Chapter 4b: Continuous Probability Distributions

Section 4.5 – Probability Distributions for Continuous Random Variables

Continuous Probability Distribution are generally represented by a probability density function (pdf) also known as a frequency function.

Continuous Probability Distributions have the following properties:
· The area under the curve correspond to probabilities

· The probability associated with one particular value (P(X=x) = 0)

· Hence, P(a<x<b) = P(a≤x≤b)

· The total area under a probability distribution is equal to 1
To find the area under most probability density functions one can use calculus (integrate between the two variables of interest).  These methods often are difficult therefore for common functions the probabilities are provided in tables.

Section 4.6 – The Normal Distribution

One of the most common continuous random variable is mound shaped and symmetric (bell-shaped) is known as the normal random variable.
For each normal random variable we must know the value of µ and σ. If two normal random variables have the same mean and standard deviation then their probabilities are equivalent as well.

See the figure below to understand the relationship between normal random variables with different mean and standard deviation.
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Probability Distribution for a Normal Random Variable x
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Where

µ = mean of the normal random variable x

σ = standard deviation

π = 3.1415…

e = 2.71828…

P(x<a) is obtained from a table of normal probabilities

It is possible to obtain the probabilities (area under the curve) using integration approximation methods however this is such a common density function that the probabilities are given to you in a table.

The table is based on the standard normal distribution – a normal distribution with a µ = 0 and σ = 1.  A random variable with a standard normal distribution, denoted by the symbol z, is called a standard normal random variable.  

All normal random variables can be “converted” to standard normal random variables.  Since this is true we must first learn how to use the Standard Normal Table (Table IV in your book – table also found on blackboard)
Example – Find the probability that the standard normal random variable z falls between 0 and 0.47.

(We write this in a probability statement as P(0 < z < 0.47)

Example – Find the probability that the standard normal random variable z falls between -1.2 and 0.58.  ( P(-1.2 < z < 0.58) )

Example – Find the probability that the standard normal random variable z falls to the left (is less than) 0.78.  ( P(z < 0.78) )

Example – Find the probability that the standard normal random variable z falls to the right (is greater than) 1.43.  ( P(z > 1.43) )

Example – Find the probability that a standard normal random variable exceeds 1.67 in absolute value.  P(|z| > 1.67)
Example – Find the probability that a standard normal random variable lies between 0.23 and 1.56.  P(0.23 < z< 1.56)

Example - Example – Suppose Z has a standard normal probability distribution
IF P(Z < c) = .8554  Find c.
Now that we know how to find probabilities of standard normal random variables we need to know how to find probabilities of a normal random variable with any mean and standard deviation. 

Note: standard normal random variables are the z-scores of normal random variables.

Steps for Finding a Probability Corresponding to a Normal Random Variable

1. Sketch the normal distribution and indicate the mean of the random variable x.

2. Convert the boundaries of the shaded area from x values to standard normal random variable z values using the formula
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Show the z values under the corresponding x values on your sketch.

3. Use Table IV in Appendix B (standard normal table) to find the areas corresponding to the z values.  If necessary, use the symmetry of the normal distribution to find area corresponding to negative z values and the fact that the total area on each side of the mean equals 0.5 to convert the areas from Table IV to probabilities of the event you shaded.

Example – Fast-food restaurants spend quite a bit of time studying the amount of time cars spend in their drive-thrus.  Certainly, the faster get through the drive-through, the more the opportunity for making money.  In 2007, QSR Magazine studied drive-through times for fast-food restaurants and Wendy’s had the best time, with a mean time spent in the drive-through of 138.5 seconds.  Assuming drive-through times are normally distributed with a standard deviation of 29 seconds, answer the following.

a. What is the probability that a randomly selected car will get through Wendy’s drive-thru in less than 100 seconds?

b. What is the probability that a randomly selected car will spend more than 160 seconds in Wendy’s drive thru?

c. What proportion of cars spend between 2 and 3 minutes in Wendy’s drive-thru?

Example – General Electric manufactures a decorative Crystal Clear 60-watt light bulb that is it advertises will last 1,500 hours.  Suppose that the lifetimes of the light bulbs are approximately normally distributed, with a mean of 1550 hours and a standard deviation of 57 hours.
a. What proportion of the light bulbs will last less than the advertised time?

b. What proportion of the light bulbs will last more than 1650 hours?

c. What is the probability that a randomly selected GE Crystal Clear 60-watt light bulb will last between 1625 and 1725 hours?

d. What is the probability that a randomly selected GE Crystal Clear 60-watt light bulb will last longer than 1400 hours?

The examples above are situations where you are trying to find the probability (or proportion).  There are occasions where you are given the probability and you want to find what z (and in turn what x) corresponds to the probability given.  In these situations you need to work backwards – looking in the table for z’s rather than probs.

Example – Refer to our Wendy’s example from above (mean = 138.5 seconds, standard deviation = 29 seconds).  Suppose that Wendy’s wants to institute a policy at its restaurants that it will not charge any patron that must wait more than a certain amount of time for an order.  Management does not want to give away free meals to more than 1% of the patrons.  What time would you recommend Wendy’s advertise as the maximum wait time before a free meal is awarded?

Example – The number of chocolate chips in an 18-ounce bag of Chips Ahoy! chocolate cookies is approximately normally distributed, with a mean of 1262 chips and a standard deviation of 118 chips, according to a study by cadets of the US Air Force Academy.
a. Determine the 30th percentile for the number of chocolate chips in an 8-ounce bag of Chips Ahoy! cookies

b. Determine the number of chocolate chips in a bag of Chips Ahoy! that make up the middle 99% of bags.

Section 4.7 – Descriptive Measures for Assessing Normality
In order to perform the steps in the previous section the random variable has to be normally distributed or approximately normally distributed (in which case the probabilities are approximations).  There are no steadfast rules as with binomial as to whether a random variable is normal or not.  The following are some guidelines to follow – it is only necessary to perform 1 of the following however the more evidence toward normality the better (I would recommend conducting at least two different methods):

Determining Whether the Data are from and Approximately Normal Distribution

1. Construct either a histogram or stem-and-leaf display for the data and note the shape of the graph.  If the data are approximately normal, the shape of the histogram or stem-and-leaf display will be similar to the normal curve (mound shape and symmetric).
2. Computer the intervals 
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and determine the percentage of measurements falling in each.  If the data are approximately normal, the percentages will be approximately equal to 68%, 95%, and 100% respectively.

3. Find the interquartile range, IQR, and standard, s, for the sample, then calculate the ration IQR/s.  If the data are approximately normal, then IQR/s ≈ 1.3.

4. Examine a normal probability plot for the data.  If the data are approximately normal, the points will fall (approximately) on a straight line.
****These checks form normality are all descriptive measures.  It is possible that a set of data passes all 4 of the criteria above and the population is not actually normal (it is unlikely but possible) therefore it is important that we claim the data is approximately normal ****
Method #3 comes from the idea that a perfectly symmetric mound shape set of data should have 25th percentiles and 75th percentiles with z-scores of -.67 and .67 respectively.  This is a difference of 1.34 (for standard normal random variables the standard deviation is 1 therefore IQR/s ≈ 1.3).  For normal random variables shifted by mean and standard deviation this ratio should work out to be approximately the same. 

Method #4 is a plot of values from smallest to largest versus their z-scores if assuming the data is normal.  DDXL can create the probability plots.

USING DDXL TO CREATE NORMAL PROBABILITY PLOT

1. Highlight column with data
2. Add-ins/DDXL/Charts and Plots

3. Choose Normal Probability Plot

4. Select the Quantitative Value that you would like to investigate

5. Click Ok

Example – Wear-out failure time of electronic components is often assumed to have a normal distribution.  Can the normal distribution be applied to the wear-out of used manufactured products, such as colored display panels?  A lot of 50 used display panels was purchased by an outlet store.  Each panel displays 12 to 18 color characters.  Prior to acquisition, the panels had been used for about one-third of their expected lifetimes.  The data is saved in the PANELFILE file gives the failure times (in years) of the 50 used panels.  Use the techniques of this section to determine whether the used panel wear-out times are approximately normally distributed.

Example – To minimize the potential for gastrointestinal disease outbreaks, all passenger cruise ships arriving at US ports are subject to unannounced sanitation inspections.  Ships are rated on a 100-point scale by the Centers for Disease Control and Prevention.  A score of 86 or higher indicates that the ship is providing an accepted standard of sanitation.  The latest sanitation scores for 183 cruise ships are saved in the SHIPSANIT file.  Assess whether the sanitation scores are approximately normally distributed.

Section 4.9 – Other Continuous Distributions: Uniform and Exponential

Uniform Random Variable

A continuous random variable that appears to have equally likely outcomes over their range or possible values has a uniform probability distribution.  The uniform frequency function, when graphed, appears as a straight line over a range of values.  Again, area under the curve between two values is equivalent to the probability of a uniform random variable between those two values.

When finding the area under a straight line you are finding the area of rectangle.  This area is simple to find (area = length x width)

Probability Distribution for a Uniform Random Variable x

Probability density function: 
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Mean: 
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Standard Deviation: 
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Example – The reaction time X (in minutes) of a certain chemical process follows a uniform probability distribution with 5 ≤  X ≤ 10.

a. Draw a graph of the density curve

b. What is the probability that the reaction time is between 6 and 8 minutes?

c. What is the probability that the reaction time is between 5 and 8 minutes?

d. What is the probability that the reaction time is less than 6 minutes?

Exponential Random Variable

The length of time between emergencies, length of time until repair needed, etc. can sometimes be modeled using the exponential probability distribution (also called the waiting-time distribution) 
Probability Distribution for an Exponential Random Variable x

Probability density function: 
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Mean: 
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Standard Deviation: 
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Example – In NASCAR races such as the Daytona 500, 43 drivers start the race; however, about 10% of the cars do not finish due to the failure of critical parts.  University of Portland professors conducted a study of critical-part failures from 36 NASCAR races.  The researchers discovered that the time (in hours) until the first critical-part failure is exponentially distributed with a mean of .10 hour.

a. Find the probability that the time until the first critical part failure is 1 hour or more
b. Find the probability that the time until the first critical part failure is less than 30 minutes.

Section 4.10 – Sampling Distribution
In the previous sections we have assumed that we knew the probability distribution of the random variable (or could obtain it using descriptive measures – as in normal distribution).  In most “real-life” situations we do not know this information.  The shape of the distribution may be known but the parameters are not.  Parameters are those numerical quantities of the population that describe the probability distribution (p for binomial, μ and σ for normal, λ for Poisson, etc.)  Parameters are almost always unknown values.

We have also talked about mean 
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, standard deviation s, variance s2, etc. from the sample these are known as sample statistics.
We are now to the inferential statistics part of our course.  Before we can start inferring the values of population parameters we should ask ourselves which sample statistic am I going to use to get an estimate of my population parameter. 

Your book gives a really good simple example of this…. (see page 238 & 239)

Example – Toss a fair die and let x equal the number of dots showing on the up face.  Suppose the die is tossed three times, producing the sample measurements 2, 2, 6.  The sample mean is 
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and the sample median is m=2.  Because the population mean of x is μ = 3.5, you can see that for this sample of three measurements, the sample mean 
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 provides an estimate that falls closer to μ than does the same median.  Now suppose we toss the die three more times and obtain the sample measurements 3, 4, 6.  The mean and median of this sample are 
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 and m = 4.  This time m is closer to μ.  (Neither is a perfect estimator for μ)
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This happens because both 
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and m are themselves random variables.
Before we continue this section we are going to do a couple of activities in class to illustrate a sampling distribution.
The sampling distribution of a sample statistic calculated from a sample of n measurements is the probability distribution of the statistic.

To determine which sample statistic to use to estimate a population parameter we want to look at the sampling distributions.  If two statistics A and B have sampling distributions as shown below which would you choose as your sample statistic to infer σ2 and why?  
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You would choose statistic A because its sampling distribution is centered over σ2 and has less spread (variation).  This means you are more likely to infer σ2 correctly.

Many sampling distributions can be derived mathematically, but doing so is outside the scope of this class.  

Section 4.11 – The Sampling Distribution of a Sample Mean and the Central Limit Theorem

Estimating the population mean is a common practice.  In general, the sample mean 
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 is a good estimator for the parameter μ.  There are some useful properties about the sampling distribution of the sample mean.

Properties of the Sampling Distribution of 
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1. Mean of sampling distribution equals mean of sampled population, that is, 
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2. Standard deviation of sampling distribution equals
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The standard deviation is often referred to as the standard error of the mean.

The sampling distribution of the sample mean has two theorems associated with it:

1. If a random sample of n observations is selected from a population with a normal distribution, the sampling distribution of 
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 will be a normal distribution (in other words – if the population was normal the sampling distribution of 
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 is also normal)

The second is known as the CENTRAL LIMIT THEOREM it states

2. If a random sample of n observations is selected from a population (any population) with mean μ and standard deviation of σ.  Then, when n is sufficiently large, the sampling distribution of 
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will be approximately a normal distribution with mean 
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.  The large the sample size the better will be the normal approximation to the sampling distribution of 
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.
This can be illustrated using the applet from your book.

http://media.pearsoncmg.com/ph/esm/esm_mcclave_msb11e_11/applets/sampledist.html
The Central Limit Theorem begs the question what is sufficiently large – in general the greater the skewness the larger the sample size should be but we generally use a rule of n ≥ 30 for sufficiently large.

Example – The most famous geyser in the world, Old Faithful in Yellowstone National Park, has a mean time between eruptions of 85 minutes.  If the interval of time between eruptions is normally distributed with standard deviation 21.25 minutes answer the following questions:
a. What is the probability that a randomly selected time interval between eruptions is longer than 95 minutes?

b. What is the probability that a random sample of 20 time intervals between eruptions has a mean longer than 95 minutes?

c. What is the probability that a random sample of 30 time intervals between eruptions has a mean longer than 95 minutes?

Example- The shape of the distribution of the time required to get an oil change at a 10-minute oil-change facility is unknown.  However, records indicate that the mean time for an oil-change is 11.4 minutes and the standard deviation for oil-change time is 3.2 minutes.

a. To compute probabilities regarding the sample mean using the normal model, what size sample would be required?

b. What is the probability that a random sample of n = 40 oil changes results in a sample mean times of less than 10 minutes?

c. What is the probability that a random sample of n = 35 oil changes results in a sample mean time between 10 and 12 minutes?

It should be noted that as the sample size gets larger the standard deviation of the sampling distribution (
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) gets smaller.  This illustrates that the larger your sample the closer your estimate of 
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 should be to μ.  

It should also be noted that the Central Limit Theorem is the reason we see so many normal distribution in “real-life”.  When we are taking measurements often we are actually taking averages.

17

_1346575598.unknown

_1346579522.unknown

_1346580727.unknown

_1346580789.unknown

_1392531305.unknown

_1392531362.unknown

_1346581251.unknown

_1346582044.unknown

_1346580842.unknown

_1346580591.unknown

_1346576559.unknown

_1346578920.unknown

_1346579114.unknown

_1346578203.unknown

_1346576514.unknown

_1346576537.unknown

_1346576418.unknown

_1346575411.unknown

_1346575481.unknown

_1346575569.unknown

_1346575449.unknown

_1346562787.unknown

_1346564769.unknown

_1346526866.unknown

