Stat 201: Formulas for final exam

$* * * *$ Note: You may add notes to the front and back of this formula sheet

- Sample mean: $\bar{x}=\frac{\sum x}{n} ;$ Population mean $\mu=\sum[x P(x)]$
- median: the midpoint of the observations when they are ordered from smallest to largest.
- $z=\frac{\text { observation }- \text { mean }}{\text { std.dev }}$
- Residual $=y-\hat{y}$ where $\hat{y}=a+b x$
- $\mathrm{r}($ correlation coefficient $)=(+$ or -$) \sqrt{R^{2}}$
- $P(A)=\frac{N(A)}{N(S)} \quad P\left(A^{c}\right)=1-P(A) \quad P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
- $P(A \mid B)=\frac{P(A \text { and } B)}{P(B)} \quad P(A$ and $B)=P(A \mid B) P(B)$
- Mutually exclusive (disjoint) events: $P(A$ and $B)=0$
- Independent events: $P(A \mid B)=P(A) ; \quad P(B \mid A)=P(B) ; \quad P(A$ and $B)=P(A) P(B)$
- Properties of a probability distribution: $1.0 \leq P(x) \leq 1 \quad$ 2. $\sum P(x)=1$
- Binomial probability: $P(X=x)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x}$ where $x=0,1,2, \ldots, n$
- For Binomial random variable X: $\mu_{X}=n p$ and $\sigma_{X}=\sqrt{n p q}$
- The mean and standard error of a sample proportion is: $\mu_{\hat{p}}=p$ and $\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$
- The mean and standard error of a sample mean is: $\mu_{\bar{x}}=\mu$ and $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$
- General way to construct confidence interval: point estimate \pm margin of error:
- Population proportion: $\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
- One population mean $(\sigma$ known $): \bar{x} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$
- One population mean (σ unknown): $\bar{x} \pm t_{\frac{\alpha}{2}, d f} \frac{s}{\sqrt{n}}$ where $d f=n-1$
- Diff. between indep. population proportions: $\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$
- Diff. between indep. population means: $\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\frac{\alpha}{2}, d f} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}, d f=n_{1}+n_{2}-2$
- The value of $z_{\frac{\alpha}{2}}$ is determined by following table:

Confidence level 1- α	$z_{\frac{\alpha}{2}}$
0.90	1.645
0.95	1.96
0.99	2.58

- General 5 -step procedure to construct hypothesis testing (p-value approach):

1. State H_{0} and H_{a}
2. Check assumptions
3. Calculate test statistic:

* Population proportion: $z^{*}=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}$
* Population mean $(\sigma$ known $): z^{*}=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}$
* population mean (σ unknown): $t^{*}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$
* Diff. between indep. population proportions: $z^{*}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}}$
$*$ Diff. between indep. population means: $t^{*}=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$

4. Calculate p-value by hand / by StatCrunch
5. Make decision and write thorough interpretation:

* p-value $\leq \alpha \Longrightarrow$ Reject H_{0}
* p-value $>\alpha \Longrightarrow$ Fail to reject H_{0}

