STAT 206: 3.5 (Coefficient of Correlation) and Chapter 13 (Simple Linear Regression)

Ideas in 3.5 and Chapter 13
e Exploring the Association between Two Quantitative Variables

e Association versus Causation
e Regression and Least Square Regression
e Calculating values using Excel

Three cases for exploring the association between two variables:
e Positive association: as values of x increase, values of y increase

e Negative association: as values of x increase, values of y decrease

e No association: values of x do not affect the values of y

If a linear pattern is present in the scatterplot, calculate the correlation, denoted by r, to measure

the strength and direction of the LINEAR relationship between x and y.
e Positive values of r indicate a positive relationship between the variables
e Negative values of r indicate a negative relationship between the variables

e rranges from-1to 1. The closerris to 0, the weaker the relationship. The closerristo 1 or -1, the

stronger the relationship
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e Calculating r (correlation coefficient)

Calculating the Correlation r

r =
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where n is the number of points, X and y are means, and s, and s, are standard devia-
tions for x and y. The sum is taken over all n observations.



e Correlation Examples:
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e Features of the Coefficient of Correlation
e The population coefficient of correlation is referred as p (rho) and the sample coefficient of
correlation is referred to as r
e Either p or r have the following features:

e Range:

e The to -1, the stronger the linear relationship
e The to 1, the stronger the linear relationship
e Thecloserto 0, the the linear relationship

e correlation does not imply causation — if two variables are associated with each other, it does not
necessarily mean that changes in one variable cause changes in the other variable
e Examples on Google......
e The Coefficient of Correlation Using Microsoft Excel Function

The Coefficient of Correlation Using Microsoft
Excel Function
Test#1Score  Test #2 Score Correlation Coefficient
78 82 0.7332 =CORREL(A2:A11,B2:B11)
92 88
86 91
83 90
95 92
85 85
91 89
76 81
88 96
79 77

The Coefficient of Correlation Using Microsoft Excel Data Analysis Tool



Introduction to Regression Analysis
e Regression analysis is used to:

e Dependent variable:

e Independent variable:

How can we predict the outcome of a Variable?

e The regression line predicts the value for the response variable y as a straight line function of the

value of x of the explanatory variable
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e Theslopeis
e y-interceptis

e Linear Regression is appropriate when:
1.

Simple Linear Regression Model
e Only one independent variable, X

e Relationship between X and Y is described by a linear function

e ChangesinY are assumed to be related to changes in X



Simple Linear Regression Equation (Prediction Line) Estimated

(or predicted)

e The simple linear regression equation provides an estimate Yvalue for

of the population regression line

The Least Squares Method

observation i
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e by and b; are obtained by finding the values of that minimize the sum of the squared differences

betweenvand 7: - Min > (Y, =Y,)> =min > (Y, - (b, +b,X;))’

e The coefficients by and by, and other regression results in this chapter, will be found using Excel

e by is the estimated average value of Y when the value of X is zero

e b, is the estimated change in the average value of Y as a result of a one-unit increase in X

Simple Linear Regression Example: A real estate agent wishes to examine the
relationship between the selling price of a home and its size (measured in

square feet) 450

e Arandom sample of 10 400 L

houses is selected

e Independent variable (X)
= square feet

e Dependent variable (Y) =
house price in $1000s
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e Simple Linear Regression Example: Interpretation of bpand b,
[ ] bo

e Making Predictions — Predict the price for a house with 2000 square feet:

Simple Linear Regression Example:
Excel Output

Ll

Multipie R o211 [The regression equation is:
R Square 0.58082

nduswsRSqusre 05202 |NOUSE price = 98.24833 +0.10977 (square feet)

Standard Error 4133032
Observations 10

ANOVA /
ar ss s F  Significance F
Regression 1 189349348 189349348 11,0848 0.01039
Residual / 13865.5652 17081957
Total 9 32600,5000
P ——
Coeficients dard Error St Pwvalue  Lower95%  Upper 95%
(m«;m 9824833 ) 58.03348 169296 012892 3567720 23207386
Square Feet 0.10977 0.03297 332038  0.01039 003374 018580

Simple Linear Regression Example:
Graphical Representation

House price model: Scatter Plot and Prediction Line
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Measures of Variation

* Total variation is made up of two parts:

SST = SSR + SSE

Total Sum of Regression Sum Error Sum of
Squares of Squares Squares

SST=F(Y,-Y)|[sSR=F(¥,-Y)}| [SSE=3(Y,-V )

where: Y =Mean value of the dependent variable
Y; = Observed value of the dependent variable
Y, =Predicted value of Y for the given X, value

* SST = total sum of squares (Total Variation)
* Measures the variation of the Y, values around their mean Y
* SSR = regression sum of squares (Explained Variation)
* Variation attributable to the relationship between X and Y
* SSE = error sum of squares (Unexplained Variation)
* Variation in Y attributable to factors other than X

Measures of Variation
Y
Yi ~ @ N
_sse|= (Y- Y,)2 Y
SSTR=(v,- 92
Y A _
// } SSR|= X (Y, - Y)?
Y — - Y
X; X

e Coefficient of Determination, r>
e The coefficient of determination is the portion of the total variation in the dependent variable that
is explained by variation in the independent variable
e The coefficient of determination is also called r-squared and is denoted as r*

2 SSR  regression sum of squares

SST total sum of squares
e NOTE: 0<r*<l1



Examples of Approximate r?
Values
Y
% ® 9
M ®e0 >a®
* e o 5
X X X
er2=1 *0<ric1
* Perfect linear relationship * Weaker linear relationships
between X and Y: betweenX and Y:
* 100% of the variationin Y is * Some but not all of the variation
explained by variation in X inY is explained by variation in X
y *r2=0
e 00 * No linear relationship between X and Y:
o
—.'1.".—‘.— * The value of Y does not depend on X.
(None of the variation in Y is explained
by variation in X)

e Simple Linear Regression Example: Coefficient of Determination, r’ in Excel

Simple Linear Regression Example:
Coefficient of Determination, r? in Excel

DCOVA
SSR 18934 9348 -
Regression Statistics rz = - = (0.58082
tiple R ) SST  32600.5000
- 58.08% of the variation in
Standard Error 4133032 house prices is explained by
e . variation in square feet
ANOVA
df s F  Signficance F
Regression + "I 189349348 | 1809349348 11.0848 0.01039
Residual 8 13665,5652 17081957
S
Total ] »| 32600.5000
Coefficients Standard Error t Srar P-value Lower 95% Upper 95%
Intercept 9824833 5803348 1.69296 0.12892 3567720 23207386

Square Foet 010977 0.03297 332938 0.01039 0.03374 0.18580




