝐑𝑎𝝁

∗‖∕‖𝐑0𝝁
∗‖ = 1. Now we 

re-express the density 𝑃 (⋅;𝝁𝑎,𝜸𝑎) as 𝑃 (⋅; 𝑐𝑎,𝐑𝑎,𝜸𝑎), and similarly write the density 𝑄(⋅;𝝁) as 𝑄(⋅; 𝑐,𝐑), where the dependence of both 
distributions on 𝝁∗ is suppressed because they depend on the same 𝝁∗. Viewing 𝑃 as the reference distribution, we let 𝝁∗ = 𝝁𝑎∕‖𝝁𝑎‖, 
𝐑𝑎 = 𝐈𝑑 , and 𝑐𝑎 = ‖𝝁𝑎‖. Fitting 𝑄 to data from 𝑃 now amounts to, in limit as 𝑛→∞, maximizing 𝐸𝑃 {log𝑄(𝐘; 𝑐,𝐑)} with respect to 
(𝑐,𝐑), which cannot be done analytically but can be simulated using large samples.

To simulate this maximization problem, we generate a random sample of size 𝑛 = 104 from 𝑃 (⋅; 𝑐𝑎,𝐑𝑎,𝜸𝑎) with 𝑐𝑎 =
√
63 resulting 

from setting 𝝁𝑎 = (2,−5,3,5)T, 𝐑𝑎 = 𝐈4, and 𝜸𝑎 taking one of the following three values, 𝜸(1) = 𝟎, 𝜸(2) = (1.5,0,1.5,0,0)T, and 𝜸(3) =
2𝜸(2), with the first value creating a scenario where 𝑃 = 𝑄, and the latter two creating increasing degree of anisotropy in 𝑃 . We 
then use the log-likelihood function 𝓁(𝑐,𝐑) = 𝑛−1

∑𝑛
𝑖=1 log𝑄(𝐘𝑖; 𝑐,𝐑) as an empirical version of 𝐸𝑃 {log𝑄(𝐘; 𝑐,𝐑)} to demonstrate 
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Fig. 1. The empirical version of 𝐸𝑃 {log𝑄(𝐘; 𝑐,𝐑)}, 𝓁(𝑐,𝐑), based on a random sample of size 𝑛 = 104 from an isotropic ESAG (solid lines), anisotropic ESAG with 
𝜸 = 𝜸(2) ≠ 𝟎 (dashed lines), and 𝜸 = 𝜸(3) = 2𝜸(2) (dotted lines), versus RoC when 𝐑 is set at 𝐑(1) = 𝐈𝑑 (top panel), 𝐑(2) ≠ 𝐈𝑑 (middle panel), and 𝐑(3) that deviates from 
𝐈𝑑 even more (bottom panel). Vertical lines mark the value of RoC where the corresponding function 𝓁(𝑐,𝐑) is maximized.

that 𝑐𝑎∕𝑐∗ > 1 when 𝜸𝑎 ≠ 𝟎, where 𝑐∗ = argmax𝑐>0𝓁(𝑐,𝐑∗) for some arbitrary rotation matrix 𝐑∗. For concreteness, we consider 
three values for 𝐑∗ given by 𝐑(1) = 𝐑𝑎, 𝐑(2) resulting from replacing the upper 2 × 2 block of 𝐈4 with the two-dimensional rotation 
matrix 𝑅∗(0.1), and 𝐑(3) similarly defined using 𝑅∗(0.3) to produce a rotation matrix that deviates from 𝐑𝑎 further than 𝐑(2) does. A 
two-dimensional rotation matrix 𝑅∗(𝜃) has diagonal entries equal to cos(𝜃), and [1,2] and [2,1] entries equal to −sin(𝜃) and sin(𝜃), 
respectively.

The top panel of Fig. 1 depicts 𝓁(𝑐,𝐑(1)) as a function of RoC = 𝑐𝑎∕𝑐 when the data-generating mechanism 𝑃 has 𝜸𝑎 set at 𝜸(1) = 𝟎
(isotropy), 𝜸(2) ≠ 𝟎 (mild anisotropy), and 𝜸(3) = 2𝜸(2) (severe anisotropy), respectively. With 𝐑(1) = 𝐑𝑎, the mean directions of 𝑃
and 𝑄 have the same orientation. When 𝑃 is isotropic, 𝐸𝑃 {log𝑄(𝐘; 𝑐,𝐑(1))} is expected to be maximized at 𝑐∗ = 𝑐𝑎, resulting in 
𝐷KL(𝑃‖𝑄;𝝁0) = 0. This is indeed (empirically) justified by the curve of 𝓁(𝑐;𝐑(1)) that reaches its peak at around RoC = 𝑐𝑎∕𝑐∗ = 1. 
Once 𝑃 exhibits anisotropy by having 𝜸𝑎 deviating from 𝟎, one witnesses a drop in the likelihood 𝓁(𝑐,𝐑(1)), which is maximized 
at some RoC that exceeds 1, indicating that 𝑐∗ < 𝑐𝑎. The inflation in RoC, i.e., the attenuation in 𝑐∗ , becomes more substantial as 
𝜸𝑎 deviates from 𝟎 further. This implies that misspecifying 𝜸 in the ESAG distribution by assuming isotropy can be manifested in 
a larger-than-1 RoC. The bottom two panels in Fig. 1 show 𝓁(𝑐,𝐑(2)) and 𝓁(𝑐,𝐑(3)) versus RoC, where all the previously observed 
phenomena for 𝓁(𝑐,𝐑(1)) remain except for that, even with 𝜸𝑎 set at 𝟎, 𝓁(𝑐,𝐑∗) is also maximized when RoC is larger than 1.

Comparing the three panels in Fig. 1 reveals a clear trend of RoC increasing as model misspecification becomes more severe by 
having 𝜸𝑎 further away from zero or having the orientation of 𝝁𝑎 mismatch more with the orientation of 𝝁0. The latter observation 
suggests that RoC can be used to test assumptions regarding 𝝁 as well, which is a point we come back to in a later section on testing 
assumptions on the mean direction parameter. 

3.2. A test for isotropy

Inspired by the above findings regarding concentration estimation, we propose the statistic for testing isotropy defined by

RoC = 1
𝑛 

𝑛 ∑
𝑖=1 

‖�̂�𝑎𝑖‖‖�̂�0𝑖‖ , (2)

where �̂�0𝑖 is the restricted MLE of the mean direction of 𝐘𝑖 given 𝐗𝑖 under 𝐻 (𝐕)
0 that assumes 𝜸 = 𝟎 and covariate-dependent 𝝁, 

and �̂�𝑎𝑖 is the unrestricted MLE under the alternative hypothesis that allows anisotropy. If the true data-generating mechanism is 
consistent with 𝐻 (𝐕)

0 , then RoC is expected to be close to 1; otherwise, RoC tends to be larger than 1.

Algorithm 1 below gives the parametric bootstrap procedure to estimate the 𝑝-value associated with RoC to assess its statistical 
significance. The goal of the bootstrap procedure is to estimate the null distribution of RoC by simulating realizations of RoC under 
the null. To this end, we repeatedly compute RoC based on data generated from an isotropic ESAG distribution �̂�(⋅; �̂�0𝑖) for the 
𝑖-th experimental unit, for 𝑖 = 1,… , 𝑛. This distribution is an estimate of 𝑄 that is closest to the unknown true model 𝑃 for each 
experimental unit. An estimated 𝑝-value can then be obtained by comparing the RoC computed based on the raw data with the 
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simulated RoC’s. As seen here and in the testing procedures proposed later for other purposes, the distribution of a test statistic under 
any hypothesized ESAG model can be easily approximated via parametric bootstrap because it is straightforward to simulate data 
from any ESAG distribution, which is yet another virtue of the ESAG distribution family and the constraint-free parameterization. 

Algorithm 1 Hypothesis testing for isotropy based on RoC defined in (2).

1: procedure Compute RoC based on the observed data

2: Input data {(𝐘𝑖 ,𝐗𝑖)}𝑛𝑖=1 , find the restricted MLE �̂�0𝑖 under 𝐻 (𝐕)
0 and the unrestricted MLE (�̂�𝑎𝑖 , �̂�𝑎𝑖), for 𝑖= 1,… , 𝑛.

3: Compute the test statistic RoC = (1∕𝑛)
∑𝑛

𝑖=1 ‖�̂�𝑎𝑖||∕‖�̂�0𝑖||.
4: end procedure

5: procedure Bootstrap procedure to estimate the null distribution of RoC

6: Set 𝐵 = number of bootstraps

7: Initiate 𝑠 = 0
8: for 𝑏 in 1, ...,𝐵 do

9: Generate the 𝑏-th bootstrap sample {𝐘(𝑏)
𝑖 }𝑛

𝑖=1 , where 𝐘(𝑏)
𝑖 |𝐗𝑖 ∼ ESAG(�̂�0𝑖 , 𝜸𝑖 = 𝟎), for 𝑖= 1, ..., 𝑛.

10: Repeat Steps 2–3 using data {(𝐘(𝑏)
𝑖 ,𝐗𝑖)}𝑛𝑖=1 . Denote the resultant value of RoC as RoC(𝑏) .

11: if RoC(𝑏) > RoC then 𝑠 = 𝑠+ 1
12: end for

13: Output 𝑠∕𝐵 as an estimated 𝑝-value associated with RoC from Step 3.

14: end procedure

4. Tests for covariates effects

4.1. Testing covariates dependence of 𝝁

For a directional response, a practically interesting question is whether or not its mean direction depends on covariates. For 
concreteness, let us consider testing the null 𝐻 (𝝁)

0 ∶ 𝐘|𝐗 ∼ ESAG(𝝁 = 𝜶0, 𝜸 = 𝜷0 +𝐁1𝐗) versus the alternative 𝐻1 ∶ 𝐘|𝐗 ∼ ESAG(𝝁 =
𝜶0 +𝐀1𝐗, 𝜸 = 𝜷0 +𝐁1𝐗). If the alternative is true with 𝐀1 ≠ 𝟎, the fitted 𝝁 under the null is expected to differ from the fitted value 
that allows covariates dependence of 𝝁. The difference can lie in their directions, or their norms, i.e., the concentrations of the two 
fitted distributions. This motivates the following test statistic that captures both sources of discrepancies,

𝐷 = 1
𝑛 

𝑛 ∑
𝑖=1 

(
2 −

�̂�⊤
0𝑖�̂�𝑎𝑖‖�̂�0𝑖‖‖�̂�𝑎𝑖‖

) ‖�̂�𝑎𝑖‖‖�̂�0𝑖‖ , (3)

where, for the 𝑖-th data point, �̂�0𝑖 is the restricted MLE obtained under the null that assumes covariate-independent 𝝁, and �̂�𝑎𝑖 is the 
unrestricted MLE obtained under the alternative. In (3), �̂�⊤

0𝑖�̂�𝑎𝑖∕(‖�̂�0𝑖‖‖�̂�𝑎𝑖‖) is known as the cosine similarity between two vectors, 
�̂�0𝑖 and �̂�𝑎𝑖, which is equal to 1 if they have the same direction, and is equal to −1 if the directions are opposite. Hence the first 
factor in the summand in (3) quantifies the dissimilarity in direction between �̂�0𝑖 and �̂�𝑎𝑖. The second factor of the summand in (3)

contrasts the concentrations of the two estimates for 𝝁 as in RoC. By construction, under the null 𝐻 (𝝁)
0 , 𝐷 is expected to be close to 

1; and a realization of 𝐷 larger than 1 can imply the observed data coming from a model that violates the null.

Algorithm 2 provides detailed steps for implementing the test based on the newly proposed test statistic, where we again use a 
parametric bootstrap procedure to estimate the 𝑝-value associated with 𝐷. 

Algorithm 2 Hypothesis testing regarding 𝝁 based on 𝐷 defined in (3).

1: procedure Compute 𝐷 based on the observed data

2: Input data {(𝐘𝑖 ,𝐗𝑖)}𝑛𝑖=1 , find the restricted MLEs (�̂�0𝑖 , �̂�0𝑖), and the unrestricted MLEs (�̂�1𝑖 , �̂�1𝑖), for 𝑖= 1,… , 𝑛.

3: Compute 𝐷 = (1∕𝑛)
∑𝑛

𝑖=1[{2 − (�̂�⊤
0𝑖�̂�𝑖𝑎)∕(‖�̂�0𝑖‖‖�̂�𝑎𝑖‖)}(‖�̂�𝑎𝑖‖∕‖�̂�0𝑖‖)].

4: end procedure

5: procedure Bootstrap procedure to estimate the null distribution of 𝐷
6: Set 𝐵 = number of bootstraps

7: Initiate 𝑠 = 0
8: for 𝑏 in 1, ...,𝐵 do

9: Generate the 𝑏-th bootstrap sample {𝐘(𝑏)
𝑖 }𝑛

𝑖=1 , where 𝐘(𝑏)
𝑖 |𝐗𝑖 ∼ ESAG(�̂�0𝑖 , �̂�0𝑖), for 𝑖= 1, ..., 𝑛.

10: Repeat Steps 2–3 using data {(𝐘(𝑏)
𝑖 ,𝐗𝑖)}𝑛𝑖=1 . Denote the resultant test statistic as 𝐷(𝑏) .

11: if 𝐷(𝑏) > 𝐷 then 𝑠 = 𝑠+ 1
12: end for

13: Output 𝑠∕𝐵 as an estimated 𝑝-value associated with 𝐷 from Step 3.

14: end procedure

As indicated in Section 3.1, RoC can be used to test hypotheses about 𝝁, such as testing covariate dependence of it by adopting 
Algorithm 1 with the restricted MLEs for 𝝁 and 𝜸 obtained under the current null 𝐻 (𝝁)

0 . Moreover, because 𝐷 incorporates direction 
comparison between two fitted values of 𝝁 besides concentration comparison that RoC focuses on, one can combine the two test 
statistics to gain more insight into the underlying data-generating mechanism. If 𝐷 is significantly larger than RoC when testing 
covariate dependence of 𝝁, one may interpret it as data evidence for the direction of 𝝁 depending on some covariate. Having 𝐷 close 
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to RoC can imply that the direction of 𝝁 may not depend on covariates, although its norm may depend on covariates. This exemplifies 
the versatility and additional insight our proposed test statistics can offer compared to LR.

4.2. Testing covariates dependence of 𝜸 and beyond

Unique to our parameterization of ESAG(𝝁,𝜸), parameters in 𝜸 control variation of the distribution in different subspaces on the 
hypersphere besides (an)isotropy. It is thus of interest to test if such distributional features depend on covariates. For instance, one 
may consider testing the null 𝐻 (𝜸)

0 ∶ 𝐘|𝐗 ∼ ESAG(𝝁 = 𝜶0 +𝐀1𝐗, 𝜸 = 𝜷0) versus the alternative 𝐻1 ∶ 𝐘|𝐗 ∼ ESAG(𝝁 = 𝜶0 +𝐀1𝐗, 𝜸 =
𝜷0 +𝐁1𝐗). Because 𝜸 as a whole relates to (an)isotropy of the distribution, RoC that is initially proposed for testing isotropy has its 
natural appeal for testing hypotheses about 𝜸. When a violation of 𝐻 (𝜸)

0 adversely affects inferences for 𝝁, the test statistic 𝐷 designed 
for testing assumptions on 𝝁 also has the potential to detect covariates dependence of 𝜸. With the restricted MLEs �̂�0𝑖 and �̂�0𝑖 now 
reflecting 𝐻 (𝜸)

0 used in Algorithm 1 or Algorithm 2, one can carry out the test based on RoC or 𝐷 for testing 𝐻 (𝜸)
0 versus 𝐻1.

Fixing 𝐻1 at the above saturated ESAG model, to test other null hypotheses, say, 𝜶𝑘 = 𝟎 for a given 𝑘 ∈ {1,… , 𝑞} (with all other 
covariates in the null model), RoC and 𝐷 can be used with the restricted MLEs in Algorithms 1 and 2 revised accordingly when 
computing �̂�0𝑖 to reflect the specific null hypothesis under consideration. Similarly, if one considers a different alternative ESAG 
model that allows 𝝁 or 𝜸 to depend on covariates nonlinearly, the tests based on RoC and 𝐷 remain applicable with �̂�𝑎𝑖 obtained 
under such alternative model. We thus argue that the proposed testing strategies are more versatile than the strategies of testing 
covariate dependence of 𝝁 or 𝜸 based on the magnitude of regression-coefficient matrices 𝐀1 or 𝐁1. Even if one adopts an angular 
Gaussian distribution that is not ESAG, as long as the mean vector 𝝁 has the same interpretations as that in ESAG(𝝁,𝜸), RoC and 
𝐷 remain meaningful statistics for testing assumptions on 𝝁 or other model assumptions that inferences for 𝝁 are sensitive to. One 
simply needs to revise the bootstrap procedures to adapt to the assumed angular Gaussian distribution.

Lastly, RoC and 𝐷 depend on both the restricted and unrestricted MLEs of model parameters, which in turn add to the computa-

tional burden in Algorithms 1 and 2 where these MLEs are obtained based on each bootstrap sample. We thus propose yet another 
testing strategy that only requires computing the restricted MLEs that is based on a second moment estimation, with the test statistic 
given by

𝑀 =
‖‖‖‖‖1𝑛 

𝑛 ∑
𝑖=1 

{
𝐘2

𝑖 − Ê0
(
𝐘2

𝑖

)}‖‖‖‖‖ , (4)

where 𝐘2
𝑖 is the element-wise quantity square of 𝐘𝑖, and Ê0

(
𝐘2

𝑖

)
is an empirical mean of 𝐘2 given 𝐗 =𝐗𝑖 computed using a random 

sample simulated from an estimated null model. Unlike RoC and 𝐷, the construction of 𝑀 is not motivated by (and thus does not 
target at testing) a particular aspect of the model specification; instead, 𝑀 can serve as an overall goodness-of-fit test statistic. In 
fact, 𝐘2 can be viewed as a compositional vector in a simplex, of which (non-negative) entries sum to one, and hence 𝑀 can be 
interpreted as a prediction error of the compositions under a null model. This interpretation also reveals that lots of information of 𝐘
regarding orientations is lost in 𝑀 (by taking the element-wise quantity square), and thus 𝑀 is insensitive to model misspecification 
that impacts inferences on such information. Regardeless, in the absence of model misspecification, 𝑀 is expected to be close to zero, 
and a larger 𝑀 serves as data evidence of a worse fit of a null model for the observed data. As an example, Algorithm 3 below gives 
the algorithm for using 𝑀 to test the null model that assumes an isotropic ESAG, with an estimated 𝑝-value obtained via parametric 
bootstrap as an output. 

Algorithm 3 Hypothesis testing for isotropy based on 𝑀 defined in (4).

1: procedure Compute 𝑀 based on the observed data

2: Input data {(𝐘𝑖 ,𝐗𝑖)}𝑛𝑖=1 , find the restricted MLE �̂�0𝑖 , for 𝑖= 1,… , 𝑛.

3: For 𝑖= 1,… , 𝑛, generate {�̃�𝑖,𝑚}10
4

𝑚=1 from ESAG(�̂�0𝑖 ,𝜸𝑖 = 𝟎), compute Ê0(𝐘2
𝑖 ) = 10−4

∑104
𝑚=1 �̃�2

𝑖,𝑚 .

4: Compute 𝑀 = ‖(1∕𝑛)∑𝑛
𝑖=1{𝐘2

𝑖 − Ê0(𝐘2
𝑖 )}‖.

5: end procedure

6: procedure Bootstrap procedure to estimate the null distribution of 𝑀
7: Set 𝐵 = number of bootstraps

8: Initiate 𝑠 = 0
9: for 𝑏 in 1, ...,𝐵 do

10: Generate the 𝑏-th bootstrap sample {𝐘(𝑏)
𝑖 }𝑛

𝑖=1 , where 𝐘(𝑏)
𝑖 |𝐗𝑖 ∼ ESAG(𝝁𝑖 = �̂�0𝑖 , 𝜸𝑖 = 𝟎), for 𝑖= 1, ..., 𝑛.

11: Repeat Steps 2–4 using data {(𝐘(𝑏)
𝑖 ,𝐗𝑖)}𝑛𝑖=1 . Denote the resultant test statistic as 𝑀 (𝑏) .

12: if 𝑀 (𝑏) > 𝑀 then 𝑠 = 𝑠+ 1
13: end for

14: Output 𝑠∕𝐵 as an estimated 𝑝-value associated with 𝑀 from Step 4.

15: end procedure
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Table 1
Data-generating mechanisms (DGM) designed for testing the power of tests 

for each considered null hypothesis regarding ESAG(𝝁,𝜸), along with values 
of model parameters in these DGMs.

Null hypothesis ESAG data-generating mechanism 
𝐻 (𝐕)

0 ∶ 𝝁 = 𝜶0 + 𝜶1𝑋, 𝜸 = 𝟎 DGM
(𝐕)
1 ∶ 𝝁 = 𝜶∗

0 + 𝜶∗
1𝑋, 𝜸 = 𝜷∗

0𝑟
DGM

(𝐕)
2 ∶ 𝝁 = 𝜶∗

0 + 𝜶∗
1𝑋, 𝜸 = 𝜷∗

0𝑟 + 𝜷∗
1𝑟𝑋

𝐻 (𝝁)
0 ∶ 𝝁 = 𝜶0, 𝜸 = 𝜷0 + 𝜷1𝑋 DGM

(𝝁)
1 ∶ 𝝁 = 𝜶∗

0 + 𝜶∗
1𝑟𝑋, 𝜸 = 𝟎

DGM
(𝝁)
2 ∶ 𝝁 = 𝜶∗

0 + 𝜶∗
1𝑟𝑋, 𝜸 = 𝜷∗

0
DGM

(𝝁)
3 ∶ 𝝁 = 𝜶∗

0 + 𝜶∗
1𝑟𝑋, 𝜸 = 𝜷∗

0 + 𝜷∗
1𝑋

𝐻 (𝜸)
0 ∶ 𝝁 = 𝜶0 + 𝜶1𝑋, 𝜸 = 𝜷0 DGM

(𝜸)
1 ∶ 𝝁 = 𝜶∗

0 + 𝜶∗
1𝑋, 𝜸 = 𝜷∗

1𝑟𝑋

DGM
(𝜸)
2 ∶ 𝝁 = 𝜶∗

0 + 𝜶∗
1𝑋, 𝜸 = 𝜷∗

0 + 𝜷∗
1𝑟𝑋

Values of model parameters 𝜶∗
0 = (2,−5,3,5)⊤, 

𝜶∗
1 = (2,1,2,1)⊤, 𝜶∗

1𝑟 =
𝑟 
2
𝟏4, 

𝜷∗
0 = (3,5,−3,−4,2)⊤, 𝜷∗

0𝑟 =
𝑟 √
5
𝟏5

𝜷∗
1 = (4,2,5,−2,3)⊤, 𝜷∗

1𝑟 =
𝑟 √
5
𝟏5

5. Simulation study

5.1. Design of simulation experiments

We are now in the position to study empirically operating characteristics of the proposed testing procedures for testing 𝐻 (𝐕)
0 , 𝐻 (𝝁)

0 , 
and 𝐻 (𝜸)

0 versus the alternative 𝐻1 ∶ 𝐘|𝐗 ∼ ESAG(𝝁 = 𝜶0 + 𝐀1𝐗, 𝜸 = 𝜷0 + 𝐁1𝐗). To this end, we design several data-generating 
mechanisms (DGM) for each null hypothesis. A random sample of size 𝑛 ∈ {100,200,400} is generated according to each DGM, 
based on which the proposed test statistics and their estimated 𝑝-values are computed following Algorithms 1–3 with 𝐵 = 300. As a 
benchmark testing procedure to compare with ours, we also test each null using LR, with the corresponding 𝑝-value estimated via 
parametric bootstrap as opposed to assuming a 𝜒2 null distribution for LR as in Paine et al. (2020). This experiment is repeated 200 
times at each simulation setting specified by the null hypothesis, DGM, and the level of 𝑛. Common in all settings, we consider a scalar 
covariate, with 𝑛 realizations {𝑋′

𝑖}
𝑛
𝑖=1 generated from  (0,1), followed by standardization via 𝑋𝑖 = (𝑋′

𝑖 −𝑋′
(1))∕(𝑋

′
(𝑛) −𝑋′

(1)) + 1, for 
𝑖 = 1,… , 𝑛. Given the covariate data {𝑋𝑖}𝑛𝑖=1, response data {𝐘𝑖}𝑛𝑖=1 are generated according to each DGM designed for inspecting 
the power of a test (see Table 1) or for checking the size of a test (see Table B.1 in Appendix B). 

For each considered null hypothesis, we include one or multiple DGM’s consistent with the null (see Table B.1 in the Supplementary 
Material). This allows for inspecting the size of a test. For each considered null, as one can see in Table 1, we also design several 
DGMs with increasing model complexity compared to the null. The values of some regression coefficients depend on a quantity 𝑟 that 
we vary in the simulation to control the severity of model misspecification under a null, with a larger 𝑟 leading to a more pronounced 
deviation of the DGM from a null. This allows for monitoring the power of a test as the true model deviates from the null model 
further.

The metric we record in the simulation study is the relative frequency of a considered test rejecting the current null across 200 
Monte Carlo replicates at a pre-specified significance level. In what follows, we present these rejection rates associated with different 
tests for testing each of the three null hypotheses tabulated in Table 1.

5.2. Simulation results

The rejection rates of RoC, 𝐷 or 𝑀 , and LR versus the nominal significance level based on data generated from an ESAG regression 
model consistent with a null hypothesis are provided in Appendix B of the Supplementary Material. Empirically, the sizes of the 
proposed tests are mostly well controlled provided that the sample size is moderate or large (e.g., 𝑛 > 100). A slight inflation in the 
test size often occurs when 𝑛 = 100 or when some parameters (e.g., 𝜸) take true values (as zeros) that lead to irregular MLEs when 
fitting the full model. Such inflation is more evident for LR, especially when testing covariate dependence of model parameters. 
For example, when testing 𝐻 (𝝁)

0 using a random sample of size 100 from an isotropic ESAG distribution with covariate-free 𝝁, the 
rejection rates are 0.085, 0.080, 0.005, and 0.115 for the tests based on RoC, 𝐷, 𝑀 , and LR, respectively, in contrast to the nominal 
level of 0.05. This can be where the size of LR fails to approach the nominal level asymptotically even when its 𝑝-value is estimated by 
the conventional parametric bootstrap, which is a phenomenon described in Drton and Williams (2011). One shall thus interpret the 
empirical power of LR with caution. For this reason, we omit to report the empirical power of LR for testing covariate dependence.

Table 2 presents the empirical power of various tests for testing each of the three null hypotheses at a significance level of 0.05 
based on data from different true ESAG models specified in Table 1. When using RoC, 𝑀 , and LR to test isotropy, the three tests 
are comparable in their power to detect anisotropy, with the power increasing steadily as 𝑛 grows bigger or as the true value of 𝜸
deviates from zero further (by having a larger 𝑟). Having a covariate-dependent 𝜸 in the true regression model also enhances the 
power of these tests.
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Table 2
Rejection rates of tests for 𝐻 (𝐕)

0 , 𝐻 (𝝁)
0 , and 𝐻 (𝜸)

0 at nominal level 0.05, with the highest rejection rate at 
each level of 𝑟 when 𝑛 = 100 highlighted in bold.

{𝑛} 100 200 400 100 200 400 100 200 400 
Testing 𝐻 (𝐕)

0 ∶ 𝝁 = 𝜶0 + 𝜶1𝑋, 𝜸 = 𝟎

RoC 𝑀 LR 
𝑟 DGM

(𝐕)
1 ∶ 𝝁 = 𝜶∗

0 + 𝜶∗
1𝑋, 𝜸 = 𝜷∗

0𝑟

0.1 0.065 0.075 0.110 0.075 0.095 0.105 0.055 0.070 0.100 
0.2 0.085 0.145 0.245 0.070 0.145 0.280 0.095 0.145 0.305 
0.4 0.160 0.440 0.870 0.215 0.360 0.745 0.175 0.470 0.900 
𝑟 DGM

(𝐕)
2 ∶ 𝝁 = 𝜶∗

0 + 𝜶∗
1𝑋, 𝜸 = 𝜷∗

0𝑟 + 𝜷∗
1𝑟𝑋

0.1 0.090 0.210 0.420 0.110 0.190 0.390 0.080 0.215 0.470 
0.2 0.325 0.675 0.990 0.290 0.525 0.890 0.345 0.710 1.000 
0.4 0.895 1.000 1.000 0.740 0.980 1.000 0.910 1.000 1.000 
Testing 𝐻 (𝝁)

0 ∶ 𝝁 = 𝜶0, 𝜸 = 𝜷0 + 𝜷1𝑋

RoC 𝐷 𝑀

𝑟 DGM
(𝝁)
1 ∶ 𝝁 = 𝜶∗

0 + 𝜶∗
1𝑟𝑋, 𝜸 = 𝟎

0.5 0.085 0.075 0.065 0.085 0.055 0.070 0.005 0.005 0.025 
1 0.160 0.200 0.265 0.165 0.195 0.240 0.005 0.005 0.025 
2 0.485 0.660 0.800 0.490 0.635 0.815 0.030 0.115 0.160 
𝑟 DGM

(𝝁)
2 ∶ 𝝁 = 𝜶∗

0 + 𝜶∗
1𝑟𝑋, 𝜸 = 𝜷∗

0

0.5 0.245 0.440 0.760 0.235 0.350 0.635 0.070 0.075 0.105 
1 0.675 0.935 0.995 0.655 0.930 0.995 0.125 0.205 0.160 
2 0.980 1.000 1.000 0.980 0.995 1.000 0.375 0.470 0.525 
𝑟 DGM

(𝝁)
3 ∶ 𝝁 = 𝜶∗

0 + 𝜶∗
1𝑟𝑋, 𝜸 = 𝜷∗

0 + 𝜷∗
1𝑋

0.5 0.460 0.850 0.975 0.435 0.745 0.935 0.080 0.140 0.145 
1 0.980 1.000 1.000 0.975 1.000 1.000 0.230 0.215 0.240 
2 1.000 1.000 1.000 1.000 1.000 1.000 0.655 0.775 0.880 
Testing 𝐻 (𝜸)

0 ∶ 𝝁 = 𝜶0 + 𝜶1𝑋, 𝜸 = 𝜷0

RoC 𝐷 𝑀

𝑟 DGM
(𝜸)
1 ∶ 𝝁 = 𝜶∗

0 + 𝜶∗
1𝑋, 𝜸 = 𝜷∗

1𝑟𝑋

0.5 0.065 0.120 0.090 0.065 0.125 0.090 0.040 0.045 0.035 
1 0.105 0.135 0.130 0.105 0.135 0.125 0.020 0.030 0.070 
2 0.135 0.145 0.170 0.135 0.155 0.160 0.050 0.070 0.090 
𝑟 DGM

(𝜸)
2 ∶ 𝝁 = 𝜶∗

0 + 𝜶∗
1𝑋, 𝜸 = 𝜷∗

0 + 𝜷∗
1𝑟𝑋

0.5 0.070 0.045 0.055 0.065 0.050 0.050 0.025 0.070 0.075 
1 0.070 0.105 0.095 0.075 0.105 0.090 0.055 0.060 0.055 
2 0.155 0.165 0.340 0.150 0.165 0.325 0.025 0.065 0.045 

According to Table 2, the tests based on RoC and 𝐷 enjoy higher power to detect covariate dependence of 𝝁 when the true model 
also has a covariate-dependent 𝜸 (as in DGM

(𝝁)
3 ) than when it has an intercept-only model for 𝜸 (as in DGM

(𝝁)
2 ). Noting that obtaining 

the unrestricted MLE for 𝜸 using data from DGM
(𝝁)
2 creates an irregular maximum likelihood estimation, but the same estimation 

using data from DGM
(𝝁)
3 is a regular case, we believe that having irregular MLEs for model parameters can compromise the power of 

RoC and 𝐷. When testing 𝐻 (𝜸)
0 , the power of the proposed tests does not increase as quickly as when testing 𝐻 (𝝁)

0 when 𝑛 increases 
or when the covariate dependence becomes stronger. We conjecture that, once we allow 𝝁 to depend on covariates, inferences for 
the concentration are less sensitive to the assumption of covariate-independent for 𝜸 , and thus RoC and 𝐷 may lack high power to 
detect the dependence of 𝜸 on covariates unless when the dependence is very strong.

The moment-based test using 𝑀 is much less powerful than the tests based on RoC and 𝐷 for testing covariate dependence of 
model parameters. By solely focusing on the fit for the mean of 𝐘2 , the power 𝑀 to detect model misspecification heavily hinges 
on the impact of the misspecification on second-moment estimation. The observed phenomenon suggests some level of robustness of 
the second-moment estimation to covariate dependence of ESAG model parameters. In additional simulation study not reported here 
where we generate covariate data from different distributions, we observe that likelihood-based estimation of 𝐸(𝐘2) is more sensitive 
to violation of 𝐻 (𝝁)

0 or 𝐻 (𝜸)
0 when the covariate distribution is skewed, and, consequently, 𝑀 becomes more powerful in detecting 

covariate dependence of 𝝁 or 𝜸.
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Table 3
Rejection rates of tests for isotropy using RoC, the scatter 
test, and the hybrid test at nominal level 0.05, with the 
highest rejection rate at each setting highlighted in bold.

𝑛 𝑟 RoC Scatter Test Hybrid Test 
200 0.2 𝟎.𝟐𝟓𝟑 0.170 0.133 

0.4 𝟎.𝟕𝟔𝟑 0.523 0.450

400 0.2 𝟎.𝟒𝟕𝟑 0.313 0.263 
0.4 𝟎.𝟗𝟖𝟑 0.850 0.787 

5.3. A comparative study on tests for isotropy

A referee brought to our attention tests for rotational symmetry about a location of a directional distribution proposed in García-

Portugués et al. (2020), where the study is not limited to a particular distribution family. The location is 𝝁 in our context, and 
rotational symmetry about 𝝁 amounts to isotropy considered in our study. Their proposed tests are based on a special form of 𝝁-

dependent “projection” of 𝐘 that falls in ℝ𝑑−1 and, after normalization to possess a unit norm, is uniformly distributed on 𝕊𝑑−2 if 
𝐘 is rotationally symmetric about 𝝁. This normalized projection is known as the multivariate sign, denoted by 𝐮𝝁(𝐘). Test statistics 
based on 𝐮𝝁(𝐘) are constructed to assess the discrepancies between the first two moments of 𝐮𝝁(𝐘) suggested by the data and the first 
two moments of a uniform distribution on 𝕊𝑑−2. To compare their moment-based strategies (developed in the non-regression setting) 
with our RoC-based isotropy test, we use the R package, rotasym (García-Portugués et al., 2023), to implement the test called the 
scatter test, which is based on the second-moment discrepancy, and the hybrid test, which accounts for discrepancies in both the first 
and second moments.

In the comparative study, we generate random samples of size 𝑛 ∈ {200,400} from ESAG(𝝁,𝜸), where 𝝁 = (2,−5,3,5)⊤ and 
𝜸 = (𝑟∕

√
5)𝟏5, for 𝑟 ∈ {0.2,0.4}, with a higher value of 𝑟 leading to a greater degree of anisotropy. Table 3 provides the rejection 

rates of the three considered tests across 300 Monte Carlo replicates in each simulation setting. By exploiting the concentration 
estimation with and without the assumption of isotropy under the ESAG family, the proposed RoC test achieves higher power than 
the two competing methods that do not assume a particular distribution family as the alternative or full model. This may be partly 
thanks to the true data-generating mechanism being ESAG in this experiment. The competing methods have the advantage of having 
the test statistics follow some 𝜒2 distribution asymptotically, and thus the corresponding 𝑝-values can be easily obtained without a 
bootstrap procedure as for RoC. Systematically theoretical and empirical comparisons between the RoC test and these tests when the 
true data-generating mechanism deviates from ESAG are interesting directions to pursue in follow-up research.

6. Prediction regions

Following the estimation of all model parameters in an ESAG regression model, one can predict the outcome of the directional 
response 𝐘. If all model parameters are known, similar to the prediction region for a multivariate Gaussian distribution (Chew, 1966), 
a sensible 100(1 − 𝑎)% prediction region that reflects the elliptical symmetry of ESAG(𝝁,𝜸) is an ellipsoidal ball given by

PR𝑎 =
{
𝐲 ∈ 𝕊𝑑−1 ∶ (𝐲 − 𝝁∕‖𝝁‖)T𝐕−1(𝐲 − 𝝁∕‖𝝁‖) ≤ 𝑞𝛼

}
, (5)

where 𝑞𝑎 is chosen such that 𝑃 (𝐘 ∈ PR𝑎) = 1 − 𝑎. We show in Appendix C of the Supplementary Material that PR𝑎 defined in (5)

has the smallest volume in a class of ellipsoidal prediction regions centering around 𝝁∕‖𝝁‖ with the nominal coverage probability of 
1 − 𝑎.

When the model parameters are unknown, we evaluate 𝝁 and 𝐕 at their MLEs, �̂� and �̂�, in (5), and estimate 𝑞𝑎 by 𝑞𝑎 that is 
obtained using bootstrap samples from the estimated ESAG distribution. This leads to a 100(1 − 𝑎)% prediction region defined as

P̂R𝑎 =
{
𝐲 ∈ 𝕊𝑑−1 ∶ (𝐲 − �̂�∕‖�̂�‖)T�̂�−1(𝐲 − �̂�∕‖�̂�‖) ≤ 𝑞𝑎

}
. (6)

Algorithm 4 below provides the detailed computational path leading to P̂R𝑎 when 𝐗= 𝐱0. Appendix D of the Supplementary Material 
presents a simulation study where we follow Algorithm 4 to compute prediction regions of different nominal coverage probabilities 
based on samples of size 𝑛 ∈ {200,400,800}. The simulation results suggest that the empirical coverage probabilities of the resultant 
prediction regions match closely with the nominal levels. 

7. Real-life data applications

We now put into action the regression analysis toolkit on data examples from two real-life applications.

7.1. Hydrochemical data

We analyzed in a recent work (Yu and Huang, 2024) the relative abundance of two major ions, K+ and Na+, and two minor 
ions, Ca2+ and Mg2+, in water samples collected from two sets of locations between the summer of 1997 and the spring of 1999: 
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Algorithm 4 Compute the prediction region in (6).

1: procedure Parametric bootstrap accounting for variation of ESAG

2: Given the observed data {(𝐘𝑖 ,𝐗𝑖)}𝑛𝑖=1 , compute the MLEs for regression coefficients, �̂�0 , �̂�1 , �̂�0 , and �̂�1 , assuming an ESAG model for 𝐘𝑖 conditioning on 𝐗𝑖 .

3: Compute �̂� = �̂�0 + �̂�1𝐱0 and �̂� = �̂�0 + �̂�1𝐱0 , obtain the corresponding �̂�.

4: Set 𝑚 = the number of bootstrap samples. Generate a random sample, {𝐘′
𝑗}

𝑚
𝑗=1 , from ESAG(�̂�, �̂�).

5: Compute 𝑞𝑗 = (𝐘′
𝑗 − �̂�∕‖�̂�‖)T�̂�−1(𝐘′

𝑗 − �̂�∕‖�̂�‖), for 𝑗 = 1, ...,𝑚.

6: end procedure

7: procedure Nonparametric bootstrap accounting for variation of MLEs

8: Set 𝐵 = the number of bootstrap samples.

9: for 𝑏 in 1, ...,𝐵 do

10: Generate the 𝑏-th bootstrap sample {𝐘(𝑏)
𝑖 ,𝐗(𝑏)

𝑖 }𝑛
𝑖=1 via sampling with replacement from the raw data.

11: Repeat Steps 2–5 using data {(𝐘(𝑏)
𝑖 ,𝐗(𝑏)

𝑖 )}𝑛
𝑖=1 . Denote the bootstrap version of 𝑞𝑗 as 𝑞(𝑏)𝑗 .

12: end for

13: Viewing {𝑞𝑗 , 𝑞(1)𝑗 ,… , 𝑞(𝐵)
𝑗 }𝑚

𝑗=1 as a sample of size 𝑚× (𝐵 + 1), find the (1 − 𝑎)-quantile of this sample. Denote this sample quantile as 𝑞𝑎 .

14: Output a 100(1 − 𝑎)% prediction region when 𝐗= 𝐱0 given by {𝐲 ∈ 𝕊𝑑−1 ∶ (𝐲 − �̂�∕‖�̂�‖)T�̂�−1(𝐲 − �̂�∕‖�̂�‖) ≤ 𝑞𝑎} .

15: end procedure

Fig. 2. Directional data on 𝕊2 corresponding to each triplet of components from tributaries of Anoia (upper panels) and those from the lower Llobregat course (lower 
panels).

67 samples from tributaries of Anoia and 43 samples from tributaries of the lower Llobregat course in Spain (Otero et al., 2005). 
The complete data are available in the R package, compositions (Van den Boogaart and Tolosana-Delgado, 2008). The relative 
abundance of (K+, Na+, Ca2+, Mg2+) is an example of compositional data in a 3-dimensional simplex, ℂ3 = {𝐲∗ ∈ ℝ4 ∶ 𝟏⊤4 𝐲

∗ =
1 and 𝐞⊤𝑗 𝐲

∗ ≥ 0, for 𝑗 = 1,… ,4}, where 𝟏4 is the 4 × 1 vector of ones, and 𝐞𝑗 is the unit vector with the 𝑗-th entry being 1. We 
transformed the compositional data by taking the square-root of 𝐲∗ ∈ ℂ3 element-wise to directional data in 𝕊3. Previous analyses 
of the directional data from each set of locations suggested an adequate fit of an intercept-only ESAG model, but a poor fit for the 
combined data of size 𝑛 = 110 from two sets of locations. Fig. 2 presents the directional data associated with triplets of components 
from each set of locations on the three-dimensional sphere 𝕊2. Even though the directional data to be analyzed are on 𝕊3, a spherical 
space hard to visualize, the partial data plotted on 𝕊2 in Fig. 2 seem to suggest that data from tributaries of Anoia are more variable 
than those from tributaries of the lower Llobregat course. The lack of circular shape of (many of) the data clouds may also suggest 
anisotropy of the underlying distribution.

These earlier findings and data visualization motivate a location-dependent ESAG model for all data from these locations, where 
we incorporate a covariate 𝑋 indicating locations, with 𝑋 = 0 corresponding to tributaries of Anoia (At), and 𝑋 = 1 representing 
tributaries of the lower Llobregat course (LLt). Fitting the regression model, 𝑌𝑖|𝑋𝑖 ∼ ESAG(𝝁𝑖 = 𝜶0 + 𝜶1𝑋𝑖, 𝜸𝑖 = 𝜷0 + 𝜷1𝑋𝑖), to the 
data, we arrive at the following estimates for the ESAG model parameters,

�̂�𝑖 =
⎡⎢⎢⎢⎣
1.99
5.74
7.95
4.59

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣
1.28
2.83
1.06
1.20

⎤⎥⎥⎥⎦𝑋𝑖, �̂�𝑖 =

⎡⎢⎢⎢⎢⎢⎣

−0.67
0.15
−0.82
6.12
0.64

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

2.43
−0.22
10.17
−20.19
0.47

⎤⎥⎥⎥⎥⎥⎦
𝑋𝑖.
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Hence, for the directional response associated with tributaries of Anoia, the mean direction is estimated to be �̂�At =
(1.99,5.74,7.95,4.59)⊤, and, for the directional response coming from tributaries of the lower Llobregat course, the estimated mean 
direction is �̂�LLt = (3.27,8.57,9.01,5.79)⊤. These estimates lead to the estimated concentration at each set of locations that provide 
data evidence suggesting that the latter set of locations exhibits a higher concentration than the former. These are coherent with 
results in our previous analysis when we analyzed data from one set of locations at a time, and also in line with the visual impression 
from Fig. 2. Estimates for 𝜸𝑖 when 𝑋𝑖 = 0 and 1 are also aligned with our earlier analyses (and are omitted here), based on which 
estimates for 𝐕 corresponding to two sets of locations, �̂�At and �̂�LLt, can be obtained.

For model diagnosis, we carry out tests for isotropy and covariate dependence of 𝝁 and 𝜸 based on the three proposed test statistics. 
All tests suggest statistically significant evidence of location-dependent model parameters in the ESAG distribution that is anisotropic 
for the (transformed) compositions of (K+, Na+, Ca2+, Mg2+). All estimated 𝑝-values are less than 10−3 except for that associated 
with 𝑀 when testing covariate dependence of 𝜸, which returns an estimated 𝑝-value less than 0.01 (although larger than 10−3). This 
is consistent with findings in existing literature reporting that the hydrochemical profile of Anoia and that of the lower Llobergat 
course are substantially different because the two sets of tributaries pass through zones that are differently populated with vastly 
different distributions of agricultural and industrial areas (González et al., 2012). Zooming in on the tests for covariate dependence 
of 𝝁, we have 𝐷 = 1.062 that is somewhat higher than RoC = 1.059. This can be data evidence indicating that not only the norm of 
the mean direction depends on 𝑋, that is, the concentration varies across locations, but also the orientation of the mean direction 
differs between locations. When testing covariate dependence of 𝜸, i.e., testing 𝐻 (𝜸)

0 versus the full model, the two statistics are nearly 
equal (at around 1.090). This suggests that, once we acknowledge a location-dependent 𝝁 in the null model, allowing 𝜸 to depend 
on 𝑋 in the alternative model mostly helps to distinguish the variability of data across different locations but it may not contribute 
to capturing the discrepancy in the orientation of 𝝁 in different locations.

Lastly, applying Algorithm 4 with 𝑥0 = 0 and 1, we obtain the prediction regions for the two sets of locations given by

P̂R
(At)
𝑎 = {𝐲 ∈ 𝕊3 ∶ (𝐲 − �̂�At∕‖�̂�At‖)T�̂�−1

At
(𝐲 − �̂�At∕‖�̂�At‖) ≤ 𝑞(At)

𝑎 },

P̂R
(LLt)
𝑎 = {𝐲 ∈ 𝕊3 ∶ (𝐲 − �̂�LLt∕‖�̂�LLt‖)T�̂�−1

LLt
(𝐲 − �̂�LLt∕‖�̂�LLt‖) ≤ 𝑞(LLt)

𝑎 },

with 𝑞(At)
𝑎 = 0.029,0.036,0.050 and 𝑞(LLt)

𝑎 = 0.018,0.023,0.031 for the nominal level of 70%, 80%, and 90%, respectively. At each 
considered nominal level, having 𝑞(LLt)

𝑎 < 𝑞(At)
𝑎 is in line with the finding that the distribution of directional data from the lower 

Llobregat course exhibits a higher concentration (i.e., lower variability) than that for Anoia.

7.2. Microbiome data

We now turn to a dataset regarding the gut microbiota of elderly adults. Besides gut microbiome compositions of 160 elderly 
adults, also recorded in this data include the residence types, age, body mass index (BMI), diet, and gender. A similar dataset has 
been analyzed by Claesson et al. (2012), where the authors carried out a principal component analysis to study correlations of the 
relative abundance of various microorganisms in the gut. Shen et al. (2022) used the Gaussian chain graph model for the data to 
infer the effects of one’s diet and residence type on gut microbiome composition. For illustration purposes, we study the potential 
association between two covariates, one’s age and BMI, and the directional response on 𝕊3 defined as the square root of the relative 
abundance of four genera of bacteria found in the gut: Blautia, Caloramator, Clostridium, and Faecalibacterium.

We first fit the directional response data to the ESAG regression model, for 𝑖 = 1,… ,160,

𝐘𝑖|(Age𝑖,BMI𝑖) ∼ ESAG(𝝁𝑖 = 𝜶0 + 𝜶1Age𝑖 + 𝜶2BMI𝑖, 𝜸𝑖 = 𝜷0 + 𝜷1Age𝑖 + 𝜷2BMI𝑖), (7)

where 𝐘𝑖 = (𝑌𝑖,1, 𝑌𝑖,2, 𝑌𝑖,3, 𝑌𝑖,4)⊤, with 𝑌𝑖,𝑗 equal to the squared root of the relative abundance of Blautia, Caloramator, Clostridium, 
and Faecalibacterium, for 𝑗 = 1,2,3,4, respectively, for subject 𝑖, Age𝑖 = (subject 𝑖’s age− the youngest subject’s age)∕(age range)+1, 
and BMI𝑖 is similarly computed by standardizing the BMI data. Maximum likelihood estimation yields

�̂�𝑖 =
⎡⎢⎢⎢⎣
1.76
0.62
5.27
3.23

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣
−1.46
0.59
−2.70
−2.93

⎤⎥⎥⎥⎦Age𝑖 +
⎡⎢⎢⎢⎣
1.11
−0.63
1.63
2.39

⎤⎥⎥⎥⎦BMI𝑖,

�̂�𝑖 =

⎡⎢⎢⎢⎢⎢⎣

−6.39
0.31
3.12
0.63
0.69

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

24.08
2.54
−4.29
−3.31
0.61

⎤⎥⎥⎥⎥⎥⎦
Age𝑖 +

⎡⎢⎢⎢⎢⎢⎣

−21.15
−2.35
3.07
3.20
−0.79

⎤⎥⎥⎥⎥⎥⎦
BMI𝑖.

(8)

We then carry out the residual-based goodness-of-fit test proposed in an earlier work (Yu and Huang, 2024). We showed there 
that, if 𝐘 ∼ ESAG(𝝁,𝜸), then 𝑇 = (‖𝝁‖2 +∑𝑑

𝑗=1 𝜆𝑗 )𝐫𝐕−1𝐫 follows 𝜒2
𝑑−1 approximately, where 𝜆1 ≤ 𝜆2 ≤… ≤ 𝜆𝑑−1 and 𝜆𝑑 = 1 are the 

eigenvalues of 𝐕, and 𝐫 = (𝐈𝑑 − �̂��̂�T)𝐘 is the directional residual (Jupp, 1988) associated with the prediction �̂� = �̂�∕‖�̂�‖. Fig. 3 shows 
the residual-based quantities 𝑇 evaluated at the MLEs of unknown parameters, {�̂�𝑖}160𝑖=1, where �̂�𝑖 = (‖�̂�𝑖‖2 +∑3

𝑗=1 �̂�𝑖,𝑗 + 1)𝐫𝑖�̂�−1
𝑖 𝐫𝑖. 

In particular, the empirical distribution of 𝑇 depicted by the histogram of {�̂�𝑖}160𝑖=1 appears to resemble 𝜒2
3 , even though the scatter 
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Fig. 3. The histogram of {�̂�𝑖}160𝑖=1 with the density of 𝜒2
3 superimposed (in the left panel), the scatter plot of {(Age𝑖 , �̂�𝑖)}160𝑖=1 (in the middle panel), and the scatter plot 

of {(BMI𝑖 , �̂�𝑖)}160𝑖=1 (in the right panel) based on microbiome data modeled by (7).

Fig. 4. Estimates of ‖𝝁‖, 𝜆1 , 𝜆2 , and 𝜆3 versus BMI when one is 70 (solid lines), 80 (dashed lines), and 90 (dotted lines) years of age. 

plots of {�̂�𝑖}160𝑖=1 versus the covariates values seem to suggest several outliers in the sample. To estimate the null distribution of 𝑇
without approximating its distribution by 𝜒2

𝑑−1 , the authors also developed a bootstrap-based test for assessing the adequacy of an 
ESAG model. This test applied to the current dataset yields an estimated 𝑝-value of 0.58, suggesting insufficient evidence for the 
lack of fit of the current model. In addition, the tests for isotropy based on RoC and 𝑀 , and the tests for covariates dependence of 
ESAG model parameters based on RoC and 𝐷 all produce estimated 𝑝-values less than 0.01. We thus conclude significant covariates 
effects on the ESAG model parameters and recommend against opting for a regression model more parsimonious than (7). To further 
demonstrate the versatility and informativeness of RoC and 𝐷, we test the significance of age in modeling 𝝁 given that 𝜸 depends 
on both covariates as in (7) and that 𝝁 depends on BMI. These tests yield RoC = 1.068 and 𝐷 = 1.070, with estimated 𝑝-values less 
than 0.001. These can serve as data evidence indicating the significance of age in modeling (the BMI-dependent) 𝝁 and that age 
potentially impacts the direction of 𝝁 (besides its norm) significantly. These findings on the significance of the covariate effect and 
overall goodness-of-fit remain unchanged when we use the normalized covariate data with mean zero and variance one. 

To further elucidate the effects of age and BMI on ESAG model features, we present in Fig. 4 estimates of the concentration and 
three eigenvalues of 𝐕, (𝜆1, 𝜆2, 𝜆3), versus BMI when one is 70, 80, and 90 years of age. As age increases, we observe in Fig. 4 a decrease 
in the estimate of ‖𝝁‖, corresponding to an increase in the estimated overall variation of 𝐘. The finding of highly variable directional 
distribution can imply highly variable in the composition of the gut microbiota among the elderly, which is a finding reported in 
existing literature but has been mostly stated in comparison with younger (than 65) healthy adults that are found to have a more stable 
composition of intestinal microorganisms (Claesson et al., 2012). Our results here can be evidence for that, even among the elderly, 
the trend of higher variability in microbiome composition as one ages persists. Moreover, a higher BMI also leads to a more variable 
distribution. Examining the estimated eigenvalues of 𝐕, one can see two change points in BMI: one at BMI of nearly 25 for an 80-

year-old and the other at BMI of around 35 for a 90-year-old. The first change point separates healthy weight (BMI ∈ (18.5,24.9)) and 
overweight (BMI ∈ (25.0,29.9)); the second change point belongs to the obese range (https://www.cdc.gov/healthyweight/assessing). 
Because 𝜆1 = 𝜆2 = 𝜆3 = 1(= 𝜆4) implies 𝐕 = 𝐈4, the proximity of the three considered eigenvalues to 1 implies (nearly) isotropy of 
the directional distribution and also relates to weak correlations between the four genera of bacteria. The aforementioned change 
points are where the estimates for these eigenvalues are closest to 1, and thus the distribution of 𝐘 tends to be more isotropic when 
𝐗 = (Age = 80,BMI ≈ 25) and (Age = 90,BMI ≈ 35). This can also imply a reduction in the correlation between the relative abundance 
of the four considered genera of bacteria at these change points. 

Computational Statistics and Data Analysis 208 (2025) 108167 

12 

https://www.cdc.gov/healthyweight/assessing


Z. Yu and X. Huang 

8. Discussion

We develop in this study a complete package of regression analysis for directional response built upon the ESAG distribution 
family indexed by constraint-free parameters. We consider a full range of statistical inference problems, including parameter estima-

tion, testing hypotheses on model features, and prediction. The uncertainty of parameter estimation can be assessed via bootstrap. 
Parametric bootstrap is also heavily involved in all proposed inference procedures, which is straightforward to implement owing to 
the formulation and parametrization of ESAG that allow for easy data generation from an ESAG distribution. Computer programs for 
implementing all proposed methods are available at https://github.com/Zehaoyu217/ESAG/blob/main/ESAG_Project2.R. We also 
demonstrate the use of this package for analyzing two datasets from different fields of applications.

The number of parameters in an ESAG regression model can be large in an application since the dimension of the parameter space 
grows quadratically in the dimension of 𝐘, 𝑑, and linearly in the number of covariates, 𝑞. For example, in microbiome analysis, 
𝑑 is the dimension of the compositional response, which typically is much larger than four, and one may wish to consider many 
covariates relating to the host’s physiological characteristics. We have started developing penalized likelihood-based methods to 
deal with high-dimensional directional data. Besides this ongoing follow-up research, another interesting topic is compositional data 
analysis the two case studies in Section 7 relate to. The idea of relating compositional data on a simplex to directional data on a 
hypersphere has been explored (Scealy and Welsh, 2011, 2017; Li et al., 2023) but with many open questions yet to be addressed. In 
this particular context, more components tend to have zero or nearly zero relative abundance as 𝑑 increases, which is a data pattern 
ESAG and most existing named directional distributions tend to fit poorly. Interpretations and implications of model parameters of 
a directional distribution that are practically meaningful for the corresponding compositional data also demand further systematic 
investigation.
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