Ideas in Chapter 6:

- Normal distribution
 - Compute probabilities from the normal distribution
 - How to use the normal distribution to solve business problems
 - (Maybe) How to use the normal probability plot to determine whether a set of data is approximately normally distributed
- Brief look at and discussion of:
 - Computing probabilities from the uniform distribution
 - Computing probabilities from the exponential distribution
- Important to remember:
 - What is a continuous numeric variable?

• 6.2 Normal Distribution

- Bell Shaped
- Symmetrical
- Mean, Median and Mode are Equal
- Location is determined by the standard deviation, $\boldsymbol{\sigma}$
- The random variable has an infinite theoretical range $\infty~$ to ~ + $\infty~$

Normal Probability Density Function

- Formula for the normal probability density function is: $f(X) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \left(\frac{(X-\mu)}{\sigma}\right)^2}$
- Where:
 - e = the mathematical constant approximated by 2.71828
 - π = the mathematical constant approximated by 3.14159
 - μ = the population mean
 - σ = the population standard deviation
 - X = any value of the continuous variable Standardized Normal
- Standardized Normal
 - Any normal distribution (with any mean and standard deviation combination) can be transformed into the standardized normal distribution (Z)
 - To compute normal probabilities need to transform X units into Z units
 - $z = \frac{(x-\mu)}{\sigma} \approx \frac{x-\overline{X}}{s}$
 - The standardized normal distribution (Z) has a mean of 0 and a standard deviation of 1

Translation to the Standardized Normal

- To translate from X to the standardized normal "Z" distribution, subtract the mean, μ , and divide by the standard deviation, σ . That is, $z = \frac{(x-\mu)}{\sigma} \approx \frac{x-\overline{X}}{s}$
- The standard Normal Z distribution always has mean = μ = 0 and standard deviation = σ = 1
 - Values above the mean have positive Z-values
 - Values below the mean have negative Z-values
- Notice we are using the **POPULATION PARAMETER** values μ and σ

• **EXAMPLE**: If X is distributed normally with mean of \$100 and standard deviation of \$50 what is the Z value for x = \$200?

• Standardized Normal Table

- Cumulative Standardized Normal table in the textbook (*Appendix table E.2*) gives the probability less than a desired value of Z (i.e., from negative infinity to Z)
- **EXAMPLE**: P(Z < 2.00)

μ

• (General) Procedures for Finding Normal Probabilities

- To find P(a < X < b) when X is distributed normally:
 - Draw the normal curve for the problem in terms of X
 - Translate X-values to Z-values
 - Use the Standardized Normal Table
- **EXAMPLE**: Let X represent the time it takes (in seconds) to download an image file from the internet. Suppose X is normal with a mean, $\mu = 18.0$ seconds and a standard deviation, $\sigma = 5.0$ seconds. Find the probability that it takes less than 18.6 seconds to download an image file. That is, find P(X < 18.6).

- Finding a Normal Probability Between Two Values
 - Suppose X is normal with mean 18.0 and standard deviation 5.0. Find P(18 < X < 18.6)

- Probabilities in the Lower Tail
 - Suppose X is normal with $\mu = 18$ and $\sigma = 5$

• Empirical Rule

• What can we say about the distribution of values around the mean? For any normal distribution:

• What if you are given a Normal Probability, and you need to find x?

• Steps to find the X value for a known probability:

EXAMPLE: Let X represent the time it takes (in seconds) to download an image file from the internet. Suppose X is normal with mean 18.0 and standard deviation 5.0. Find X such that 20% of download times are less than X.

			Excel Can Be Used To
	A	В	Find Normal Probabilities
1	Normal Probabilities		a Find $D(Y < 0)$ where Y is
2			• Find $P(X < 9)$ where X is
3	Common Data		normal with a mean of 7
4	Mean	7	and standard deviation of 2
5	Standard Deviation	2	
6			
7	Probability for X <=		
8	X Value	7	
9	Z Value	0	=STANDARDIZE(B8, B4, B5)
10	P(X<=7)	0.5000	=NORM.DIST(B8, B4, B5, TRUE)
11			
12	Probability for X >		
13	X Value	9	
14	Z Value	1	=STANDARDIZE(B13, B4, B5)
15	P(X>9)	0.1587	=1 - NORM.DIST(B13, B4, B5, TRUE)

6.3 Evaluating Normality

• Not all continuous distributions are normal

→ important to evaluate how well data are approximated by a normal distribution

- Normally distributed data should approximate the theoretical normal distribution:
 - Bell-shaped (symmetrical) where the mean is equal to the median
 - Empirical rule applies
 - Interquartile range ~ 1.33 standard deviations

• 6.4 Uniform Distribution

- The uniform distribution is a probability distribution that has equal probabilities for all possible outcomes of the random variable (also called a rectangular distribution)
- Uniform Probability Density Function and Properties:

where

- f(X) = value of the density function at any X value
- a = minimum value of X
- b = maximum value of X

• **Example**: Uniform probability distribution over the range 2 ≤ X ≤ 6:

σ=

 $\mathsf{P}(3 \le X \le 5) =$

• 6.6 Normal Approximation to Binomial

- The binomial distribution is a discrete distribution, but the normal is continuous
- To use the normal to approximate the binomial, accuracy is improved if you use a correction for continuity adjustment

f(X)

2

0.25

- **EXAMPLE**: X is discrete in a binomial distribution, so P(X = 4) can be approximated with a continuous normal distribution by finding
- The closer π is to 0.5, the better the normal approximation to the binomial
- The larger the sample size n, the better the normal approximation to the binomial

Х

6

• **EXAMPLE:** If n = 1000 and π = 0.2, what is P(X \leq 180)?

•

