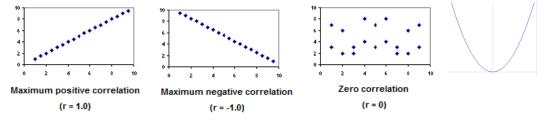
STAT 206: 3.5 (Coefficient of Correlation) and Chapter 13 (Simple Linear Regression)

- Ideas in 3.5 and Chapter 13
 - Exploring the Association between Two Quantitative Variables
 - Association versus Causation
 - Regression and Least Square Regression
 - Calculating values using Excel
- Three cases for exploring the association between two variables:
 - Positive association: as values of x increase, values of y increase
 - Negative association: as values of x increase, values of y decrease
 - No association: values of x do not affect the values of y
- If a linear pattern is present in the scatterplot, calculate the correlation, denoted by r, to measure the strength and direction of the LINEAR relationship between x and y.
 - Positive values of r indicate a positive relationship between the variables
 - Negative values of r indicate a negative relationship between the variables
 - r ranges from -1 to 1. The closer r is to 0, the weaker the relationship. The closer r is to 1 or -1, the stronger the relationship



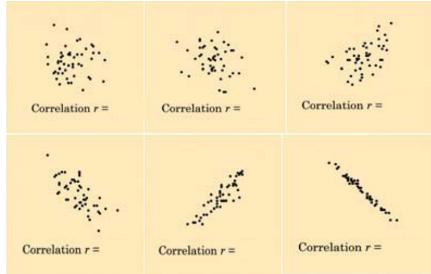
• Calculating r (correlation coefficient)

Calculating the Correlation r

$$r = \frac{1}{n-1} \Sigma z_x z_y = \frac{1}{n-1} \Sigma \left(\frac{x-\bar{x}}{s_x} \right) \left(\frac{y-\bar{y}}{s_y} \right)$$

where *n* is the number of points, \bar{x} and \bar{y} are means, and s_x and s_y are standard deviations for *x* and *y*. The sum is taken over all *n* observations.

• Correlation Examples:



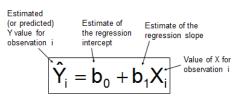
- Features of the Coefficient of Correlation
 - The **population coefficient of correlation** is referred as *p* (rho) and the **sample coefficient of correlation** is referred to as *r*
 - Either **p** or **r** have the following features:
 - Range:
 - The _____ to -1, the stronger the _____ linear relationship
 - The _____ to 1, the stronger the _____ linear relationship
 - The closer to 0, the _____ the linear relationship
 - correlation does not imply causation if two variables are associated with each other, it does not necessarily mean that changes in one variable cause changes in the other variable
 - Examples on Google.....
- The Coefficient of Correlation Using Microsoft Excel Function

Test #1 Score	Test #2 Score	Corr	relation Coefficient	
78	82	0.7332	=CORREL(A2:A11,B2:B11	
92	88			
86	91			
83	90			
95	92			
85	85			
91	89			
76	81			
88	96			
79	77			

The Coefficient of Correlation Using Microsoft Excel Data Analysis Tool

- Introduction to Regression Analysis
 - Regression analysis is used to:
 - •
 - •
 - Dependent variable:
 - Independent variable:
- How can we predict the outcome of a Variable?
 - The regression line predicts the value for the response variable y as a straight line function of the value of x of the explanatory variable
 - $\hat{y} = b_0 + b_1 x$
 - \hat{y} is
 - **b**₀ is
 - **b**₁ is
 - The slope is
 - y-intercept is
 - Linear Regression is appropriate when: 1.
 - 2.
- Simple Linear Regression Model
 - Only one independent variable, X
 - Relationship between X and Y is described by a linear function
 - Changes in Y are assumed to be related to changes in X

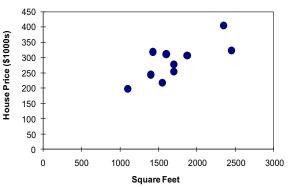
- Simple Linear Regression Equation (Prediction Line)
 - The simple linear regression equation provides an estimate of the population regression line



- The Least Squares Method
 - b_0 and b_1 are obtained by finding the values of that minimize the sum of the squared differences

between Y and
$$\hat{Y}$$
:
$$\min \sum (\mathbf{Y}_i - \hat{\mathbf{Y}}_i)^2 = \min \sum (\mathbf{Y}_i - (\mathbf{b}_0 + \mathbf{b}_1 \mathbf{X}_i))^2$$

- The coefficients b₀ and b₁, and other regression results in this chapter, will be found using Excel
- b₀ is the estimated average value of Y when the value of X is zero
- b₁ is the estimated change in the average value of Y as a result of a one-unit increase in X
- Simple Linear Regression Example: A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
 - A random sample of 10 houses is selected
 - Independent variable (X)
 = square feet
 - Dependent variable (Y) = house price in \$1000s



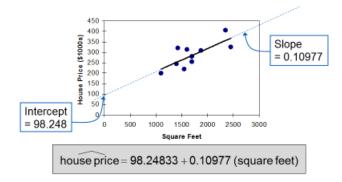
•	House Price in \$1000s	•	Square Feet
•	(Y)	•	(X)
•	245	•	1400
•	312	•	1600
•	279	•	1700
•	308	•	1875
•	199	•	1100
• • • •	219	•	1550
•	405	•	2350
•	324	•	2450
•	319	•	1425
•	255	•	1700

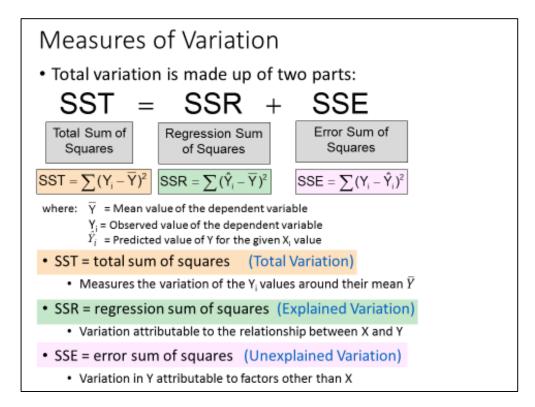
- Simple Linear Regression Example: Interpretation of b₀ and b₁
 - b₀
 - b₁
- Making Predictions Predict the price for a house with 2000 square feet:

Regression S						
Multiple R	0.76211	The regres	ssion eq	uation	is:	
R Square	0.58082	~				
Adjusted R Square	0.52842	house price	e= 98.248	333 + 0	.10977 (so	quare fe
Standard Error	41.33032	1				-
Observations	10					
ANOVA		/				-
	đf	ss	MS	F	Significance F	
Regression	1/	18934.9348	18934.9348	11.0848	0.01039	
Residual	ø	13665.5652	1708.1957			
Total	9	32600.5000				
	$-\langle$					-
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.073
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.1858

Simple Linear Regression Example: Graphical Representation

House price model: Scatter Plot and Prediction Line



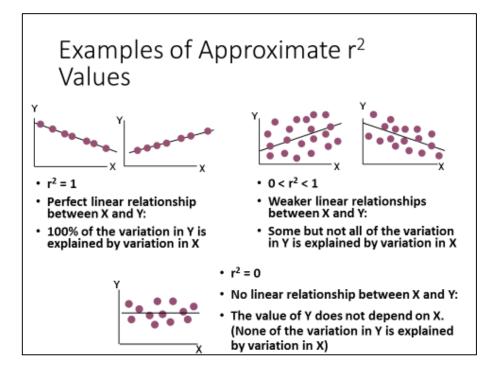




- Coefficient of Determination, r²
 - The **coefficient of determination** is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
 - The coefficient of determination is also called r-squared and is denoted as r²

$$r^2 = \frac{SSR}{SST} = \frac{\text{regression sum of squares}}{\text{total sum of squares}}$$

• NOTE: $0 \le r^2 \le 1$



• Simple Linear Regression Example: Coefficient of Determination, r² in Excel

