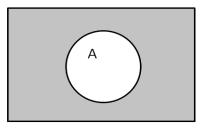
- Ideas in Chapter 4
 - Principles of **probability** bridge the worlds of **descriptive statistics → inferential statistics**
 - What is the probability that a family **PLANS TO** purchase HDTV this year?
 - What is the probability that a family **ACTUALLY PURCHASES** HDTV this year?
 - What is the probability that a family plans to purchase AND actually purchases HDTV this year?
 - **GIVEN THAT** family plans to purchase, what is the probability that they actually purchase HDTV this year?
 - Does **KNOWLEDGE** that *plans* to purchase change the likelihood that family *will* purchase?
 - Etc...
- 4.1 Basic Probability Concepts
 - Probability -
 - 3 types of probability:
 - A priori
 - Empirical probability
 - Subjective (personal)
 - Probability of an occurrence (outcome)

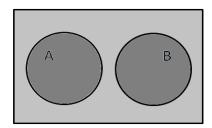
- Definitions:
 - sample space
 - Event
 - Joint Event –
 - Complement –

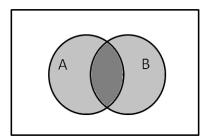
• Disjoint Events –

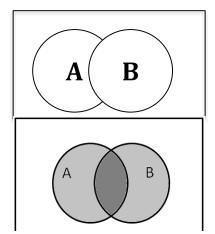
- Intersection of A and B -
- Union of A and B –

• Intersection of A and B -









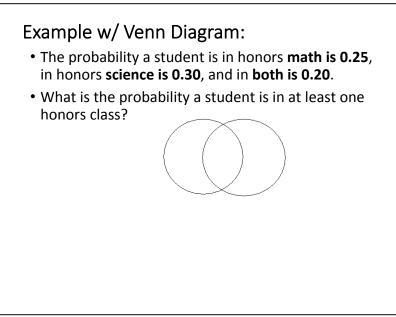
• Joint Probability

• Marginal Probability –

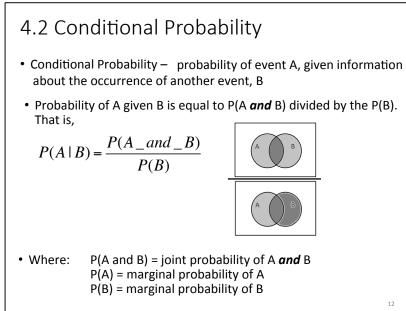
• **Example**: Probability that the family "planned to purchase" AND "actually purchased"'

	Actually Purchased		
Planned to Purchase	Yes	No	Total
Yes	200	50	250
Νο	100	650	750
Total	300	700	1000

- UNION Rule (General Addition Rule)
 - P(A or B) = P(A) + P(B) P(A and B)



• 4.2 Conditional Probability



•	Example: What is the probability that family "Actually
	purchases" GIVEN THAT "Planned to purchase"?

	Actually Purchased			
Planned to Purchase	Yes	No	Total	
Yes	200	50	250	
Νο	100	650	750	
Total	300	700	1000	

- **EXAMPLE**: Seat belts and deaths
 - What is the probability that an individual wore a seat belt in the auto accident? That is, P(Y)?

Wore seat belt?Survived (S)Died (D)Total					
Yes (Y)	412,368	510	412,878		
No (N)	162,527	1,601	164,128		
Total	574,895	2,111	577 <i>,</i> 006		

- What is the probability that an individual survived in the auto accident? That is, P(S)?
- What is the probability that an individual did NOT survive the auto accident? That is, P(D)?
- What is the probability that an individual wore a seat belt **and** survived in the auto accident? That is, P(S and Y)?
- What is the probability that an individual wore a seat belt **or** survived in the auto accident? That is, P(S or Y)?
- What is the probability of surviving GIVEN that the person wore a seatbelt? That is, P(S |Y)?

	Planned to	Actually	y Purchase	ed
Decision Trees –	Purchase	Yes	No	Total
alternative to Contingency Tables	Yes	200	50	250
alternative to Contingency Tables		100	650	750
	Total	300	700	1000
				20
Independence of events				

- Two events, A and B, are independent if
- Two events, A and B, are independent if and only if
- If one of the following is true, the all three are true:
 - 1.
 - 2.
 - 3.

- **Example**: Of the 300 households that purchased HDTV, they either purchased a standard refresh rate or a faster refresh rate. The contingency table shows satisfaction.
 - What is the probability that a family was satisfied with the purchase?

	Satisfied with Purchase			
TV Refresh Rate	Yes	No	Total	
Faster	64	16	80	
Standard	176	44	220	
Total	240	60	300	

- What is the probability that a family that bought a TV with faster refresh rate was satisfied with the purchase?
- Are the events "being satisfied with the purchase" and the "refresh rate of the TV" independent?
- General Multiplication Rule

 $P(A \mid B) = \frac{P(A_and_B)}{P(B)}$

Example: Previous contingency table, but only considering FASTER rate. Suppose 2 households are chosen at random from the 80 households. Find the probability that both households are satisfied with their purchases. Let: A = 2nd household is satisfied AND B = 1st household is satisfied

	Satisfied with Purchase			
TV Refresh Rate	Yes	No	Total	
Faster	64	16	80	
Standard	176	44	220	
Total	240	60	300	

• 4.4 Counting Rules

- **Rule 1**: If any of *k* different mutually exclusive and collectively exhaustive evens can occur on each of *n* trials, the number of possible outcomes is equal to *k*^{*n*}
- **Rule 2**: If there are k_1 events on the first trial, k_2 events on the second trial, ... and k_n events on the nth trial, then the number of possible outcomes is $(k_1)(k_2)...(k_n)$
- Rule 3: The number of ways that all *n* items can be arranged in order is *n*! = (*n*)(*n*-1)(*n*-2)...(1)
- Rule 4 (PERMUTATIONS): The number of ways arranging x objects selected from n objects in order

is equal to $_{n}P_{x} = \frac{n!}{(n-x)!}$ (where n = total number of objects, x = number of objects to be arranged, n! = n factorial = n(n-1)(n-2)...(1), P = symbol for permutations)

• Rule 5 (COMBINATIONS): The number of ways of selecting x objects from n objects, irrespective of order is equal to: ${}_{n}C_{x} = \frac{n!}{x!(n-x)!}$ (where where n = total number of objects, x = number of objects to be arranged, n! = n factorial = n(n-1)(n-2)...(1), C = symbol for combinations)

• 4.5 Ethical Issues and Probability

4.5 Ethical Issues and Probability					
 Probabilities can be misinterpreted 					
Consider the lottery:					
 Powerball – draw five white balls out of a drum with 26 red balls 	out of a drum wi	th 69 balls and	d one red ball		
 Jackpot – won by matching all five white balls in any order and the red Powerball 					
 Second prize – won by matching 	Match	Prize	Odds		
five white balls in any order	•••••	Grand Prize	1 in 292,201,338.00		
– is \$1,000,000 paid in cash		\$1,000,000	1 in 11,688,053.52		
	••••+ •	\$50,000	1 in 913,129.18		
(no annuity option)	0000	\$100	1 in 36,525.17		
 Win <i>something</i> by matching 	••••	\$100	1 in 14,494.11		
at least three white ball numbers	000	\$7	1 in 579.76		
and any time match the	•••+•	\$7	1 in 701.33		
red Powerball	+	\$4	1 in 91.98		
	O	\$4	1 in 38.32		
 Overall odds of winning a prize 	The overall ode The odds presented here a	Is of winning a prize are re based on a \$2 play (re			
in the game are approximately places).					
1 in 25 Why isn't the chance of winning \$4 at 1 in 26? <u>Click here for FAQ</u> .					
 Is it okay to have people spending understand? 	ng money on t	hings they	don't		