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Introduction

I A regression model can be expressed as

Y = g(x1, x2, ..., xp) + ε

where the deterministic function g(x1, x2, ..., xp) indicates the
relationship between Y and x1, x2, ..., xp and the error term ε comes
from the variability.

I We have discussed the simple linear regression model

Y = β0 + β1x + ε,

where ε ∼ N(0, σ2) in Chapter 8. We now extend this basic model
to include multiple independent variables x1, x2, ..., xp with p ≥ 2.
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Introduction

I The extended model including multiple independent variables
x1, x2, ..., xp is called multiple linear regression model. It has the
form

Y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε,

where ε ∼ N(0, σ2).

I There are now p + 1 unknown (but fixed) regression parameters
β0, β1, β2, . . . βp.

I Y is still called dependent variable (random), and x1, x2, . . . , xp are
called independent variables (fixed).

I Error term ε is random (normal) and unknown, as well.
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Example: Cheese

The taste of matured cheese is related to the concentration of several
chemicals in the final product. In a study from the LaTrobe Valley of
Victoria, Australia, specimens of cheddar cheese were analyzed for their
chemical composition and were subjected to taste tests. For each
specimen, the taste Y was obtained by combining the scores from several
tasters. Data were collected on the following variables:

I taste (Y ) = taste score.

I acetic (x1) = concentration of acetic acid.

I h2s (x2) = concentration of hydrogen sulfide.

I lactic (x3) = concentration of lactic acid.

where the variables acetic and h2s were measured on the log scale.
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Example: Cheese

Let’s take a look at the cheese data:

with R code:

cheese <- read.table("D:/cheese.txt",header=TRUE)

cheese
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Example: Cheese

I The cheese data contains concentrations of the chemicals in a
random sample of n = 30 specimens of cheddar cheese and the
corresponding taste scores.

I Researchers postulate that each of the three variables acetic (x1),
h2s (x2), and lactic (x3) is important in describing taste (Y ), and
consider the multiple linear regression model

Y = β0 + β1x1 + β2x2 + β3x3 + ε

to model this relationship.
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Least Squares Method Revisit

I In simple linear regression, we use Method of Least Squares (LS) to
fit the regression line. LS estimates the value of β0 and β1 by
minimizing the sum of squared distance between each observed Yi

and its population value β0 + β1xi for each xi .

Q(β0, β1) =
n∑

i=1

[Yi − (β0 + β1xi )]2

I In multiple linear regression, we plan to use the same method to
estimate regression parameters β0, β1, β2, . . . βp.

I It is easier to derive the estimating formula of the regression
parameters by the form of matrix. So, before uncover the formula,
let’s take a look of the matrix representation of the multiple linear
regression function.
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Matrix Representation

Define

Y =


Y1

Y2

...
Yn


n×1

X =


1 x11 x12 · · · x1p
1 x21 x22 · · · x2p
...

...
...

. . .
...

1 xn1 xn2 · · · xnp


n×(p+1)

β =


β0
β1
β2
...
βp


(p+1)×1

ε =


ε1
ε2
...
εn


n×1

where xij is the measurement on the jth independent variable for the ith
individual, for i = 1, 2, · · · , n and j = 1, 2, · · · , p.
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Matrix Representation

With these definitions, the model

Yi = β0 + β1xi1 + · · ·+ βpxip + εi

for i = 1, 2, · · · , n, can be expressed equivalently as

Y = Xβ + ε

Note that

I Y is an n × 1 (random) vector of responses.

I X is an n × (p + 1) (fixed) matrix of independent variable
measurements.

I β is a p × 1 (fixed) vector of unknown population regression
parameters

I ε is an n × 1 (random) vector of unobserved errors.
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Example: Cheese

Here are Y, X, β, and ε for the cheese data. Recall there are n = 30
individuals and p = 3 independent variables.

Y =


12.3
20.9

...
5.5


30×1

X =


1 4.543 3.135 0.86
1 5.159 5.043 1.53
...

...
...

...
1 6.176 4.787 1.25


30×4

β =


β0
β1
β2
β3


4×1

ε =


ε1
ε2
...
ε30


30×1

Remark: If you feel confused, compare the numbers in page 5 and the
numbers in this page.
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Derivation of Least Squares Estimator

The notion of least squares is the same in multiple linear regression as it
was in simple linear regression. Specifically, we want to find the values of
β0, β1, β2, . . . βp that minimize

Q(β0, β1, β2, . . . βp) =
n∑

i=1

[Yi − (β0 + β1xi1 + β2xi2 + · · ·+ βpxip)]2

Recognize that
β0 + β1xi1 + β2xi2 + · · ·+ βpxip

is the inner (dot) product of the ith row of X and β, e.g. Xβ. Therefore,

Yi − (β0 + β1xi1 + β2xi2 + · · ·+ βpxip)

is the ith entry in the difference vector Y − Xβ.
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Derivation of Least Squares Estimator

I The objective function Q can be expressed by

Q(β) = (Y − Xβ)T (Y − Xβ)

the inner (dot) product of Y − Xβ with itself.

I Remark: For any vector A, the notation AT represents the
transpose of A. It makes the columns of the new matrix AT the
rows of the original A.

I Fact 1: For any two matrices A and B, (AB)T = BTAT . For
example, (Xβ)T = βTXT .

I Fact 2: For any two vectors C and D, CTD = DTC

12 / 60



Derivation of Least Squares Estimator

I Let’s expend the Q(β):

Q(β) = (Y − Xβ)T (Y − Xβ)

= [YT − (Xβ)T ][Y − Xβ]

= YTY − YT (Xβ)− (Xβ)TY + (Xβ)T (Xβ)

= YTY − 2YT (Xβ) + (Xβ)T (Xβ) (Fact 2)

= YTY − 2YTXβ + βTXTXβ (Fact 1)

I In order to find the value of β to minimize Q(β), we take derivative
and set it to zero.

∂Q(β)

∂β
=
∂(YTY − 2YTXβ + βTXTXβ)

∂β
≡ 0
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Derivation of Least Squares Estimator

∂Q(β)

∂β
=
∂(YTY − 2YTXβ + βTXTXβ)

∂β

= −2(YTX)T + 2XTXβ

= −2XTY + 2XTXβ (Fact 1)

≡ 0

I The last equation gives XTXβ̂ = XTY, leading to the LS estimator
of β to be

β̂ = (XTX)−1XTY

where (XTX)−1 is the inverse of XTX.
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Predicted Values Ŷ and Residuals e

I Given β̂ = (XTX)−1XTY , the function we use to predict Y is

Ŷ = Xβ̂ = X(XTX)−1XTY = HY

I H = X(XTX)−1XT is called the ”hat-matrix” (n × n), because it
helps Y to wear a hat!

I Remark: HT = H (symmetric) and HH = H (idempotent).

I Residuals: e = Y − Ŷ = Y − Xβ̂ = Y −HY = (I−H)Y, where I is
called identity matrix, which looks like

I =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


n×n
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Example: Cheese

Let’s use R to help us to find the estimated β for the cheese data.

> cheese <- read.table("D:/cheese.txt",header=TRUE)

> fit <- lm(taste ~ acetic + h2s + lactic, data=cheese)

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.877 19.735 -1.463 0.15540

acetic 0.328 4.460 0.074 0.94193

h2s 3.912 1.248 3.133 0.00425 **

lactic 19.670 8.629 2.279 0.03109 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 10.13 on 26 degrees of freedom

Multiple R-squared: 0.6518, Adjusted R-squared: 0.6116

F-statistic: 16.22 on 3 and 26 DF, p-value: 3.81e-06
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Example: Cheese

With the setting acetic = x1, h2s = x2, and lactic = x3, R gives

β̂ =


β̂0
β̂1
β̂2
β̂3

 =


−28.877

0.328
3.912

19.670


Therefore, the estimated regression model is

Ŷ = −28.877 + 0.328x1 + 3.912x2 + 19.670x3

or, in other words,

t̂aste = −28.877 + 0.328(acetic) + 3.912(h2s) + 19.670(lactic)

.

17 / 60



Example: Cheese

Because the estimator formula is given β̂ = (XTX)−1XTY , we can
actually calculate the estimate without using the lm() function in R.
Instead, we calculate it step by step, e.g.

> Y <- cheese$taste

> X <- cbind(rep(1, 30), cheese$acetic,

+ cheese$h2s, cheese$lactic)

> beta.hat <- solve(t(X) %*% X) %*% t(X) %*% Y

> beta.hat

[,1]

[1,] -28.8767658

[2,] 0.3280084

[3,] 3.9117818

[4,] 19.6696760
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Estimating σ2

I We assume ε ∼ N(0, σ2), and σ2 is unknown.

I Recall, in simple linear regression, we use

σ̂2 =
SSE

n − 2

where SSE =
∑n

i=1 e
2
i =

∑n
i=1(yi − ŷi )

2 (error sum of squares), to
estimate σ. Because it is an unbiased estimator,

E (σ2) = E

(
SSE

n − 2

)
=

E (SSE )

n − 2
=

(n − 2)σ2

n − 2
= σ2

.

I In multiple linear regression, we use the same idea to estimate σ2.
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Estimating σ2

I In multiple linear regression, we have

SSE =
n∑

i=1

(yi − ŷi )
2

= (Y − Ŷ)T (Y − Ŷ)

= (Y − Xβ̂)T (Y − Xβ̂)

= (Y −HY)T (Y −HY)

= [(I−H)Y]T [(I−H)Y]

= YT (I−H)T (I−H)Y Because (AB)T = BTAT

= YT (I−H)Y

I Remark: I−H is symmetric and idempotent as well. (See page 15)
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Estimating σ2

I Fact: E (SSE ) = (n − p − 1)σ2

I In multiple linear regression, define MSE = SSE
n−p−1

I MSE is an unbiased estimator of σ2

E (MSE ) = E

(
SSE

n − p − 1

)
=

(n − p − 1)σ2

n − p − 1
= σ2

I Therefore,

σ̂2 = MSE =
SSE

n − p − 1
==

YT (I−H)Y

n − p − 1

and

σ̂ =
√
MSE =

√
SSE

n − p − 1
=

√
YT (I−H)Y

n − p − 1
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Example: Cheese

In Cheese data, we can use the following code to find the σ̂2 and σ̂:

> residual <- residuals(fit)

> sigma <- sum(residual^2)/(30-3-1) ## n=30, p=3 here

> sigma

[1] 102.6299

> sqrt(sigma)

[1] 10.13064

Remark: summary{fit} gives σ̂ = 10.13 directly. (See page 16)
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Inference for Individual Regression Parameters

I In the multiple linear regression model

Y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε

where ε ∼ N(0, σ2), we interested in writing confidence intervals
for individual regression parameters βj , and we also want to test
whether H0 : βj = 0, or not.

I It can help us access the importance of using the independent
variable xj in a model including the other independent variables.

I Remark: inference regarding the βj is always conditional on the
other variables being included in the model.
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Confidence intervals for βj

I Under our linear regression model assumptions, a 100(1− α)%
confidence interval for βj , j = 0, 1, 2, . . . , p, is given by

β̂j ± tn−p−1,α/2

√
MSE × cjj

I β̂j is the least square estimate of βj (the j th element in β̂ vector).

I MSE = SSE
n−p−1 = YT (I−H)Y

n−p−1

I cjj = (XTX)−1
jj is the corresponding j th diagonal element of the

(XTX)−1 matrix.

I Interpretation: We are 100(1− α)% confident that the population
parameter βj is in this interval.
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Confidence intervals for βj

In particular, we are interested in whether βj = 0 is included in the
interval:

I If the confidence interval for βj contains ”0”, this suggests (at the
population level) that the independent variable xj does not
significantly add to a model that contains the other independent
variables.

I If the confidence interval for βj does not contain ”0”, this suggests
(at the population level) that the independent variable xj does
significantly add to a model that contains the other independent
variables.
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Example: Cheese

In Cheese data, we can use the following code to find the confidence
interval for each βj , j = 0, 1, 2, 3:

> fit <- lm(taste ~ acetic + h2s + lactic, data=cheese)

> confint(fit, level=0.95)

2.5 % 97.5 %

(Intercept) -69.443161 11.689630

acetic -8.839009 9.495026

h2s 1.345693 6.477870

lactic 1.932318 37.407035

Remark: The confidence interval for β0 (population parameter for the
intercept) is usually ignored. Let’s see how to interpret the other
confidence intervals.
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Example: Cheese

I We are 95% confident that β1 (the population parameter for acetic)
is between -8.84 and 9.50. The interval includes ”0”, therefore,
acetic does not significantly add to a model that includes h2s and
lactic.

I We are 95% confident that β2 (the population parameter for h2s) is
between 1.35 and 6.48. The interval does not includes ”0”,
therefore, h2s does significantly add to a model that includes acetic
and lactic.

I We are 95% confident that β3 (the population parameter for lactic)
is between 1.93 and 37.41. The interval does not includes ”0”,
therefore, lactic does significantly add to a model that includes
acetic and h2s.
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Hypothesis Testing for βj

I Similar to the confidence interval, we can use the hypothesis testing
method to test whether βj is significant, or not.

I The null and alternative hypotheses are:

H0 : βj = 0

Ha : βj 6= 0

I If the p-value of the test for βj is less than α (level of significance),
we reject H0 and claim that βj does significantly add to a model
that contains the other independent variables.

I If the p-value of the test for βj is greater than α (level of
significance), we fail to reject H0 and claim that βj does not
significantly add to a model that contains the other independent
variables.
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Example: Cheese

In Cheese data, we can check the p-values directly from summary()

results (just like simple linear regression):

> fit <- lm(taste ~ acetic + h2s + lactic, data=cheese)

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.877 19.735 -1.463 0.15540

acetic 0.328 4.460 0.074 0.94193

h2s 3.912 1.248 3.133 0.00425 **

lactic 19.670 8.629 2.279 0.03109 *

Remark: the p-value of acetic is great than any usual α, therefore, acetic
does not significantly add to a model that includes h2s and lactic.
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Variable Selection

By the confidence interval or hypothesis testing results, we can find the
variables that are not conditionally significant to the regression model.
Variable selection is intended to select the ”best” subset of predictors,
which means to delete those ”useless” variables. But why bother?

I We want to explain the data in the simplest way.

I Unnecessary predictors will add noise to the estimation. Information
is wasted.

I Collinearity is caused by having too many variables trying to do the
same job.

I Lower the cost.
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Stepwise Procedures: Backward Elimination

Backward Elimination is the simplest of all variable selection procedures
and can be easily implemented. Here is the procedure:

1. Start with all the predictors in the model.

2. Remove the predictor with highest p-value greater than αcrit .

3. Re-fit the model and goto step 2.

4. Stop when all p-values are less than αcrit .

The αcrit is sometimes called the ”p-to-remove” and does not have to be
5%. If prediction performance is the goal, then a 15− 20% cut-off may
work best.
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Example: Cheese

> fit <- lm(taste ~ acetic + h2s + lactic, data=cheese)

> summary(fit)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.877 19.735 -1.463 0.15540

acetic 0.328 4.460 0.074 0.94193

h2s 3.912 1.248 3.133 0.00425 **

lactic 19.670 8.629 2.279 0.03109 *

>

> fit2 <- lm(taste ~ h2s + lactic, data=cheese)

> summary(fit2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -27.591 8.982 -3.072 0.00481 **

h2s 3.946 1.136 3.475 0.00174 **

lactic 19.887 7.959 2.499 0.01885 *
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Example: Cheese

I We use the backward elimination method in Cheese data to select
the best variables with αcrit = 15%

I We start with all the predictors (acetic, h2s, and lactic) and find the
p-value for acetic is greater than αcrit (0.94 > 0.15). so we decide to
remove acetic variable.

I We re-fit the model again with h2s and lactic variables, and find
both of their p-values are less than αcrit , therefore, we keep both of
them and stop the procedure.

I We claim that h2s and lactic is the best subset of variables that we
should use in the multiple linear regression model.
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Stepwise Procedures: Forward Selection

Forward Selection just reverses the backward method.

1. Start with no variables in the model

2. For all predictors not in the model, check their p-value if they are
added to the model. Choose the one with lowest p-value less than
αcrit .

3. Continue until no new predictors can be added.
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Example: Cheese

> fitv1 <- lm(taste ~ acetic, data=cheese)

> summary(fitv1)

Estimate Std. Error t value Pr(>|t|)

acetic 15.648 4.496 3.481 0.00166 **

> fitv2 <- lm(taste ~ h2s, data=cheese)

> summary(fitv2)

Estimate Std. Error t value Pr(>|t|)

h2s 5.7760 0.9458 6.107 1.37e-06 ***

> fitv3 <- lm(taste ~ lactic, data=cheese)

> summary(fitv3)

Estimate Std. Error t value Pr(>|t|)

lactic 37.720 7.186 5.249 1.41e-05 ***
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Example: Cheese

I Again, we use αcrit = 15%.

I We fit the model with only acetic, h2s, and lactic variables first. The
p-value for the resgression parameters are 0.00166, 1.37× 10−6, and
1.41× 10−5 respectively. Since the p-value for h2s is the smallest
and 1.37× 10−6 < αcrit , we first select h2s into the model.

I The next step is to fit the model with two different sets of variables
(h2s, acetic) and (h2s, lactic).
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Example: Cheese

> fitv2v1 <- lm(taste ~ h2s + acetic, data=cheese)

> summary(fitv2v1)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -26.940 21.194 -1.271 0.214531

h2s 5.145 1.209 4.255 0.000225 ***

acetic 3.801 4.505 0.844 0.406227

>

> fitv2v3 <- lm(taste ~ h2s + lactic, data=cheese)

> summary(fitv2v3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -27.591 8.982 -3.072 0.00481 **

h2s 3.946 1.136 3.475 0.00174 **

lactic 19.887 7.959 2.499 0.01885 *
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Example: Cheese

I The p-values for acetic and lactic are 0.406 and 0.01885,
respectively.

I lactic should be selected since its p-value is the smaller one, and
0.01885 < αcrit .

I Becuase the p-value of acetic is greater than αcrit (0.406 > 0.15),
we are going to throw it away.

I Therefore, the final selection is h2s and lactic, which is consistent
with the backward elimination method.
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Confidence and Prediction Intervals for a Given x = x0

I Recall in simple linear regression, we would like to create
100(1− α)% percent intervals for the mean E (Y |x = x0) and for
the new value Y ∗x0.

I The former is called a confidence interval, because it is for a mean
response.

I The latter is called a prediction interval, because it is for a new
random variable.

I In multiple linear regression, we inherit the same terminology. The
difference is we have a vector of x0 (instead of a scaler).
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Example: Cheese

I Suppose we are interested in estimating E (Y |x0) and predicting a
new Y ∗(x0) when acetic=5.5, h2s=6.0, lactic=1.4.Therefore, the
given x0 vector is

x0 =
(
5.5 6.0 1.4

)
I Without Variable Selection: We use all three predictors in the

regression model.

> fit <- lm(taste ~ acetic + h2s + lactic, data=cheese)

> predict(fit,data.frame(acetic=5.5,h2s=6.0,lactic=1.4),

+ level=0.95,interval="confidence")

fit lwr upr

1 23.93552 20.04506 27.82597

> predict(fit,data.frame(acetic=5.5,h2s=6.0,

+ lactic=1.4),level=0.95,interval="prediction")

fit lwr upr

1 23.93552 2.751379 45.11966

40 / 60



Example: Cheese

I A 95% confidence interval for E (Y |x0) is (20.05, 27.83).
Interpretation: when acetic=5.5, h2s=6.0, and lactic=1.4, we are
95% confident that the population mean taste rating is between
20.05 and 27.83.

I A 95% prediction interval for Y ∗(x0) is (2.75, 45.12).
Interpretation: when acetic=5.5, h2s=6.0, and lactic=1.4, we are
95% confident that the taste rating for a new specimen will be
between 2.75 and 45.12.
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Example: Cheese

I With Variable Selection: We have shown that h2s and lactic are
the best subset of variables in the multiple linear regression using
both Backward Elimination and Forward Selection.

I Let’s construct the confidence interval with only h2s and lactic (get
rid of acetic). This time, the given x0 vector is

x0 =
(
6.0 1.4

)
> fit2 <- lm(taste ~ h2s + lactic, data=cheese)

> predict(fit2,data.frame(h2s=6.0,lactic=1.4),

+ level=0.95,interval="confidence")

fit lwr upr

1 23.92777 20.12242 27.73312

> predict(fit2,data.frame(h2s=6.0,lactic=1.4),

+ level=0.95,interval="prediction")

fit lwr upr

1 23.92777 3.175965 44.67958
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Example: Cheese

I Let’s compare the confidence/prediction intervals constructed
with/without variable selection technique.

Without Variable Sel. With Variable Sel.
Conf. Int. (20.05, 27.83) (20.12, 27.73)
Pred. Int. (2.75, 45.12) (3.17, 44.68)

I It is clear that for both confidence and prediction intervals, the
length of the interval is shorter with variable selection. The reason is
that extra ”useless/unnecessary” predictors (acetic) adds noise to
the estimation and useful information is wasted in estimating the
unknown β regarding to acetic.
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Model Diagnostics

In simple linear regression, we ask ourselves three questions:

I How good the regression line is?

I Is the error term ε really normally distributed?

I Is the assumption that variances of ε1, ε2, · · · , εn are the same true?

It is natural that we still need to explore these three questions in the
multiple linear regression since the model assumptions are similar.
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Coefficient of Determination

I Coefficient of Determination (Regression R-square) measures the
proportion of the variability of the response variable
measured/explained by the model (predictors). It is defined by

r2 =
SSTO − SSE

SSTO
=

SSR

SSTO

.

I SSTO =
∑n

i=1(Yi − Ȳ )2 is the total sample variability around Ȳ .

I SSE =
∑n

i=1(Yi − Ŷi )
2 is the unexplained variability after fitting the

regression model.

I SSR =
∑n

i=1(Ŷi − Ȳ )2 is the explained/measured variability by the
regression model.

I We have shown SSTO = SSE + SSR.
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Coefficient of Determination

I Coefficient of Determination is used to answer the first question:
”How good the regression line is?”

I In simple linear regression, if the regression model gives r2 = 0.923,
we say 92.3% of the variability of the response variable is explained
by the estimated regression model. It shows that our model is very
good, in the condition that the linear assumption is true.

I In multiple linear regression, this rule is ture overall. However, when
we input more and more predictors into the model, the value of r2 is
always increasing, even though the added predictors are totally
non-informative.
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Example

r2 increases after adding a useless and non-informative predictor
”useless” (0.5712 → 0.5782).

> fit1 <- lm(taste ~ h2s, data=cheese)

> summary(fit1)

Residual standard error: 10.83 on 28 degrees of freedom

Multiple R-squared: 0.5712, Adjusted R-squared: 0.5559

F-statistic: 37.29 on 1 and 28 DF, p-value: 1.373e-06

> useless <- rnorm(30, 0, 1)

> fit2 <- lm(taste ~ h2s + useless, data=cheese)

> summary(fit2)

Residual standard error: 10.94 on 27 degrees of freedom

Multiple R-squared: 0.5782, Adjusted R-squared: 0.547

F-statistic: 18.51 on 2 and 27 DF, p-value: 8.686e-06
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Coefficient of Determination

I From the previous example, we can see that the r2 increases a bit
after we add a totally useless and non-informative predictor
”useless” into the model.

I Our goal is to find a statistic, say r2, that can tell us whether the
model is good or not. Therefore, we want to avoid the situation that
the statistic would indicate a better model by simply adding more
variables.

I Adjusted Coefficient of Determination, or Adjusted R2 can
solve this problem.
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Adjusted R2

I Adjusted R2 is defined as

R2
adj = 1− (1− r2)

n − 1

n − p − 1
= r2 − (1− r2)

p

n − p − 1

where r2 stands for the normal coefficient of determination.

I R2
adj is always less than r2, and it can be negative.

I The R2
adj increases only when the increase in r2 (due to the inclusion

of a new predictor) is more than one would expect to see by chance.

I In the previous example, R2
adj decreases after I add ”useless” into the

model.
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Example: Cheese

Even though r2 increases (0.6517 → 0.6518) with acetic, R2
adj decreases

(0.6259 → 0.6116).

> fit <- lm(taste ~ h2s + lactic, data=cheese)

> summary(fit)

Residual standard error: 9.942 on 27 degrees of freedom

Multiple R-squared: 0.6517, Adjusted R-squared: 0.6259

F-statistic: 25.26 on 2 and 27 DF, p-value: 6.55e-07

> fit2 <- lm(taste ~ acetic + h2s + lactic, data=cheese)

> summary(fit2)

Residual standard error: 10.13 on 26 degrees of freedom

Multiple R-squared: 0.6518, Adjusted R-squared: 0.6116

F-statistic: 16.22 on 3 and 26 DF, p-value: 3.81e-06
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Second and Third Question

The second and the third question

I Is the error term ε really normally distributed?

I Is the assumption that variances of ε1, ε2, · · · , εn are the same true?

can be answered using the same method we learnt in the simple linear
regression.Here we use cheese data as an example to illustrate.

51 / 60



Example: Cheese

Let’s first check the normality assumption of the error term ε using the
QQ plot of the residuals:
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Example: Cheese

I Almost all the points are around the 45 degree line, indicating that
the residuals are approximately normally distributed with all three
predictors acetic, h2s, and lactic.

I Here is the R code:

fit <- lm(taste ~ acetic + h2s + lactic, data=cheese)

residual <- residuals(fit)

qqnorm(residual)

qqline(residual)
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Example: Cheese

The residual plot still can help us decide whether equal variance
assumption works or not. the residual plot looks fine generally. However,
we still suspect that the variance goes a little large first, then goes down.
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Example: Cheese

Here is the R code:

# Residual plot

fitted <- predict(fit)

plot(fitted,residual,pch=16,

xlab="Fitted values",ylab="Residuals")

abline(h=0)
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Example: Cheese

I We suspect the equal variance is not true. We might need
transformation to make it better.

I Recall the Box Cox transformation is defined as

BoxCox(Y ) =

{
Yλ−1
λ , λ 6= 0

log(Y ), λ = 0

I We can use R to find the best λ.
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Example: Cheese

> library(MASS)

> boxcox(lm(taste ~ acetic + h2s + lactic, data=cheese),

+ lambda=seq(0,1, by=0.1))
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Example: Cheese

> boxcox(lm(taste ~ acetic + h2s + lactic, data=cheese),

+ lambda=seq(0.6, 0.7, by=0.01))
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Example: Cheese

I The best λ is around 0.67. Therefore, the transformation is

Y 0.67 − 1

0.67

I We re-fit the model with the transformed model:

newy <- ((cheese$taste)^0.67 - 1)/0.67

fit.new <- lm(newy ~ acetic + h2s + lactic, data=cheese)
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Example: Cheese

The residual plot looks better this time.

> plot(predict(fit.new),residuals(fit.new),

+ pch=16, xlab="Fitted values",ylab="Residuals")

> abline(h=0)
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