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Whole Genome Sequencing Studies (2015-)
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WGS Covers 100% of the Genome

Rare 
Variants

>97%

GWAS Common 
Variants <3%

Rare variants are 
more likely to cause 
diseases and their 
coded proteins are 
more likely to be drug 
targets.

TOPMed Freeze 5 (n=54,000): 430M Variants (97% are rare variants)



1000 Genomes 
N=1000

GSP(NHGRI)
N=200,000
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First Goal of WGS Analysis:
Signal Detection

Scan the genome to identify genomic regions associated with 
diseases/traits



Challenges in Rare Variant Analysis of WGS Data

• Simple single SNP analysis 
does not work

• Need to perform SNP-set 
analysis

• Estimation is very difficult

APOE 
Promoter

LDL= 𝐆𝐆𝐆𝐆 + 𝐞𝐞



Sequencing Kernel 
Association Test (SKAT)
• Wu, et al, 2011, AJHG. 

(Citations=1400)
• SMMAT
• STAAR

Generalized Higher Criticism (GHC) 
/Generalized Berk-Jones (GBJ)/ACAT

• Murkerjee, et al, Ann. Stat, 2015

• Barnett, et al 2017 (GHC), JASA

• Sun and Lin (GBJ), 2017

• Liu, et al (ACAT), 2018

Model:

Sparse AlternativeDense Alternative

Test for Dense & Sparse High-Dimensional Alternatives

𝐘𝐘 = 𝐆𝐆𝐆𝐆 + 𝐞𝐞



Model and Hypothesis

Yi is phenotype (outcome) (i = 1, · · · , n)

Xi contains q covariates

Gi contains p SNPs (AA, AB, BB=0,1,2) in a SNV set, e.g.,
variants in the promoter region of APOE.

α and β contain regression coefficients.

µi = E (Yi |Gi ,Xi)

Model

h(µi) = X
T
i α +G

T
i β

Hypothesis of no gene/network effect (p might be large):

H0 : β = 0 and H1 : β 6= 0 (weak).
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• 𝑝𝑝 = dim(𝜷𝜷) might not be small

• Full GLMs hard to fit due to rare variants

• Solution: 

• Use score statistics 𝑍𝑍𝑗𝑗 = ∑𝑖𝑖=1𝑛𝑛 𝐺𝐺𝑖𝑖𝑖𝑖(𝑌𝑌𝑖𝑖 − �𝜇𝜇𝑖𝑖𝑖)

• Scability: Fit the null same null model 𝑔𝑔 𝜇𝜇𝑖𝑖 = 𝑿𝑿𝒊𝒊′𝜶𝜶 only once 

when scanning the genome

Challenges Addressed in Scalable Inference for WGS Data



Dense/Sparse Alternatives

Unknown Truth: k = p1−α of βj ’s 6= 0

Hypothesis

H0 : β = 0
H1 : Some βj 6= 0

Dense alternative (α < 1/2):

Ex: p = 100, α = 0.4⇒ k = 16

Sparse alternative (α > 1/2):

Ex: p = 100, α = 0.6⇒ k = 7
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Difficulties in Testing

No global optimal most powerful test exists.

Test optimality depends on

Genotype matrix(G ) : Sparsity, LD (correlation)

Signals β: Sparsity, strength, and sign

Distribution of Y
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• Burden(B) (if all variants are causal with effects (β’s) in the same 
direction)

𝐵𝐵 = �
𝑗𝑗

𝑝𝑝

𝑤𝑤𝑗𝑗𝑍𝑍𝑗𝑗

2

• SKAT (if there are neural variants and/or with effects (β’s) in different 
directions)

𝑆𝑆 = �
𝑗𝑗

𝑝𝑝

𝑤𝑤𝑗𝑗𝑍𝑍𝑗𝑗2

Dense Regime



Sparse Regime: Higher Criticism (HC) (Tukey,
1976)

Let

S(t) =

p∑
j=1

1{|Zj |≥t}

Assumes Σ = Ip or sparse (G is a low coherence matrix)

The HC test statistic is (Ingster, 1998; Donoho and Jin, 2003;
Arias-Castro, et al, 2011)

HC = sup
t>0

{
S(t)− 2pΦ̄(t)√

2pΦ̄(t)(1− 2Φ̄(t))

}
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The Higher Criticism
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Linear Regression: Existing Results on Detection
Boundary

Dense Regime (α ≤ 1
2
) Sparse Regime (α > 1

2
)

A �
√

pα− 1
2

n
⇒ all tests

powerless.
A <

√
2t log p

n
, t <

ρ∗gaussian(α) ⇒ all tests pow-
erless.

A �
√

pα− 1
2

n
⇒ SKAT pow-

erful
A >

√
2t log p

r
, t >

ρ∗gaussian(α) ⇒ HC powerful.

Setting

Low coherence matrix G (sparse correlation Σ)

A=signal strength of β.

Sparsity index: k = p1−α
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The results for binary regression are different from
linear regression (Mukherjee, et al, 2015, Ann Stat)

If design matrices are too sparse, then signal detection is
impossible no matter how strong signals are.

Two point detection boundary: Maximal Sparsity of G and
Minimal Signal Strength β.
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Asymptotic p-values for HC Does Not Work Well
for Finte p

The supremum of this standardized empirical process follows a
Gumbel distribution asymptotically.

Jaeschke (1979) shows that this converges in distribution at an
abysmal rate of O{(log p)−1/2}
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Slow Convergence to Asymptotic Distribution of HC
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In genetic studies, gene and network sizes

(p=# of SNPs=dozens to thousands)
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Analytic p-values for HC for Finite p
(Barnett and Lin, Biometrika, 2015)

Letting h be the observed HC statistic:

p-value = pr

(
sup
t>0

{
S∗(t)− 2pΦ̄(t)√
2pΦ̄(t)(1− 2Φ̄(t))

}
≥ h

)
There exists 0 < t1 < · · · < tp, such that

p-value = 1− pr

(
p⋂

k=1

{S∗(tk) ≤ p − k}

)

Then apply the chain rule of conditioning to get a product of
binomial probabilities.
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Simulation Study of Type I error rates of HC:
Analytic(Exact) vs Asymptotic

p

α 10 50

1·0 9·92× 10−1(7·31× 10−1) 1·01(1·59× 10−1)

1·0× 10−1 1·01× 10−1(6·03× 10−2) 9·75× 10−2(4·90× 10−3)

1·0× 10−2 1·12× 10−2(7·30× 10−3) 9·80× 10−3(4·00× 10−4)
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Need to account for Correlation among SNPs (LD))

CHRNA3-5 Gene Region
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Accounting for correlation: Innovated HC (iHC)
(Hall and Jin, 2011)

Letting UUT = Ĉov(Z ) = Σ̂

Define the transformed (decorrelated) test statistics:

Z
∗ = U

−1
Z

L−−−→
n→∞

MVN(0, Ip)

Set

S∗(t) =

p∑
j=1

1{|Z∗
j |≥t}

The innovated Higher Criticism test (iHC) statistic is:

iHC = sup
t>0

{
S∗(t)− 2pΦ̄(t)√
2pΦ̄(t)(1− 2Φ̄(t))

}
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Decorrelating using dampens true signals and causes
iHC to lose power: CGEM Breast Cancer GWAS:
FGFR2 gene
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Generalized Higher Critcism (GHC) (Barnett, et al,
2016, JASA)

Recall

S(t) =

p∑
j=1

1{|Zj |≥t}

Now we allow Σ to have arbitrary correlation structure.

S(t) is no longer binomial. Instead we approximate with
Beta-binomial, matching on first two moments.

The Generalized Higher Criticism (GHC) test statistic is:

GHC = sup
t>0

S(t)− 2pΦ̄(t)√
V̂ar(S(t))


GHC achieves the same as detection boundary as HC .
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The variance estimator V̂ar(S(t))

Let rn = 2
p(1−p)

∑
1≤k<l≤p(Σkl)

n and let Hi(t) be the Hermite

polynomials: H0(t) = 1, H1(t) = t, H2(t) = t2 − 1 and so on. Then

Cov

(
S(tk), S(tj)

)
= p[2Φ̄(max{tj , tk})− 4Φ̄(tj)Φ̄(tk)]

+4p(p − 1)φ(tj)φ(tk)
∞∑
i=1

H2i−1(tj)H2i−1(tk)r 2i

(2i)!
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Analytic p-values for the GHC

Letting h be the observed GHC statistic:

p-value = pr

sup
t>0

S(t)− 2pΦ̄(t)√
V̂ar(S(t))

 ≥ h


There exists 0 < t1 < · · · < tp, such that

p-value = 1− pr

(
p⋂

k=1

{S(tk) ≤ p − k}

)
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Generalized Berk-Jones

Motivation: GHC works well in the very sparse signal case but
less well in the moderately sparse signal case in finite samples.

Let s be the realized value of S(t).

Berk-Jones (Sup LR test):

BJ = max
t>0

log

{
Pr [S(t) = s|π = s/p]

Pr [S(t) = s|π = π0]

}
1

{
π0 <

s

p

}
Generalized Berk-Jones (Account for correlation):

GBJ = max
t>0

log

{
Pr [S(t) = s|π = s/p, cor(Z) = Σ]

Pr [S(t) = s|π = π0, cor(Z) = Σ]

}
1

{
π0 <

s

p

}
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Inference using Generalized Higher Criticism and
Generalized Berk-Jones

The distribution of S(t) is over-dispersed binomial and its exact
distribution is hard to calculate.

Approximate the distribution of S(t) using extended
beta-binomial.

The sups in GHC and GBJ are achieved at the design points and
both GHC/GBJ and their distributions are calculated analytically
using approximations.
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Rejection Boundary Comparisons: GHC vs GBJ

20 SNPs, 100% correlated with ρ=0.3
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Note how we gain ’volume’ in the rejection region near the expected
signals.
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Simulation (Main advantage of GBJ: Power gain in
finite sample for moderate sparsity)

200 SNPs, ρ1=0.3, ρ2=0, ρ3=0, R
2
=0.01
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Extremely sparse regime: 1-3 causal. Moderately sparse regime: 4-13
causal. Dense regime: 14+ causal.
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Key features:

• A general method for combining p-values.
• Super fast computation under arbitrary correlation and robust to 

correlation. 
• Powerful when signals are sparse.
• Can be used for constructing robust test.

Sparse Regime: ACAT: Aggregated Cauchy Association Test

Yaowu Liu, et al (JASA 2018, AJHG, 2019)



𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �
𝑖𝑖=1

𝑑𝑑

𝑤𝑤𝑖𝑖 tan 0.5 − 𝒑𝒑𝒊𝒊 𝜋𝜋

Transform p-value to Cauchy

Weights

Aggregated Cauchy Association Test (ACAT)



Dense signals Sparse signals

Alternative

Neutral variant
Causal variant

SlowFastComputation

SKAT  /  Burden MinP/GHC/GBJ Tests

No prior knowledge about the 
sparsity of signals. Need robust test.

Existing SNV-set tests



Assumptions:     𝐼𝐼. 𝑝𝑝𝑖𝑖 |𝑍𝑍𝑖𝑖| (z-score) 𝐼𝐼𝐼𝐼. ∀𝑖𝑖, 𝑗𝑗, 𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑗𝑗 ~𝑁𝑁2 0,Θ𝑖𝑖𝑖𝑖
Theorem: For any Σ ≥ 0, we have

lim
𝑡𝑡→+∞

𝑃𝑃{𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 > 𝑡𝑡}
𝑃𝑃{Cauchy 0,1 > 𝑡𝑡}

= 1.

P-value calculation:
p − value ≈ 1/2 − {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)}/π

Correlation of p-values 
Not required Super fast

Tail is Cauchy

Theory about ACAT



IndependentPerfectly 
dependent

Sample mean 
( �𝑋𝑋 = 1

𝑑𝑑
∑𝑖𝑖=1𝑑𝑑 𝑋𝑋𝑖𝑖)

𝑋𝑋𝑖𝑖 ~ Cauchy(0,1)

𝑋𝑋𝑖𝑖 ~ Normal(0,1) �𝑋𝑋 ~ N(0,1/d)

�𝑋𝑋 ~ Cauchy(0,1)�𝑋𝑋 ~ Cauchy(0,1)

�𝑋𝑋 ~ N(0,1)

≈Cauchy(0,1)

General 
Dependency

Heavy tail makes Cauchy distribution insensitive to correlation

Some insights



P-values

0.35                                                  0.51
0.25                                                  1.00
0.15                                                  1.96
0.05                                                  6.31

0.45                                                  0.16 

2e-03 159 
5e-03 63.7

Cauchy values

233

ACAT uses a few smallest p-values to represent the significance.

ACAT is powerful against sparse alternatives



…………
MAC<10 MAC>=10

SNVs in a region

Burden 𝑝𝑝0 𝑝𝑝1 𝑝𝑝2 𝑝𝑝3 𝑝𝑝𝑘𝑘……

𝑇𝑇

P-value ≈ 1 − 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) Super fast
Accurate

𝑤𝑤𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝑉𝑉 = 𝑤𝑤𝑖𝑖,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × )𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(1 −𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖

Saddlepoint method 
(Dey, et al, 2017)

ACAT-V for testing a SNV-set



Key features:

• Boost RV analysis power by optimally combining statistical evidence 
of MAFs (default in SKAT), functional annotations, and phenotypic 
information

• Computationally scalable 

• Applicable to any given variant-set

STAAR: variant-Set Test for Association 
using Annotation infoRmation

Xihao Li and Zilin Li



Optimal weighting: True effect sizes (unknown)

Signal Regions (Effect Sizes (𝜷𝜷)) in the Genome



Question: Which functional scores to use boost power of RV 
association analysis in a variant-Set

Use Functional Annotations to Prioritize Variants in a 
Variant-Set



Functional 
Annotation 
Database

WGSA

Annovar

CADD

ENCODE

EPIGENOME

Individual 
Scores

Choosing Weights  𝒘𝒘𝒋𝒋 to Empower WGS Association Analysis

>260 annotations

15 Types of Annotations

80% built on hg38

Genome Functional Variant Annotations (GSP+TOPMED) Hufeng Zhou)

Dynamically incorporate multiple annotation weights in RV Tests



Coding Variants Non-coding Variants

Existing Integrative Annotation Scores are Mainly Driven by Protein 
and Conservation Scores with Little Correlation with Epigenetic Scores



• APC1: Epigenetics
• APC2: Conservation
• APC3: Protein Function
• APC4: Negative Selection
• APC5: Distance to Coding
• APC6: Mutation Density
• APC7: Transcription Factor
• APC8: MapAbility
• APC9: Distance to TEE/TSE
• APC10: MicroRNA 

Correlation Heatmap with Annotation PCs (GSP Freeze 1, hg38)



STAAR: Incorporate Multiple Functional Scores to Boost Power of RV 
Association Analysis Using ACAT



Type I Error Rates Using STAAR are Protected: 
Simulated WGS data Using COSI (n = 10,000)

𝜶𝜶 = 𝟏𝟏𝟎𝟎−𝟔𝟔 Continuous Traits Dichotomous Traits

STAAR-B 1.1 × 10−6 1.0 × 10−6

STAAR-S 9.9 × 10−7 7.8 × 10−7

STAAR-O 9.3 × 10−7 1.0 × 10−6

STAAR-O uses ACAT to combine STAAR-B and STAAR-O



ARIC WGS data of LPA (AA, n=1800): Significant 4KB Sliding 
Windows in Chr 6



LPA (AA): Significant 4KB Sliding Windows in Chr 6



Area 1 and Area 2: Weights



• Scalable statistical inference is a critical niche 
for analysis of big data.

• It is important to integrate domain science and 
computational science in scalable statistical 
inference to accelerate statistical science and 
scientific discovery.

• “Optimal” statistical inference needs to 
context-specific, e.g., dense and sparse 
regimes for high-dimensional hypothesis 
testing

• Asymptotic and finite sample results are both 
important.

Final Remarks
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