Stat 201: Formulas for final exam ****Note: You may add notes to the front and back of this formula sheet ****

• Sample mean:
$$\bar{x} = \frac{\sum x}{n}$$
; Population mean $\mu = \sum [xP(x)]$

• median: the midpoint of the observations when they are ordered from smallest to largest.

•
$$z = \frac{\text{observation} - \text{mean}}{\text{std.dev}}$$

- Residual = $y \hat{y}$ where $\hat{y} = a + bx$
- r (correlation coefficient) = $(+ or -)\sqrt{R^2}$

•
$$P(A) = \frac{N(A)}{N(S)}$$
 $P(A^c) = 1 - P(A)$ $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

•
$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$
 $P(A \text{ and } B) = P(A|B)P(B)$

- Mutually exclusive (disjoint) events: P(A and B) = 0
- Independent events: P(A|B) = P(A); P(B|A) = P(B); P(A and B) = P(A)P(B)
- Properties of a probability distribution: 1. $0 \le P(x) \le 1$ 2. $\sum P(x) = 1$
- Binomial probability: $P(X = x) = \frac{n!}{x!(n-x)!}p^xq^{n-x}$ where x = 0, 1, 2, ..., n
- For Binomial random variable X: $\mu_X = np$ and $\sigma_X = \sqrt{npq}$
- The mean and standard error of a sample proportion is: $\mu_{\hat{p}} = p$ and $\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$
- The mean and standard error of a sample mean is: $\mu_{\bar{x}} = \mu$ and $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$
- General way to construct confidence interval: point estimate \pm margin of error:
 - Population proportion: $\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
 - One population mean (σ known): $\bar{x} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$
 - One population mean (σ unknown): $\bar{x} \pm t_{\frac{\alpha}{2}, df} \frac{s}{\sqrt{n}}$ where df = n 1

- Diff. between indep. population proportions: $(\hat{p}_1 - \hat{p}_2) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$

- Diff. between indep. population means: $(\bar{x}_1 - \bar{x}_2) \pm t_{\frac{\alpha}{2}, df} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, df = n_1 + n_2 - 2$

– The value of $z_{\frac{\alpha}{2}}$ is determined by following table:	Confidence level $1 - \alpha$	$z_{\frac{\alpha}{2}}$
	0.90	1.645
	0.95	1.96
	0.99	2.58

- General 5-step procedure to construct hypothesis testing (p-value approach):
 - 1. State H_0 and H_a
 - 2. Check assumptions
 - 3. Calculate test statistic:

* Population proportion:
$$z^* = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

* Population mean (
$$\sigma$$
 known): $z^* = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$

* population mean (
$$\sigma$$
 unknown): $t^* = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$

* Diff. between indep. population proportions: $z^* = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}}$

- * Diff. between indep. population means: $t^* = \frac{\bar{x}_1 \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$
- 4. Calculate p-value by hand / by StatCrunch
- 5. Make decision and write thorough interpretation:
 - * p-value $\leq \alpha \implies$ Reject H_0
 - * p-value > $\alpha \Longrightarrow$ Fail to reject H_0