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Abstract

Ergodicity questions about the chain are related to the almost sure (a.s.) and L1

behavior of a reversed supermartingal referred to as the likelihood ratio trajectory and to the

zero-oneness of the tail σ-field of the chain.  Implications are that (i) convergence of the

Markov simulation method is related to the a.s. convergence of the corresponding trajectory

and that (ii) the variation norm between the distributions in the likelihood ratio regulates,

through Doob's inequality, how far the trajectory of the simulation is from its limit.
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1. Introduction and Statement of Main Results

The ergodicity of general state Markov chains is considered in this paper.  More

specifically, variation norm ergodicity questions about the chain are related to the almost

sure (a.s.) and L1 behavior of a reversed supermartingal referred to as the likelihood ratio

trajectory.  Implications are that (i) convergence of the Markov simulation method is related

to the a.s. convergence of the corresponding trajectory and that (ii) the variation norm

between the distributions in the likelihood ratio regulates, through Doob's inequality, how

far the trajectory of the simulation is from its limit.  The following is needed to precisely

state these relationships.

Let {X,B}  be a measurable space and let P(x,B) be a transition function on

{X,B},  i.e., P(x,B) is

(i) a probability measure (p.m.) on {X,B} for each x∈ X  and

(ii) {X,B}measurable for each B∈ B .

From Tulcea's Theorem (see Neveu, 1965, Proposition V.1.1) it follows that there

exists a unique p.m.  Px on {Ω,A} =  ∏
t=0

∞
 {X, B} such that for every measurable rectangle

∏
t=0

n
 Ft,

Px(∏
t=0

n
 Ft) = IF0(x) ∫

x1∈ F1

 
      ... ∫

xn∈ Fn

 
      ∏

t=1

n
 P(xt-1,dxt).

For µ a p.m. on {X,B} let Pµ denote the p.m. on {Ω,A} given by

Pµ(A) = ∫
 

 
 Px(A)µ(dx)

The mappings Xn: {Ω,A} →{X,B},n=0,1,..., where Xn(ω)=xn, define a

Markov chain  {Xn}under Pµ since

P(Xn+1∈ B|Xn,...,X0) = P(Xn+1∈ B|Xn) a.s.    Pµ

= P(Xn,B) a.s.    Pµ.
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The m-step transition function of the chain is given by Pm(x,B) where

P1(x,B) ≡ P(x,B) and

Pm(x,B) = ∫   P(y,B) Pm-1(x,dy)

Expectations of the Markov chain {Xn} under Pµ will be denoted by  Eµ.

When there exists a stationary initial probability measure or equilibrium
distribution, π, on {X,B}  for P(x,B), i.e.,

(1.1) π(B) = ∫
 

 
 P(x,B)π(dx),

the chain {Xn} is stationary under Pπ, i.e.,

Pπ((Xn,Xn+1,...)∈ A) = Pπ((X0,X1,...)∈ A) for every A∈ A.

Let S:Ω→Ω  denote the shift operator on Ω , i.e., S((x0,x1,x2,...)) =

(x1,x2,x3,...) and let I ={A:S-1A=A} denote the σ-field of invariant subsets of A.  If I is a

0-1 σ-field under Pπ, then the stationary process is said to be ergodic.  The classical

ergodic theorem can be stated as follows for the context considered here.  Note that, in the

classical ergodic theorem, the sample averages remove any periodic behavior of the chain

while reducibility information of the chain is contained in the invariant σ-field, I.

The Ergodic Theorem  Let f: X→R be a Borel measurable function for which

Eπ(|f(X0)|) < ∞.  Then,

∑
i=0

n
  
f(Xi)
n+1  → E(f(X0)|I )      a.s. Pπ.

If the chain is ergodic, then E(f(X)|I ) = Eπ(f(X)) a.s. Pπ and

∑
i=0

n
  
f(X0)
n+1  → Eπ(f(X))      a.s. Pπ.

For the statement and proof of the ergodic theorem considered here, denote the

distribution and expectations of the Markov chain {Xm:  m=0,1,2,...} initiated with

distributions π0 and µ0 by Pπ0, Pµ0, Eπ0, and Eµ0, respectively.  Let πm(B) =

Pπ0(Xm∈ B) and µm(B) = Pµ0(Xm∈ B) for B∈ B .  Let
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λ(B) = ∑
n=0

∞
   

1
2n(πn(B)+µn(B)).

Then, πn and µn are absolutely continuous with respect to λ.  Denote their densities

(Radon-Nikodym derivatives) with respect to λ by πn(y) and µn(y), repectively.  Let Lm(y)

= 
µm(y)

πm(y)
 where Lm(y) is defined to be zero if πm(y)=0.  The sequence {Lm(Xm):

m=1,2,...} will be referred to as the likelihood ratio trajectory of the Markov chain

{Xm}.

Let

(1.2a) ∆m ≡  ||µm(•) - πm(•)|| = sup
B

|µm(B) - πm(B)|

denote the variation norm between µm and πm.  Note that

(1.2b) ∆m = 
 ⌡

⌠

(πm(y) - µm(y))+λ (dy) = 
 ⌡

⌠ (1 - 

µm(y)

πm(y)
)+πm(y)λ(dy) 

=  Eπ0(1-Lm(Xm))+.

The main results are stated in the following theorem and lemma while their proofs

are deferred to Section 4.
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Ergodic Theorem  In general, Lm(Xm)→L∞ a.s. Pπ0 and in L1 and

(ia) ∆m =  Eπ0(1-Lm(Xm))+→ Eπ0(1-L∞ )+ and

(ib) lim µm(πm(Xm)>0) = Eπ0(L∞)

(ii) ∆m → 0 if and only if L∞=1 a.s. Pπ0.

In addition if µm << πm, then

(iii) ∆m =  
1
2 Eπ0(|1-Lm(Xm)|)

 and if µm << πm for every m, then

∆m =  
1
2 Eπ0(|1-Lm(Xm)|)→ 12 Eπ0(|1-L∞ |).

Three examples are given that elucidate the behavior of ∆m and of Lm(Xm) when

the chain is periodic or reducible or null recurrent.

Examples (a) Periodicity  Let X ={0,1}and consider the two state Markov

chain with transition funtion P(x,{y}) = 0 if y=x and = 1 if y≠x.  Then, π({x})=
1
2 , x∈ X ,

is the equilibrium distribution for the chain.  Let  µ0=π and π0=δ0 where δ0 is the Dirac

delta function and indicates that the process is initiated in state 0.  Then, µn=π  and πn=δ0

if n is even and πn=δ1 if n is odd.  So,

(1.3) Ln(x) = 
µn(x)

πn(x)
 = 

1

2δj(x)

where j=0 if n is even and =1 if n is odd.  Note that in (1.3) Ln(x)=0 if πn(x)=0 since the

observations from the chain are taken under π0.  Under π0, Ln(Xn)=
1
2, and so,

∆n =  Eπ0(1-Ln(Xn))+ = 
1
2.
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(b) Reducibility  Here X ={0,1} but P(x,{y}) = 1 if y=x and = 0 if y≠x.  Here

every initial distribution is an equilibrium distribution.  So, Ln(x) = 
µ(x)

π(x)
.  If π=δ0, then

Pπ(Xn=0)=1 and Ln(Xn) = 
µ(0)

π(0)
 = µ(0).  So, ∆n = 1-µ(0) = µ(1).

(c) Gaussian Random Walk (suggested by J. Berger)  Let Xn = X0 + ∑
i=1

n
Zi

where Z1,Z2,... are iid standard normal random variables.  Fix m∈ X.  Let π0=δm  and µ0

be standard normal.  Then, πn is normal with mean m and variance n while µn is normal

with mean 0 and variance n+1.  Then,

Ln(Xn)  =
d

  (
n

n+1)1/2exp-
1
2{

((n+1)1/2Z)2

n+1  - 
((n+1)1/2Z+m)2

n } → 1

where Z is a standard normal random variable and  =
d

  denotes that the two random

variables have the same distribution.  Thus, since (1-x)+ is bounded and continuous,

∆n→ 0.  Note that in this example there is no stationary initial distribution but there is an

invarient measure, Lebesgue measure on the real line. !

The above ergodic theorem can be used for chains with a stationary distribution π
by choosing µm = Pm(x,B) and πm = π.  In this case, a useful notion of ergodicity is

Variation Norm Ergodicity (VN-ergodicity):

||Pm(x,• ) - π(• )|| ≡ sup
BεB

 Pm(x,B)-π(B)  → 0.

This is particularly useful for situations where one is interested in the dynamics of the chain

under Pµ where (1.1) holds but µ is not the equilibrium distribution π.  For example, in the

Markov simulation method (see Athreya et al,1996, for a thorough discussion concerning

this method) {X,B}  = {Y×Z,B1×B2}, and one is interested in simulating from π.  The

p.m. π is the equilibrium distribution for the transition function, P((y,z),(dy',dz')) =

π(dy'|z') π(dz'|y) where the two terms on the right are the conditional p.m.'s y|z and z|y,

respectively.

The classical ergodic theorem does not apply to the dynamics of the simulation

since X0=(y,z) (i.e., under P(y,z)), but variation norm ergodicity is particularly appropriate

since, when {X,B}  is a Borel space, there exists random variables, U and V, have joint

distributions with marginals Pn(x, ) and π, respectively, such that ||Pn(x,•) - π(•)|| =
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P(U =\  V).  Thus, the variation norm indicates just how indistiguishable the Markov

simulation is from one for the desired distribution π.  In particular, by reversing the roles

of Pm(x,B) and π in the likelihood ratio trajectory {Lm(Xm)}, Lm(Xm) =  
πm(Xm)

pm(Xm|x), the

variation norm regulates how far the Markov simulation is from the desired equilibrium

distribution.  Namely,

Lemma 1.1   εPx(sup
m>n

(1-Lm(Xm))+> ε) < Ex(1-Ln(Xn))+ = ∆n.

Lemma 1.2  Let µm << πm for every m>n.  Then,

εPx(sup
m>n

|1-Lm(Xm)|> ε) < Ex(|1-Ln(Xn)|) = 2∆n

 and

εPx(sup
m>n

|L∞-Lm(Xm)|> ε) < Ex(|L∞-Ln(Xn)|)

where Lm(Xm)→L∞ a.s.

The proofs of these results are given in the Section 4.  They depend on showing

that {Lm(Xm),Fm} , Fm ≡ σ(Xm,Xm+1,...), is a reversed supermartingale which is

established in Section 2.  The roles of the remote σ-fields in the ergodicity of the chain is

discussed in Section 3.  There it is shown that in the countable state space case the chain is

ergodic iff and only if the tail σ-field is zero-one.

2. Martingale properties of {Lm(Xm),Fm}

Lemma 2.1  Under Pπ0, {Lm(Xm):  m=1,2,...} is a nonegative reversed

supermartingale adapted to the fields Fm ≡ σ(Xm,Xm+1,...) and is a reversed martingal if

µn << πn for each n.

Proof  Let j < m.  Since {Xm:  m=1,2,...} is a Markov chain,

E(Lj(Xj)|Fm ) = E(Lj(Xj)|Xm)

  Then, for B∈ B ,

Eπ0(Lj(Xj)I(Xm∈ B)) = Eπ0(Lj(Xj)I(Xm∈ B,πm(Xm)>0))
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= Eπ0(Eπ0(Lj(Xj)I(Xm∈ B,πm(Xm)>0))|Xj)

= Eπ0(Lj(Xj)Eπ0(I(Xm∈ B,πm(Xm)>0))|Xj))

= Eπ0(Lj(Xj)Pm-j(Xj,Xm∈ B,πm(Xm)>0))

= ∫Lj(y)Pm-j(y,Xm∈ B,πm(Xm)>0)πj(y)λ(dy)

= 
 ⌡

⌠Pm-j(y,Xm∈ B,πm(Xm)>0)

µj(y)

πj(y)
πj(y)λ(dy)

= ∫Pm-j(y,Xm∈ B,πm(Xm)>0)µj(y)λ(dy)

- Pµo(πj(Xj)=0,πm(Xm)>0,Xm∈ B)

= Pm(x,Xm∈ B,πm(Xm)>0)

- Pµo(πj(Xj)=0,πm(Xm)>0,Xm∈ B)

= ∫I(y∈ B,πm(y)>0)µm(y)λ(dy)

- Pµo(πj(Xj)=0,πm(Xm)>0,Xm∈ B)

= 
 ⌡

⌠I(y∈ B)

µm(y)

πm(y)
πm(y)λ(dy)

- Pµo(πj(Xj)=0,πm(Xm)>0,Xm∈ B)

= Eπo(Lm(Xm)I(Xm∈ B)) - Pµo(πj(Xj)=0,πm(Xm)>0,Xm∈ B)

< Eπo(Lm(Xm)I(Xm∈ B))

Thus,

(2.1) 0 <  Eπ0(L1(X1|Fm ) < Eπ0(Lj(Xj)|Fm ) < Lm(Xm)

where the inequalities in (2.1) are equalities if µj << πj since

Pµo(πj(Xj)=0,πm(Xm)>0,Xm∈ B) = 0 in this case. !

The following is an immediate consequence of convergence theorems from

martingale theory.

Corollary 2.2  Lm→ L∞  a.s Pπ0 and in L1.  If µn << πn for every n, then

Lm = Eπ0(L1(X1|Fm) → Eπ0(L1(X1|F∞) = L∞.  a.s Pπ0 and in L1.
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Proof  If {Lm,Fm} is a reversed nonegative supermartingale, then it is immedate

from the upcrossing inequality that Lm→ L∞  a.s Pπ0.  It follows from Fatou's lemma that

Eπ0(L∞) < lim Eπ0(Lm(Xm)) and from (2.1) that lim
___

 Eπ0(Lm(Xm)) < Eπ0(L∞).  Thus,

E(Lm)→ Ε(L∞ ) and it follows that  Lm→ L∞ in L1 since  Lm→ L∞  a.s..  The statement in

the second sentence is immediate since Lm = Eπ0(L1(X1|Fm). !

3. The Role of the Remote σ-fields

Here we investigate the relationship of the tail σ-field (the remote future σ-field) to

the ergodicity of the Markov chain, {Xn}, when it has an equilibrium distribution π.  To

investigate this relationship it will be convenient to assume that the chain is stationary and,

without loss of generality, doubly infinite.  Let {X̂n:  n=...,-1,0,1,...}, X̂n=X-n, denote

reversed chain.  Under Pπ, the reversed chain is stationary with equilibrium distribution π.

For n>0, let F-n = σ(X-n,X-n-1,...) and Fn = σ(Xn,Xn+1,...).  Let

F-∞ = 
n>0
∩ σ(X-n,X-n-1,...) and F∞ =  

n>0
∩ σ(Xn,Xn+1,...).  The σ-fields F-∞ and F∞ are just

the remote past and future σ-fields.   The next three theorems indicate the role of the

remote σ-fields in the ergodicity of the chain.  In particular, Theorem 3.3 shows that VN-

ergodicity and F∞  being zero-one are equivalent under an absolute continuity condition

(which holds, for example, for countable state spaces) and indicates that reducibility and

periodicity information about the chain is measurable with respect to these σ-fields.  This

result should be contrasted with Orey's (see Durrett, 1996, Theorem 5.8) which states that

for a countable state irreducible recurrent Markov chain the tail σ-field is just the σ-field

generated by the periodic classes.

To present these results, we need to define the weaker and more traditional notion

of ergodicity, namely,

Markovian Ergodicity (M-ergodicity):  Pm(x,B) → π(B) a.s. Pπ.
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Theorem 3.1  If {X̂n}is M-ergodic, then F∞ is zero-one.

Proof  Since {Xn} is Markovian,

(3.1) P(Xo ε B|Xn) = P(Xo ε B|Fn)→ P(Xo ε B|F∞ ) a.s.

By M-ergodicity,

(3.2) P(Xo ε B|Xn) =
d

 P(X-n ε B|X0) = P(X̂n ε Β|X̂0) ≡ P̂n(X0,B) → π(Β) a.s.

Since π(B) is a constant, it follows from (3.1) and (3.2) that

P(Xo ε B|F∞ ) = π(B) a.s.

Thus, Xo and F∞ are independent.  Since {Xn: n < 0} and F∞ are conditionally

independent given  Xo, it follows that {Xn: n < 0} and F∞ are independent.  A similar

argument shows that {Xn: n < k} and F∞ are independent for every k.  Thus, {Xn} and F∞

are independent .  By considering the reversed chain the same argument shows that {Xn}

and F−∞ are independent.  Since σ(...,X-1,X0,X1, ...)  ⊃  F∞ and F−∞, F∞ and F−∞ are

zero-one. !

Theorem 3.2  If F∞ is zero-one, then Lm→ Eπ(L∞ ) a.s Pπ and in L1.

Furthermore, if Eπ(L∞ )=1, then {Xn}is VN-ergodic.

Proof  The first result follows from Corollary 2.2, L∞=Eπ(L∞ ) a.s Pπ if F∞ is

zero-one.  If Eπ(L∞ )=1, then {Xn}is VN-ergodic by (ia) of the ergodic theorem. !

 Theorem 3.3  Let µ0=P(x, ) and assume that µn<<π for every n.  Then, under

Pπ, {Xn}is VN-ergodic if and only if F∞ is zero-one.

Proof  Note that, since µn<<π for every n, by Corollary 2.2,

(3.3) Eπ(L∞) = Eπ(L−∞) = Eπ(Lm)=1.

The proof of the "if part" follows from (3.3) and Theorem 3.2 since F∞ is zero-one.
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Since {Xn} is VN-ergodic, it is M-ergodic.  Thus, from Theorem 3.1, is F−∞ is

zero-one.  By Theorem 3.2 and (3.3), {X̂n}is VN-ergodic, and hence, M-ergodic.  This

and another application of Theorem 3.1 shows that F∞ is zero-one. !

Application - Countable State Spaces  Let the state space, X, be countable.

Let D={y:  π(y)>0}.  Fix x∈ D and let pn(y|x) denote the n-step transition density.

Suppose pn(y|x)>0.  Then, π(y) = ∑
z∈ D

pn(y|z)π(z) > pn(y|x)π(x) > 0.  Thus, µn =

Pn(x, )<<π.  Thus, by Theorem 3.3, lim pn(y|x) = π(y) if and only ifF∞ is zero-one. !

4. Proofs of Main Results

Proof of the Ergodic Theorem  (i)  Since Lm(Xm)→L∞  a.s Pπ0 by Corollary

3.2,

∆m = Eπ0(1-Lm(Xm))+→  Eπ0(1-L∞ )+

by (1.2) and the bounded convergence theorem.  This proves (ia).

Statement (ib) follow from the identity

(4.1) Eπ0(Lm(Xm)) = ∫
 

 
 Lm(y)πm(y)λ(dy)) = ∫I(πm(y)>0)µm(y)λ(dy)

= µm(πm(Xm)>0) ,

since  Lm(Xm)→L∞  in L1.

(ii)  Statement (ii) follow from (ia) and (1.2) since Lm(Xm)→L∞  a.s Pπ0 and in

L1 by Corollary 2.2.

(iii)  Note that since  µm << πm, ∆m =  
1
2 Eπ0(|1-Lm(Xm)|).  Since Lm(Xm)→L∞

in L1 by Corollary 3.2, it follows that 1-Lm(Xm)→1−L∞  in L1 and, from (4.1), that

lim µm(πm(Xm)>0) = Eπ0(L∞).  Thus,
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∆m =  
1
2 Eπ0(|1-Lm(Xm)|)→ 12 Eπ0(|1-L∞ |).

This proves (iii). !

Proofs of Lemma 1.1 and 2  Lemma 1.1 follows directly from Doob's

inequality since {1-Lm(Xm),Fm} is a reversed submartingale and f(x)=(x)+ is an

increasing convex function.  Since {|1-Lm(Xm)|,Fm} and {|L∞-Lm(Xm)|,Fm} are reversed

submartingales because {1-Lm(Xm),Fm} and {L∞-Lm(Xm),Fm}are reversed martingales

and f(x)=|x| is a  convex function, Lemma 1.2 also follows from Doob's inequality. !
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