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Motivation of Inference on Two Samples

I Until now we have been mainly interested in a single parameter,
either µ or p, of a single population.

I In practice, it is very common to compare the same
characteristic (mean, proportion, variance) from two different
distributions. For example, we may wish to compare

I the mean starting salaries of male and female engineers
(compare µ1 and µ2; independent vs. dependent samples)

I the proportion of scrap produced from two manufacturing
processes (compare p1 and p2)

I the the variance of noise levels from two indoor swimming pool
designs (compare σ2

1 and σ2
2).
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Inference on µ1 and µ2, assume σ2
1 and σ2

2 Known

I We want to compare the population means µ1 and µ2 of two
normal populations.

I Question: Are µ1 and µ2 significantly different from each
other?

I Suppose that we have two independent samples of size n1 and
n2, respectively:

Sample 1:Y11,Y12, . . . ,Y1n1 ∼ N (µ1, σ
2
1)

Sample 2:Y21,Y22, . . . ,Y2n2 ∼ N (µ2, σ
2
2).

Assume σ2
1 and σ2

2 are known.
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Inference on µ1 and µ2, assume σ2
1 and σ2

2 Known

I A logical point estimator of µ1 − µ2 is the difference in sample
mean Y 1 − Y 2.

I We already known that

Y 1 ∼ N (µ1, σ
2
1/n1) and Y 2 ∼ N (µ2, σ

2
2/n2).

I By property of normal distribution, Y 1 − Y 2 is also normally
distributed.

I E (Y 1 − Y 2) = µ1 − µ2 and Var (Y 1 − Y 2) =
σ2

1

n1
+
σ2

2

n2

I In summary, we have

Y 1 − Y 2 ∼ N
(
µ1 − µ2,

σ2
1

n1
+
σ2

2

n2

)
.
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CI of µ1 − µ2, assume σ2
1 and σ2

2 Known

A (1− α)100% confidence interval for µ1 − µ2 is

y1 − y2 − zα/2

√
σ2

1

n1
+
σ2

2

n2
≤ µ1 − µ2 ≤ y1 − y2 + zα/2

√
σ2

1

n1
+
σ2

2

n2
.
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Hypothesis Testings on µ1 − µ2, assume σ2
1 and σ2

2 Known

I Recall we have

Y 1 − Y 2 ∼ N
(
µ1 − µ2,

σ2
1

n1
+
σ2

2

n2

)
.

I Step 1: The null and alternative hypothesis

H0 : µ1 − µ2 = 0

Ha : µ1 − µ2 <,> or 6= 0

I Step 2: The test statistic is

z0 =
y1 − y2(−0)√

σ2
1

n1
+

σ2
2

n2

.
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Hypothesis Testings on µ1 − µ2, assume σ2
1 and σ2

2 Known

I Step 3: p-value
I For test Ha : µ1 < µ2, p-value= P(Z < z0);

I For test Ha : µ1 > µ2, p-value= P(Z > z0);

I For test Ha : µ1 6= µ2, p-value= 2P(Z < −|z0|).
I Step 4: Decision and Conclusion
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Example: Drying Time

A product developer is interested in reducing the drying time of a
primer paint. Two formulations of the paint are tested; formulation 1
is the standard chemistry, and formulation 2 has a new drying
ingredient that should reduce the drying time. From experience, it is
known that the standard deviation of drying time is 8 minutes, and
this inherent variability should be unaffected by the addition of the
new ingredient. Ten specimens are painted with formulation 1, and
another 10 specimens are painted with formulation 2; the 20
specimens are painted in random order. The two sample average
drying times are y1 = 121 minutes and y2 = 112 minutes,
respectively.
What conclusion can the product developer draw about the
effectiveness of the new ingredient, using α = 0.05?
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Example: Drying Time

Solution:

I Step 1: state hypothesis

I Step 2: Test statistic

I Step 3: p-value

I Step 4: Decision and conclusion
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Inference on µ1 and µ2, assume unknown σ2
1 and σ2

2

I The construction of confidence intervals and hypothesis testings
depend on the values of σ2

1 and σ2
2 .

1. σ2
1 = σ2

2 (equal variance case),

2. σ2
1 6= σ2

2 (unequal variance case)

I We first consider the case σ2
1 = σ2

2 .

I Just like inference for single proportion, single mean, and single
variance, we need a sampling distribution involving µ1 − µ2. It
can be shown that

T =
(Y 1 − Y 2)− (µ1 − µ2)√

S2
p ( 1

n1
+ 1

n2
)

∼ t(n1 + n2 − 2),

where

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

is called pooled variance.
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Inference on Two Means: σ2
1 = σ2

2

Assuming the variances of the two distributions are the same, we
want to test whether two populations (means) are the same or not.

11 / 41



CI for µ1 − µ2: assume σ2
1 = σ2

2

I A (1− α)100% confidence interval of µ1 − µ2 is given by

(y1 − y2)︸ ︷︷ ︸
pt. est.

± tα/2,n1+n2−2︸ ︷︷ ︸
quantile

√
s2
p(

1

n1
+

1

n2
)︸ ︷︷ ︸

standard error

.

I Interpretation: we are (1− α)100% confident that the
population mean difference µ1 − µ2 is in this interval (in the
context of the question).
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Hypothesis Testing on µ1 − µ2, assume σ2
1 = σ2

2

I We want to test H0 : µ1 − µ2 = 0 against three types of
alternative.

I The test statistic is

t0 =
y1 − y2

sp
√

1
n1

+ 1
n2

∼ tn1+n2−2

I For test Ha : µ1 6= µ2,, the p-value is 2P(Tn1+n2−2 < −|t0|);

I For test Ha : µ1 < µ2,, the p-value is P(Tn1+n2−2 < t0);

I For test Ha : µ1 > µ2, the p-value is P(Tn1+n2−2 > t0).
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Example: Fish Weights

I In the vicinity of a nuclear power plant, environmental engineers
from the EPA would like to determine if there is a difference
between the mean weight in fish (of the same species) from two
locations. Independent samples are taken from each location
and the following weights (in ounces) are observed:

Location 1: 21.9 18.5 12.3 16.7 21.0 15.1 18.2 23.0 36.8 26.6

Location 2: 22.0 20.6 15.4 17.9 24.4 15.6 11.4 17.5

I Question: Let µi denotes the mean weight of fish in location i ,
i = 1, 2. Are µ1 and µ2 significantly different from each other?

14 / 41



Check Assumptions

We start by checking normality assumption through Q-Q plots. The
points are approximately around a straight line, which indicates the
normality assumption is reasonable for both populations.
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Check Assumptions Cont’d

In order to visually assess the equal variance assumption, we use
boxplots to display the data in each sample.

loc.1 = c(21.9,18.5,12.3,16.7,21.0,15.1,18.2,23.0,36.8,26.6)
loc.2 = c(22.0,20.6,15.4,17.9,24.4,15.6,11.4,17.5)
# Create side by side boxplots
boxplot(loc.1,loc.2,xlab="",names=c("Location 1","Location 2"),
ylab="Weight (in ounces)",ylim=c(0,40),col="grey")
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Check Assumptions Cont’d

I To be formal, we can also perform a hypothesis test of

H0 : σ2
1/σ

2
2 = 1,

Ha : σ2
1/σ

2
2 6= 1.

I The R output is
loc.1 = c(21.9,18.5,12.3,16.7,21.0,15.1,18.2,23.0,36.8,26.6)
loc.2 = c(22.0,20.6,15.4,17.9,24.4,15.6,11.4,17.5)
var.test(loc.1, loc.2 )

F test to compare two variances

data: loc.1 and loc.2
F = 2.7803, num df = 9, denom df = 7, p-value = 0.1914
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:

0.5764409 11.6690466
sample estimates:
ratio of variances

2.780299
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Example: Fish Weights

I Recall: A (1−α)100% confidence interval of µ1−µ2 is given by

(Ȳ1 − Ȳ2)︸ ︷︷ ︸
pt. est.

± tn1+n2−2,α/2︸ ︷︷ ︸
quantile

√
s2
p(

1

n1
+

1

n2
)︸ ︷︷ ︸

standard error

.

I The sample summary statistic is

Variable n mean variance
Location 1 10 21.01 47.65

Variable n mean variance
Location 2 8 18.1 17.14

t16,0.025 = 2.12.
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Example: Fish Weights Cont’d

I The R output is
> t.test(loc.1,loc.2,conf.level=0.90,var.equal=TRUE)

Two Sample t-test

data: loc.1 and loc.2
t = 1.0474, df = 16, p-value = 0.3105
alternative hypothesis: true difference in means is not equal to 0
90 percent confidence interval:
-1.940438 7.760438

sample estimates:
mean of x mean of y

21.01 18.10

I Interpretation: We are 90% confident that the mean weight
difference in fish for location 1 and 2 is between -1.94 and 7.76
oz.

I Note that this interval includes “0”. By the relationship
between hypothesis test and confidence interval, we fail to reject
H0 : µ1 − µ2 = 0 against Ha : µ1 − µ2 6= 0. at α = 0.1 level.

I Therefore, we do not have sufficient evidence that the
population mean fish weights µ1 and µ2 are different at 0.1 level
of significance.
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Comments on Confidence Interval

1. We should only use this interval if there is strong evidence that
the population variances σ2

1 and σ2
2 are equal (or at least close).

Otherwise, we should use a different interval (coming up).

2. The two sample t interval (and the unequal variance version
coming up) is robust to normality departures. This means that
we can feel comfortable with the interval even if the underlying
population distributions are not perfectly normal.
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Inference on Two Means: σ2
1 6= σ2

2

I When σ2
1 6= σ2

2 , the construction of a (1− α)100% is no longer
based on the exact t distribution.

I We need to approximate the degrees of freedom of a t
distribution, and write an approxiamte confidence interval.

I An approximate (1− α)100% confidence interval µ1 − µ2 is
given by

(y1 − y2)± tα/2,ν

√
s2

1

n1
+

s2
2

n2
,

where

ν =
(s2

1/n1 + s2
2/n2)2

(s2
1/n1)2

n1−1 +
(s2

2/n2)2

n2−1

.
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Example: Recycling Project

You are part of a recycling project that is examining how much paper
is being discarded (not recycled) by employees at two large plants.
These data are obtained on the amount of white paper thrown out
per year by employees (data are in hundreds of pounds). Samples of
employees at each plant were randomly selected.

Plant 1: 3.01 2.58 3.04 1.75 2.87 2.75 2.51 2.93 2.85 3.09

1.43 3.36 3.18 2.74 2.25 1.95 3.68 2.29 1.86 2.63

2.83 2.04 2.23 1.92 3.02

Plant 2: 3.79 2.08 3.66 1.53 4.07 4.31 2.62 4.52 3.80 5.30

3.41 0.82 3.03 1.95 6.45 1.86 1.87 3.78 2.74 3.81
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Example: Recycling Project Cont’d

Let us look at the side-by-side plot to check the variances:

It is quite obvious that σ2
1 6= σ2

2 . A formal F test can be conducted
to confirm it.
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Check Assumptions

I To be formal, we can also perform a hypothesis test of

H0 : σ2
1/σ

2
2 = 1,

Ha : σ2
1/σ

2
2 6= 1.

I The R output is
plant.1 = c(3.01,2.58,3.04,1.75,2.87,2.57,2.51,2.93,2.85,3.09,
+ 1.43,3.36,3.18,2.74,2.25,1.95,3.68,2.29,1.86,2.63,
+ 2.83,2.04,2.23,1.92,3.02)
plant.2 = c(3.79,2.08,3.66,1.53,4.07,4.31,2.62,4.52,3.80,5.30,
+ 3.41,0.82,3.03,1.95,6.45,1.86,1.87,3.78,2.74,3.81)
var.test(plant.1, plant.2)

F test to compare two variances

data: plant.1 and plant.2
F = 0.1635, num df = 24, denom df = 19, p-value = 5.742e-05
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.06668721 0.38352280

sample estimates:
ratio of variances

0.1635384
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Example: Recycling Project Cont’d

I A 90% approximate (unequal variance) confidence interval for
µ1 − µ2 is given by
> # Calculate t interval directly
> t.test(plant.1,plant.2,conf.level=0.95,var.equal=FALSE)

Welch Two Sample t-test

data: plant.1 and plant.2
t = -2.1037, df = 23.972, p-value = 0.04608
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.35825799 -0.01294201

sample estimates:
mean of x mean of y

2.5844 3.2700
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Example: Recycling Project Cont’d
We can also test for Ha : µ1 − µ2 < 0 and Ha : µ1 − µ2 > 0 by
specifying “alternative”.

> t.test(plant.1,plant.2,conf.level=0.95,var.equal=FALSE,alternative="less")

Welch Two Sample t-test

data: plant.1 and plant.2
t = -2.1037, df = 23.972, p-value = 0.02304
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:

-Inf -0.1280042
sample estimates:
mean of x mean of y

2.5844 3.2700

> t.test(plant.1,plant.2,conf.level=0.95,var.equal=FALSE,alternative="greater")

Welch Two Sample t-test

data: plant.1 and plant.2
t = -2.1037, df = 23.972, p-value = 0.977
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
-1.243196 Inf

sample estimates:
mean of x mean of y

2.5844 3.2700
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Two Population Means: Dependent Sample

I Suppose the populations are not independent.

I For example:

1. Weights before and after a given diet.
2. Measurements obtained by two different instruments.
3. Comparison of two medical treatments.

I Basic idea: In the dependent sample problem, the data is
presented in matched pairs. In general, we apply two treatments
(e.g., with/without diet, measurements by instrument 1 and
instrument 2, etc.) on the experiment units (e.g., individuals,
products, etc.). We want to compare the two treatment effects
by converting the matched pairs to one sample problem.

I The variation in the two independent sample contains variation
among subjects and within subjects, while the source variation
of matched pair only comes from within subjects.

I When you remove extra variability, this enables you to do a
better job at comparing the two experimental conditions.
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Example: Creatine

I Creatine is an organic acid that helps to supply energy to cells
in the body, primarily muscle. Because of this, it is commonly
used by those who are weight training to gain muscle mass.
Suppose that we are designing an experiment involving USC
male undergraduates who exercise/lift weights regularly.

I Question: does creatine really work?

I Experiment Design: Recruit 15 students who are
representative of the population of USC male undergraduates
who exercise/lift weights. Each student will be randomly
assigned first to take either creatine or the control substance,
and record his maximum bench press weight (MBPW). After a
period of recovery (e.g. 1 week), we will then have each student
take the other treatment and record his value of MBPW again.
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Student j Creatine MBPW Control MBPW Difference (Dj = Y1j − Y2j )

1 230 200 30

2 140 155 -15

3 215 205 10

4 190 190 0

5 200 170 30

6 230 225 5

7 220 200 20

8 255 260 -5

9 220 240 -20

10 200 195 5

11 90 110 -20

12 130 105 25

13 255 230 25

14 80 85 -5

15 265 255 10
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Implementation

I Data from matched pairs experiments are analyzed by
examining the difference in responses of the two treatments.

I Specifically, compute Dj = Y1j − Y2j for each individual
j = 1, 2, . . . , n.

I Using the formula for one sample mean, a (1− α)100% C.I. for
one-sample data Dj is

Y D ± tn−1,α/2
SD√
n
,

where Y D and SD are sample mean and s.d. based on
d1, . . . , dn.
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Implementation Cont’d

I Hypothesis testing for test H0 : µD = 0 against three types of
alternative, see inference on single mean with Y replaced by
Y D , and S replaced by SD .

31 / 41



Example: Creatine

I The R output for creatine data is
creatine = c(230,140,215,190,200,230,220,255,220,200,90,130,255,80,265)
control = c(200,155,205,190,170,225,200,260,240,195,110,105,230,85,255)
> t.test(creatine,control, conf.level=0.95,alternative="two.sided",paired=TRUE)

Paired t-test

data: creatine and control
t = 1.4207, df = 14, p-value = 0.1773
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.227946 15.894612

sample estimates:
mean of the differences

6.333333

I Interpretation: The p-value of the test is 0.1773, we fail to
reject H0 at α = 0.05 level. This suggests that taking creatine
does not lead to a difference mean maximum bench press
weight (MBPW).

I 95% confidence interval (−3.23, 15.89) includes 0, which leads
to similar result comparing to the testing.
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Inference on Two Population Proportions

I Just like we extend inference for one sample mean to two
sample means, we also can extend our inference procedure for a
single population proportion p to two populations.

I Define
p1=population proportion of successes in Population 1,
p2=population proportion of successes in Population 2.

I For example, we can compare

1. defective rate of water filters for two different suppliers
2. the proportion of on-time payments for two classes of customers
3. The proportion of exceedence of the localizer for two training

programs.
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Point Estimator of p1 − p2

I Let Yi = number of “successes” in the i th sample out of ni
individuals, it follows that Yi ∼ binomial(ni , pi ), for i = 1, 2.

I We know that the most efficient estimators for p1 and p2 are
p̂1 = Y1

n1
and p̂2 = Y2

n2
, respectively. A natural point estimator for

p1 − p2 is given by

p̂1 − p̂2 =
Y1

n1
− Y2

n2
.
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Sampling Distribution

Recall that we have following approximate sampling distribution of
p̂1 and p̂2:

p̂1 ∼ AN
(
p1,

p1(1− p1)

n1

)
,

and

p̂2 ∼ AN
(
p2,

p2(1− p2)

n2

)
.

It can be shown that

(p̂1 − p̂2)− (p1 − p2)√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2

∼ AN (0, 1).
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Two Population Proportions: Confidence interval

I To make the above sampling distribution valid, We need

1. the two samples to be independent
2. the sample size n1 and n2 to be “large”, i.e., ni p̂i > 15, and

ni (1− p̂i ) > 15 for i = 1, 2.

I We can use above distributional result to conduct a hypothesis
test or construct an approximate (1− α)100% confidence
interval.

I Note again the form of the interval:

Point estimate︸ ︷︷ ︸
p̂1−p̂2

± quantile︸ ︷︷ ︸
zα/2

× standard error︸ ︷︷ ︸√
p̂1(1−p̂1)

n1
+

p̂2(1−p̂2)
n2
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Two Population Proportions: Hypothesis testing

I We want to test p1 = p2, which is equivalent to test
H0 : p1 − p2 = 0 vs. Ha : p1 − p2 6= (> or <)0.

I The most efficient estimator for p1 = p2(= p0) is

p̂0 =
Y1 + Y2

n1 + n2

with q̂0 = 1− p̂0. This leads to

Var (p̂1 − p̂2) =
p1q1

n1
+

p2q2

n2

=
p0q0

n1
+

p0q0

n2

= p0q0(
1

n1
+

1

n2
)
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Two Population Proportions: Hypothesis testing

I An estimator of Var (p̂1 − p̂2) is p̂0q̂0( 1
n1

+ 1
n2

).

I The test statistic under the null is

z0 =
p̂1 − p̂2√

p̂0(1− p̂0)( 1
n1

+ 1
n2

)

I For test Ha : p1 6= p2,, the p-value is 2P(Z < −|z0|);

I For test Ha : p1 < p2,, the p-value is P(Z < z0);

I For test Ha : p1 > p2, the p-value is P(Z > z0).
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Example: Proportion of Exceedence

I Airplanes approaching the runway for landing are required to
stay within the localizer (a certain distance left and right of the
runway). When an airplane deviates from the localizer, it is
sometimes referred to as an exceedence. Consider two airlines at
a large airport. During a three-week period, airline 1 had 14
exceedences out of 156 flights and airline 2 had 11 exceedences
out of 198 flights.

I We are interested in whether airline 1 has a significantly higher
exceedence rate than airline 2 or not.
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Example: Proportion of Exceedence Cont’d

Solution:

I Step 1: state hypothesis

I Step 2: Test statistic

I Step 3: p-value

I Step 4: Decision and conclusion
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You can also use R:

> prop.test(c(14,11),c(156,198),alternative="greater",correct=F)

2-sample test for equality of proportions without continuity

correction

data: c(14, 11) out of c(156, 198)

X-squared = 1.5538, df = 1, p-value = 0.1063

alternative hypothesis: greater

95 percent confidence interval:

-0.01200417 1.00000000

sample estimates:

prop 1 prop 2

0.08974359 0.05555556
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