Confidence Level	Z-value
%06	1.645
95%	1.96
%66	2.58
99.90%	3.08

	Binomial:
Discrete Probability Distributions:	$P(X = x n, p) = \frac{n!}{x! (n - x)!} p^{x} (1 - p)^{n - x}$
$\mu = E(X) = \sum x_i P(X = x_i)$	$\mu = E(X) = np$
$\sigma = \sqrt{\sum [x_i - E(X)]^2 P(X = xi)}$	$\sigma = \sqrt{np(1-p)}$
Sample Size Calculations:	Normal:
$n_e = \frac{z^2 \sigma^2}{(MOE)^2}$	$z = \frac{(x - \mu)}{\sigma} \approx \frac{x - \overline{X}}{s}$
$n_e = \frac{(z)^2 p(1-p)}{(MOE)^2}$	x = μ + Zσ
	Sampling Distributions:
Confidence Intervals (one sample):	. σ
CI for $p = \hat{p} \pm z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$, where $\hat{p} = \frac{\#successes}{n}$	$\mu_{\overline{X}} = \mu$ and $\sigma_{\overline{X}} = \frac{1}{\sqrt{n}}$ $\sigma_{\overline{X}} = \frac{1}{\sqrt{n}}$
Cl for $\mu = \overline{X} \pm z(\frac{\sigma}{\sqrt{m}})$	$Z = \frac{1}{\sigma_{\overline{x}}} = \frac{\sigma_{\overline{x}}}{\sigma_{\overline{x}}}$
CI for $\mu = \overline{X} \pm t(\frac{s}{\sqrt{n}})$	\sqrt{n}
Hypothesis Tests (one sample):	$\mu_{\hat{p}}=p$ and $\sigma_{\hat{p}}=\sqrt{rac{p(1-p)}{n}}$
$ \left \begin{array}{c} Z_{test} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \\ \end{array} \right \left \begin{array}{c} Z_{test} = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \\ \end{array} \right \left \begin{array}{c} t_{test} = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \\ \end{array} \right $	$Z = \frac{(\hat{p} - p)}{\sigma_{\hat{p}}} = \frac{(\hat{p} - p)}{\sqrt{\frac{p(1 - p)}{n}}}$
Confidence Intervals (two samples):	Hypothesis Tests (two samples):
$CI (diff in proportions) = (\hat{p}_1 - \hat{p}_2) \pm Z \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$	$Z_{test} = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\vec{p}(1 - \vec{p})(\frac{1}{n_1} + \frac{1}{n_2})}}, \text{ where } \vec{p} = \frac{X_1 + X_2}{n_1 + n_2}$
$CI (paired difference) = \overline{D} \pm t(\frac{s_D}{\sqrt{n}})$, (dependent/related populations)	$t_{test} = rac{\overline{D} - \mu_D}{rac{S_D}{\sqrt{n}}}$, where $D_i = paired\ difference$
$CI(diff in means) = (\bar{X}_1 - \bar{X}_2) \pm t \sqrt{s_{pool}^2(\frac{1}{n_1} + \frac{1}{n_2})}, \text{ (independent, variances =)}$	$t_{test} = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{s_{pool}^2(\frac{1}{n_1} + \frac{1}{n_2})}}$
	$t_{+-+} = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{(\mu_1 - \mu_2)}$
Chebychev Rule: data within indicated interval is at least (1 - 1/k ²) x 100%	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
Empirical Rule:	Counting Rules:
$\mu \pm \sigma \rightarrow 68\%$ $\mu \pm 2\sigma \rightarrow 95\%$	Rule 1 : k events on each of n trials,
$\mu \pm 3\sigma \rightarrow 99.7\%$	# outcomes is k
$P(\mathbf{A}^{C}) = 1 - P(\mathbf{A})$ and $P(\mathbf{A}) = 1 - P(\mathbf{A}^{c})$	Rule 2 : k events on n trials,
P(A or B) = P(A) + P(B) - P(A and B)	i th outcomes is $(\mathbf{k})(\mathbf{k}) = (\mathbf{k})$
Independent events: $P(A B) = P(A)$	# outcomes is $(\mathbf{x}_{1})(\mathbf{x}_{2})\dots(\mathbf{x}_{n})$
P(B A) = P(B) $P(A and P) = P(A) * P(P)$	Rule 3 : arrange n items in order is
P(A and B)	n! = (n)(n-1)(n-2)(1)
Conditional Probability: $P(A B) = \frac{P(A B)}{P(B)}$	from n objects in order is $P = \frac{n!}{n!}$
Multiplication Rule: P (A and B) = P (A B)* P (B) = P(B) * P(A B)	$\int \frac{1}{n} \int \frac{1}{x} \int \frac{1}{(n-x)!} dx = \int \frac{1}{n} \int \frac{1}{x} \int \frac{1}{(n-x)!} dx$
Calculating Sample Statistics:	Rule 5 (COMBINATIONS): x objects selected
$\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n} = \frac{X_{1} + X_{2} + \dots + X_{n}}{n} \qquad S = \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}}$	from n objects, irrespective of order is $C = \frac{n!}{r!(n-r)!}$
	Chi-Square Statistics:
	$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$, where $\bar{p} = \frac{x_1 + x_2}{n_1 + n_2}$

	Do NOT Reject H ₀	Reject H ₀
H ₀ True	No Error Probability 1- α	Type I Error P(Type I)= α
H ₀ False	Type II Error P(Type II)= β	No Error Power=1- β