Ideas in Chapter 5:

- Concept and characteristics of probability distributions
 - Binomial distribution
 - Poisson distribution
 - Maybe covariance
 - Maybe Hypergeometric
- Important to remember:
 - What is a discrete numeric variable?
 - Counting rules

- Example:
- Number of interruptions per day in a large computer network

Interruptions		
in a day	Probability	
0	0.35	
1	0.25	
2	0.20	
3	0.10	
4	0.05	
5	0.05	

Counting Process? Mutually Exclusive? Valid Probabilities? Sum to one (1)?

- Expected value, μ , of a Discrete Variable
 - Expected value, μ , of a discrete variable, where $x_i = i^{th}$ value of the discrete variable X and $P(X=x_i) = probability$ of the occurrence of the i^{th} value of X is:

$E(x) = \sum x P(x)$					
Interruptions in a day	Probability	(x _i)(P(X=x _i))			
0	0.35				
1	0.25				
2	0.20				
3	0.10				
4	0.05				
5	0.05				
	1.00				

- Variance of a Discrete Variable
 - Variance, σ^2 , of a discrete variable, where $x_i = i^{th}$ value of the discrete variable X and $P(X=x_i) = probability$ of the occurrence the i^{th} value of X is:

$$\sigma^2 = \sum_{i=1}^{N} [x_i - E(X)]^2 P(X = x_i)$$

Interruptions in a day	Probability	x _i P(X=x _i)	[x _i -E(x)] ²	[x _i - E(x)] ² P(X=x _i)
0	0.35	0.00		
1	0.25	0.25		
2	0.20	0.40		
3	0.10	0.30		
4	0.05	0.20		
5	0.05	0.25		
	1.00	1.40		

- Standard Deviation of a Discrete Variable
 - Standard deviation, σ , of a discrete variable, where $x_i = i^{th}$ value of the discrete variable X and $P(X=x_i) = probability$ of the occurrence of the i^{th} value of X is:

$$\sigma = \sqrt{\sigma^2}$$

• 5.3 Binomial Distribution

- Properties of a Binomial
 - A fixed number of observations, n
 - Each observation is categorized as to whether or not the "event of interest" occurred
 - Constant probability for the event of interest occurring (π) for each observation
- Examples of business applications:

- Counting Techniques for Binomial
 - Suppose the event of interest is obtaining heads on the toss of a fair coin. You are to toss the coin three times. In how many ways can you get two heads?
 - The number of combinations of selecting x objects out of n objects is
- **Example:** How many possible 3 scoop combinations could you create at an ice cream parlor if you have 31 flavors to select from and no flavor can be used more than once in the 3 scoops?
 - The total choices is n = 31, and we select X = 3

Binomial Distribution

- $P(X=x|n,\pi) = probability of x events of interest (i.e., x "successes") in n trials, with the probability of a "success" of <math>\pi$ for each trial
- x = number of "events of interest" ("successes") in sample (x = 0, 1, 2, ..., n)
- n = sample size (number of trials or observations)
- π = probability of "event of interest" ("success")
- Example: Flip a coin four times, let X=# heads:

x =

n =

π=

- EXAMPLE: Suppose the probability of purchasing a defective computer is 0.02. What is the probability of purchasing 2 defective computers in a group of 10?
 - What do we know?
 - P(X=x | n,π)=

- Shape of the Binomial Distribution
 - Controlled by the values of π and n

- Binomial Distribution Characteristics
 - Mean: μ = E(X) = nπ
 - Variance: $\sigma^2 = n\pi(1-\pi)$
 - Standard deviation: $\sigma = \sqrt{(n\pi(1-\pi))}$
 - Where: n = sample size (# trials) $\pi = \text{probability of the event of interest (success) for any trial}$ $(1-\pi)=\text{probability of no success for any trial}$

• Excel Can Be Used To Calculate The Binomial Distribution

Excel Can Be Used To (Calculate The Binomial
Distribution	
A B	
1 Binomial Probabilities	
2	
3 Data	
4 Sample size 4	
5 Probability of an event of interest 0.1	
0 7 Statistics	
8 Mean 04	-B4 * B5
9 Variance 0.36	=B8 * (1 - B5)
10 Standard deviation 0.6	=SORT(B9)
11	
12 Binomial Probabilities Table	
13 X P(X)	
14 0 0.6561	=BINOM.DIST(A14, \$B\$4, \$B\$5, FALSE)
15 1 0.2916	=BINOM.DIST(A15, \$B\$4, \$B\$5, FALSE)
16 2 0.0486	=BINOM.DIST(A16, \$B\$4, \$B\$5, FALSE)
17 3 0.0036	=BINOM.DIST(A17, \$B\$4, \$B\$5, FALSE)
18 4 0.0001	=BINOM.DIST(A18, \$B\$4, \$B\$5, FALSE)
=BINOM.DIST(<#successes>,<#trial	s>, <probability_success>,<cumulative?>)</cumulative?></probability_success>
Pearson slide (Chapter	r 5, #35, mostly…)

