UNIT 3 Notes: Chapter 6 and 10
Chapter 10:  Simple Linear Regression
Chapter 10 introduces inference about a response variable from an explanatory variable.  It is possible to perform this same type of analysis with multiple explanatory varibles which you will see in Chapter 11 in MGT 310.  Rather than break down this Chapter into sections I will break down the Chapter into steps to perfrom a simple linear regression. 

When you have two quantitative variables often you would like to know if how these two variables are related or associated.  If you determine that the two quantitative variables are linearly associated it is appropriate to fit a line to the data.  Once a line has been fit you can then plug in any value of the explanatory variable to predict what the response variable will be.  

For Example:  A nation job placement company is interested in developing a model that might be used to explain the variation in starting salaries for college graduates based on the college GPA. The following data were collected through a random sample of the clients with which this company has been associated.

	GPA
	Starting Salary

	3.20
	$35,000

	3.40
	$29,500

	2.90
	$30,000

	3.60
	$36,400

	2.80
	$31,500

	2.50
	$29,000

	3.00
	$33,200

	3.60
	$37,600

	2.90
	$32,000

	3.50
	$36,000


Example:  College GPA and high school GPA
Example:  Test 3 Score and Test 4 Score

Example:  Mother’s heights and daughter’s heights

Understanding Concept:

Assume we have an explanatory variable (x) that is quantitative and a response variable (y) that is also quantitative, such as College GPA (x) and Starting Salary (y).  

If you were asked to determine if Starting Salary DEPENDS on College GPA what would a graph look like that showed a definite dependence between the two variables?  (Assume linear dependence (relationship))

What would the graph look like if that showed a definite independence between the two variables?  (ie it would not matter what College GPA is as to what your starting salary would be)  (Again, assume linear relationship)

What would the graph look like if you were unsure whethere there was a linear relationship between College GPA and starting salary?  (Again assume linear relationship)
Example:  For simplicity purposes we are going to use an example without any units

	x
	3
	1
	3
	5

	y
	5
	8
	6
	4


Before we begin looking a simple linear regression let’s review from your previous math courses what the equation for a line looks like. 

Recall:     
Where m is the slope and b is the y-intercept

The concept covered in this Chapter fits a line to data with one response and one explanatory variable, then uses hypothesis testing to determine if the fit line can be used to predict values of the response variable. 
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There are several steps to follow when analyzing two quantitative variables to determine if they are linearly associated.

Step 1:  Hypothesize the deterministic component of the model that relates the mean E(y), to the independent variable x.  
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Step 2:  Use the sample data to estimate unknown parameters in the model

· Find the slope (
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) from the sample data 

· Find the y-intercept (
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· Be able to interpret these values

Note: the “hats” on the parameters means these are values that have been estimated by the sample – similar to the “hat” on sample proportion

Step 3:  Specify the probability distribution of the random error term and estimate the standard deviation of this distribution

· Check assumptions of probability distribution of random error ε
· Find value of variability of random error (σ2)

· Be able to interpret this value

Step 4:  Statistically evaluate the usefulness of the model

· Hypothesis test of β1 

· Calculate coefficient of correlation (r)
· Interpret coefficient of correlation
· Hypothesis test of ρ
· Calculate coefficient of determination (r2)

· Interpret coefficient of determination

Step 5:  When satisfied that the model is useful, use it for prediction, estimation, and other purposes

· Use line for prediction and estimation
· Create confidence intervals for estimation

Now we will look at these steps in detail:
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Step 1:  Hypothesize the deterministic component of the model that relates the mean E(y), to the independent variable x.  
We are considering only straight lines with one explanatory variable therefore the model in this Chapter will always be…
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Step 2:  Use the sample data to estimate unknown parameters in the model
1. Plot the data to a scattergram (or scatterplot)
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Determine whether fitting a line to the data seems appropriate based on the graph.
Note that if fitting a line is appropriate that not all points will necessarily fall directly on the line.  These deviations from the fitted line are known as errors of prediction.  When fitting a line to the data the goal should be to minimize the errors – doing so by fitting a line where the sum of the squared errors is minimized.  This line is known as the least squares line, the regression line, the least squares predication equation or least squares regression line.
The methodology used to obtain this line is called the method of least squares.
Find the slope (
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Find the y-intercept (
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Be able to interpret these values
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and B, are highlighted on the printouts. These values, By 1 and B, = .7, agree
exactly with our calculated values. The value of SSE = 110 is also highlighted on

the printouts.

Now Work Exercise 10.16

Interpreting the Est

ates of By and By in Simple Linear Regres

yeintercept: By represents the predicted value of y when x = 0 (Caution: This value will
not be meaningful if the value x = 0 is nonsensical or outside the range of
the sample data.)

e i s e () ey 1
(Caution: This interpretation s valid only for x-values with
sample data.)

mit increase in x
of the

the ra

Even when the interpretations of the estimated parameters in a simple linear
regression are meaningful, we need to remember that they are only estimates based on
the sample. As such, their values will typically

change in repeated sampling. How much

confidence do we have that the estimated slope, f, accurately approximates the true
slope, ,? This requires statistical inference, in the form of confidence intervals and tests
of hypotheses, which we address in Section 10.4.

To summarize, we defined the best-fiting straight line to be the one that minimizes I
the sum of squared errors around the line, and we called it the feast squares line. We should
interpret the least squares line only within the sampled range of the independent variable. 1
In subsequent sections, we show how to make statistical inferences about the model 2
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Note: the “hats” on the parameters means these are values that have been estimated by the sample – similar to the “hat” on sample proportion
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Step 3:  Specify the probability distribution of the random error term and estimate the standard deviation of this distribution

Check assumptions of probability distribution of random error ε (you will learn how to check these in Chapter 11)
Assumption 1:  The mean of the probability distribution of ε is 0 – that is, the average of the values of ε over an infinitely long series of experiments is 0 for each setting of the independent variable x.  This assumption implies that the mean value of y, E(y), for a given value of x is 
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Assumption 2:  The variance of the probability distribution of ε is constant for all setting of the independent variable x.  For our straight line model, this assumption means that the variance of ε is equal to a constant, say σ2, for all values of x..  

Assumption 3:  The probability distribution of ε is normal. 
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need not hold exactly in order for least squares estimators to be useful. The assumptions
will be satisfied adequately for many applications encountered in practice.

It seems reasonable to assume that the greater the variability of the random error
& (which is measured by its variance o), the greater will be the errors in the estimation
of the model parameters B, and B, and in the error of prediction when §is used to pre
dict y for some value of x. Consequently, you should not be surprised, as we proceed
through this chapter, to find that o appears in the formulas for all confidence intervals
and test statistics that we will be using.

In most practical situations, o is unknown, and we must use our data to estimate
its value. The best estimate of o, denoted by s is obtained by dividing the sum of
squares of the deviations of the y values from the prediction line,

E(y) when x

E) when E0) =By + B

Positive

E(y) when errors

ErfGr probability
distribution

Negative
Figure 10.9 errors

The probability distribution of & 3 x X,
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Assumption 4:  The values of ε associated with any two observed values of y are independent – that is, the value of ε associated with one value of y has no effect on the values of ε associated with other y values.  
Find value of variability of random error (σ2)
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by the number of d s of freedom associated with this quantity. We use 2 df to esti-
mate the two parameters B, and f; in the straight-line model, leaving (n — 2) df for the
error variance estimation.
Estimation of o for a (First-Order) Straight-Line Model
SSE SSE
Degrees of freedom for error
where SSE = S(y; — 88y, —
S8*,, = S(y; —
To estimate the standard deviation o of &, we calculate
IV~
g SN2
We will refer to s as the estimated standard error of the regression model.
1
1
1
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******CAUTION – When performing these calculations, you may be tempted to round the calculated values of SSyy, β1, SSxy.  Be certain to carry at least six significant figures for each of these quntities to avoid substantial errors in calculations of SSE
Example:  Find the estimated standard error of the regression model for our example.  Let x represent the number of hours per day exposed to cigarette smoke for a been plant and y represent the height (inches) of the plant after 2 weeks.
	x
	y
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Be able to interpret this value
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Look Back The values of s> and s can also be obtained from a simple linear regression
printout. The Minitab printout for the advertising-sales example is reproduced in
Figure 10.10. The value of s is highlighted at the bottom of the printout in the MS
(Mean Square) column in the row labeled Residual Error. (In regression, the estimate
of o is called Mean Square for Error, or MSE.) The value, s = 3667, agrees with the
one calculated by hand. The value of s is also highlighted in Figure 10.10. This value,
s = .60553, agrees (except for rounding) with our hand-calculated value.

Now Work Exercise 10.30

Interpretation of 5, the Estimated Standard Deviation of &

We expect most (~95%) of the observed y values to lie within 2s of their respective
least squares predicted values,

ercises 10.25-10.36

brning the Mechanics b. n =40, S, =860, I, = 50, SS,, = 2,700, B, =2

S Visually compare the scattergrams shown below. If a least € n=10,E(y — ¥)* = 58,88, = 91,85, = 170
squares line were determined for each data set, which doyou 9,37 Suppose you fit a least squares line to 26 data points and
think would have the smallest variance, s*? Explain the calcuiated value of SSE is 8.34.

6 Calculate SSE and 5” for cach of the following cases a. Find
20,58, = 95

e he estimator of o (the variance of the random
S,y = 50,8, =75 error term &),
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Step 4:  Statistically evaluate the usefulness of the model
Hypothesis test of β1 
Hypothesis Test for β1 (A Test of Model Utility: Simple Linear Regression)
Hypotheses:

One Tailed Test
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Two-Tailed Test
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Assumptions:
The four assumptions about ε
Testing:

Test Statistic:
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Find Rejection Region

One-tailed:


t<-tα  when 
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Two-tailed:


|t| > tα/2

tα  and tα/2  based on (n-2) degrees of freedom
Or P-value by technology
Conclusions:

If test statistic falls in rejection region OR p-value < α
At the ___% significance level, my test statistic (t = ___) falls in the rejection region (or my p-value (_____) < α) therefore, I reject my null hypothesis.  The data provides sufficient evidence to support that the slope of the line is (greater than, less than or different from) 0.
OR

If test statistic does not fall in rejection region OR p-value > α
At the ___% significance level, my test statistic (t = ___) does not fall in the rejection region (or my p-value (______) > α) therefore, I do not reject my null hypothesis.  The data provides insufficient evidence to support that the slope of the line is (greater than, less than or different from) 0.
Example – Perform two-tailed Hypothesis test of slope

Calculate coefficient of correlation (r)
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f correlation and the coefficient of determination.

Coefficient of Correlation

Recall (from Section 2.10) that a bivariate relationship describes a relationship between two
variables. x and y. Scattergrams are used to graphically describe a bivariate relationship. In
this section, we will discuss the concept of correlation and show how it can be used to meas-
ure the linear relationship between two variables x and y. A numerical descriptive measure
of the lincar association between x and y is provided by the coefficient of correlation, r

The coefficient of correlation, 1, is a measure of the strength of the linear relation-
ship between two variables x and y. It is computed (for a sample of 7 measurements
onxand y) as follows:

where

§8,, = S(x - I
$S,, = S(y - 37

“The value of r s often called the Pearson correlation coefficient to honor its de
Biography p. 524.)

eloper, Karl Pearson. (See

e [Ro% ~
G atl (p 11:07am
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Example:

	x
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Calculate coefficient of determination (r2)
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55,; — St Explained sample variability

SS,, Total sample variablity
= Proportion of total sample variability explained by the lincar
relationship

In simple linear regression, it can be shown that this proportion—called the
coefficient of determination—is equal to the square of the simple linear cocfficient of
correlation r

Coeffi

nt of Determination

It represents the proportion of the total sample variability around ¥ that is ex-
plained by the lincar relationship between y and x. (In simple lincar regression, it
may also be computed as the square of the coefficient of correlation r.)

Note that 2 is always between 0 and | because ris between —1 and +1. Thus,an r* of
.60 means that the sum of squares of deviations of the y values about their predicted values
has been reduced 60% by the use of the least squares equation §, instead of 3, to predict

Problem Calculate the coefficient of determination for the advertisi

ales example.

alje The data are repeated in Table 10.4 for convenience. Interpret the result. v
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Example - 

Interpret coefficient of determination
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Figure 10.19
Portion of SPSS

printout for advertising-sales regression

accounts for 82% of the total sum of squares of deviations of the five sample y values

about their mean. Or, stated another way, 82% of the sample variation in sales revenue

(¥) can be “explained” by using advertising expenditure (x) in a straight-line model
Now Work Exercise 10.62a

Practical Interpretation of the Coefficient of Determination,

About 100(r*)% of the sample variation in y (measured by the total sum of squares of
deviations of the sample y values about their mean ) can be explained by (or attrib-
uted to) using x to predict y in the straight-line model.

m Using the Coefficient of Correlation and the Coefficient

of Determination

he previous Staristics in Action Revisited (p. 585), we dis- 72

29, implies that almost 30% of the

fered that cumulative 6-month advertising expenditures
a statistically useful linear predictor of number of new PI

variation in number of new PI cases can be
explained by using advertising
expenditure (x) in the stra

. but not a useful linear predictor of number of new WC
s. Both the coefficients of correlation and determination  line model. In contrast
hlighted on the Minitab printouts in Figures SIAI04and  y = number of new WC cases

ures SIA10.5) also support this conclusion. 7=.0s6 is not statistically |
For y = number of new PI cases, the correlation coeffi- different from 0 and r> = 003 implies that only 0.3% of -
« > i

e [Ro% ~
G atl () 11:18AM
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Example – 
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Step 5:  When satisfied that the model is useful, use it for prediction, estimation, and other purposes

Use line for prediction and estimation
Plug in value of x into equation to predict y at that level  (Note: it is only appropriate to plug in value that are x-values used in the scope of the problem)
Example – What is the predicted value of y when x is 4
Create confidence intervals for estimation
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A 100(1 — @)% Confidence Interval for the Mean Value of y at x =

9 & 1, (Estimated standard error of §)

or

1, G5
sS.

where (., is based on (n — 2) degrees of freedom.

A 1001 — @)% Prediction Interval* for an Individual New Value of y at x

9 % 1,2 (Estimated standard error of prediction)
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where 7 is based on (n — 2) degrees of freedom

Example 10.6

Problem Refer to the sales-appraisal simple line:

1 regression in previous examples. Find
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Example – Create a confidence interval for the prediction at x = 4
All of these steps can be done using DDXL

See page 612 in book for flow chart – also available on Blackboard

Do a full example:

Example –Perform all necessary steps to determine if a line fits well to the data, then use the line to predict values at x = 4.  Let x represent number of televisions in a household and y represent the number of couches in that household.
	X
	Y

	0
	1

	3
	2

	4
	6

	5
	9

	12
	12
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a. Find the unknown parameters in the line model (
[image: image52.wmf]0

ˆ

b

and
[image: image53.wmf]1

ˆ

b

) and interpret the values.

b. Find the value of the estimated standard error of regression equation and interpret

c. Perform test of slope at alpha = 0.5.
d. Calculate and interpret coefficient of correlation and coefficient of determination.

e. Use line to predict values at x = 4, create confidence interval for this prediction. 

f. Use DDXL to check your answers.
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