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1 Introduction

1.1 What is Statistics?

• The field of Statistics deals with the collection, presentation, analysis, and use of data to make

decisions, solve problems, and design products and processes. (Montgomery, D. and Runger

G.)

• Statistics is the science of learning from data, and of measuring, controlling, and communicat-

ing uncertainty; and it thereby provides the navigation essential for controlling the course of

scientific and societal advances (Davidian, M. and Louis, T. A., 10.1126/science.1218685).

In simple terms, statistics is the science of data.

1.2 Where to Use Statistics?

• Statisticians apply statistical thinking and methods to a wide variety of scientific, social, and

business endeavors in such areas as astronomy, biology, education, economics, engineering,

genetics, marketing, medicine, psychology, public health, sports, among many. “The best

thing about being a statistician is that you get to play in everyone else’s backyard.”

(John Tukey, Bell Labs, Princeton University)

Here are some examples where statistics could be used:

1. In a reliability (time to event) study, an engineer is interested in quantifying the time until

failure for a jet engine fan blade.

2. In an agricultural study in Iowa, researchers want to know which of four fertilizers (which vary

in their nitrogen contents) produces the highest corn yield.

3. In a clinical trial, physicians want to determine which of two drugs is more effective for treating

HIV in the early stages of the disease.

4. In a public health study, epidemiologists want to know whether smoking is linked to a particular

demographic class in high school students.

5. A food scientist is interested in determining how different feeding schedules (for pigs) could

affect the spread of salmonella during the slaughtering process.

6. A research dietician wants to determine if academic achievement is related to body mass index

(BMI) among African American students in the fourth grade.

Remark 1. Statisticians use their skills in mathematics and computing to formulate statistical

models and analyze data for a specific problem at hand. These models are then used to estimate

important quantities of interest (to the researcher), to test the validity of important conjectures, and

to predict future behavior. Being able to identify and model sources of variability is an important

part of this process.
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1.3 Deterministic and Statistical Models

• A deterministic model is one that makes no attempt to explain variability. For example, in

circuit analysis, Ohm’s law states that

V = IR,

where V = voltage, I = current, and R = resistance.

– In both of these models, the relationship among the variables is built from our underlying

knowledge of the basic physical mechanism. It is completely determined without any

ambiguity.

– In real life, this is rarely true for the obvious reason: there is natural variation that arises

in the measurement process. For example, a common electrical engineering experiment

involves setting up a simple circuit with a known resistance R. For a given current I,

different students will then calculate the voltage V .

∗ With a sample of n = 20 students, conducting the experiment in succession, we might

very well get 20 different measured voltages!

• A statistical (or stochastic) model might look like

V = IR+ ε,

where ε is a random term that includes the effects of all unmodeled sources of variability that

affect this system.

1.4 Statistical Inference

There are two main types of statistics:

• Descriptive statistics describe what is happening now (see Chapter 6 of the textbook).

• Inferential statistics, such as estimation and prediction, are based on a sample of the subjects

(only a portion of the population) to determine what is probably happening or what might

happen in the future.

Example 1.4.1. Let us consider semiconductors. A finished semiconductor is wire-bounded to a

frame. Suppose that I am trying to model

Y = pull strength (a measure of the amount of force required to break the bond)

of a semiconductor. The population herein could be all the finished semiconductor. A sample of size

25 was collected and from each I measured the pull strength (Y ), the wire length (x1) and the die

height (x2). All 25 observations are plotted in Figure 1.4.1a.
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Figure 1.4.1: (a). Three-dimensional plot of the wire bond pull strength data; (b). Plot of predicted
values of pull strength from the estimated model.

The goal here is to build a model that can quantify the relationship between pull strength and

the variables wire length and die height. A deterministic model would be

Y = f(x1, x2),

for some unknown function f : [0,∞)×[0,∞)→ [0,∞). Perhaps a working model could be developed

as a statistical model of the form:

Y = β0 + β1x1 + β2x2 + ε,

where ε is a random term that accounts for not only measurement error but also

(a) all of the other variables not accounted for (e.g., the quality of the wire and/or how all the

welding has been done, etc.) and

(b) the error induced by assuming a linear relationship between Y and {x1, x2} when, in fact,

it may not be.

In this example, with certain (probabilistic) assumptions on ε and a mathematically sensible way to

estimate the unknown β0, β1, and β2 (i.e., coefficients of the linear function), we can produce point

predictions of Y for any given {x1, x2}. Using the regression technique (Chapter 12) results in an

estimated model (plotted in Figure 1.4.1b)

Ŷ = 2.26 + 2.74x1 + 0.0125x2.

It naturally brings up the following questions:

• How accurate are the estimators of the coefficients or the prediction for a given {x1, x2}?

• How significant are the roles of x1 and x2?

• How should samples be selected to provide good decisions with acceptable risks?

To answer these questions or to quantify the risks involved in statistical inference, it leads to the

study of probability models.

6



2 Probability

If we measure the current in a thin copper wire, we are conducting an experiment. However, day-

to-day repetitions of the measurement can differ slightly because of

• changes in ambient temperatures

• slight variations in the gauge

• impurities in the chemical composition of the wire (if selecting different locations)

• current source drifts.

In some cases, the random variations are small enough, relative to our experimental goals, that

they can be ignored. However, no matter how carefully our experiment is designed and conducted,

the variation is almost always present, and its magnitude can be large enough that the important

conclusions from our experiment are not obvious. Hence, how to quantify the variability is a key

question, which can be answered by probability.

2.1 Sample Spaces and Events

An experiment that can result in different outcomes, even though it is repeated in the same manner

every time, is called a random experiment.

The set of all possible outcomes of a random experiment is called the sample space of the experi-

ment. The sample space is denoted as S.

A sample space is discrete if it consists of a finite or countable infinite set of outcomes.

A sample space is continuous if it contains an interval (either finite or infinite) of real numbers.

Example 2.1.1. Let us find the sample space for each of the following random experiments and

identify whether it is discrete or continuous:

• The number of hits (views) is recorded at a high-volume Web site in a day

• The pH reading of a water sample.

• Calls are repeated place to a busy phone line until a connection is achieved.

• A machined part is classified as either above or below the target specification.

• The working time or surviving time of an air conditioner.
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Figure 2.1.1: Tree diagram for three messages.

Example 2.1.2. (Tree diagram) Now let us consider a little bit more complex case. Each message

in a digital communication system is classified as to whether it is received on time or late. Describe

the sample space of the receive time of three messages.

S =

An event is a subset of the sample space of a random experiment. The following are three basic set

operations:

• The union of two events is the event that consists of all outcomes that are contained in either

of the two events. We denote the union as E1 ∪ E2.

• The intersection of two events is the event that consists of all outcomes that are contained

in both of the two events. We denote the intersection as E1 ∩ E2.

• The complement of an event in a sample space is the set of outcomes in the sample space

that are not in the event. We denote the complement of the event E as E′. The notation Ec

is also used in other literature to denote the complement.

Example 2.1.3. Consider Example 2.1.2. Denote that E1 is the event that at least two messages

is received late. Then E1 = {100, 010, 001, 000}. Let E2 be the event that the second messages is

received later. Then E2 = {101, 100, 001, 000}. Now we have

E1 ∪ E2 =

E1 ∩ E2 =

E′1 =

8



Example 2.1.4. As in Example 2.1.1, the sample space of the working time of an air conditioner

is S = (0,∞). Let E1 be the event the working time is no less than 1 and less than 10; i.e.,

E1 = {x | 1 ≤ x < 10} = [1, 10), and E2 be the event the working time is between 5 and 15; i.e.,

E2 = {x | 5 < x < 15} = (5, 15). Then

E1 ∪ E2 = E1 ∩ E2 =

E′1 =

E′1 ∩ E2 =

One visualized way to interpret set operations is through Venn diagrams. For example

Figure 2.1.2: Venn diagrams.

Two events, denoted as A and B, such that A ∩B = ∅, i.e.,

are said to be mutually exclusive.
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2.2 Axioms of Probability and Addition Rule

Probability is used to quantify the likelihood, or chance, that an outcome of a random experiment

will occur. The probability of an event E is denoted by P (E).

“My chance of getting an A in this course is 80%” could be a statement that quantifies your

feeling about the possibility of getting A. The likelihood of an outcome is quantified by assigning a

number from the interval [0, 1] to the outcome (or a percentage from 0 to 100%). Higher numbers

indicate that the outcome is more likely than lower numbers. A 0 indicates an outcome will not

occur. A probability of 1 indicates that an outcome will occur with certainty. The probability of

an outcome can be interpreted as our subjective probability, or degree of belief, that the outcome

will occur. Different individuals will no doubt assign different probabilities to the same outcomes.

Another interpretation of probability is based on the conceptual model of repeated replications

of the random experiment. The probability of an outcome is interpreted as the limiting value of the

proportion of times the outcome occurs in n repetitions of the random experiment as n increases

beyond all bounds. For example, we want to quantify the probability of the event that flipping a fair

coin gets a head. One way is to flip a fair coin n times, and record how many times you get a head.

Then

P (flipping a fair coin gets a head) = lim
n→∞

number of heads out of n flips

n
=

1

2
.

0 200 400 600 800 1000

0.
3

0.
4

0.
5

0.
6

0.
7

Number of flips

Li
m

iti
ng

 p
ro

po
rt

io
n

This type of experiment is said of equally likely outcomes.

Equally Likely Outcomes: Whenever a sample space consists of N possible outcomes that are

equally likely, the probability of each outcome is 1/N .

For example, we want to detect the rate of defectiveness of products form a same product line.

The number of products could be million. It is time-consuming and expensive to exam every prod-

uct. People usually randomly select a certain number of product and count how many of them are

defective. We call the selected items as a random samples.
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To select ramdonly implies that at each step of the sample, the remained items are equally likely

to be selected. .

It means that, suppose there are N items. When drawing the first sample, each item has the chance

of 1/N being selected. To select the second sample, each of the N−1 remained items will be selected

with probability 1/(N − 1), so and so on.

Another interpretation of probability is through relative frequency.

Example 2.2.1. The following table provides an example of 400 parts classified by surface flaws

and as (functionally) defective.

Then

P (defective) = P (D) =

P (surface flaws) = P (F ) =

P (surface flaws and also defective) = P (D ∩ F ) =

P (surface flaws but not defective) = P (D′ ∩ F ) =

For a discrete sample space, P (E) equals the sum of the probabilities of the outcomes in E.

Example 2.2.2. A random experiment can result in one of the outcomes {a, b, c, d} with probabilities

0.1, 0.3, 0.5, and 0.1, respectively. Let A denote the event {a, b}, B the event {b, c, d} and C the event

{d}. Then

P (A) = P (B) = P (C) =

P (A′) = P (B′) = P (C ′) =

P (A ∩B) =

P (A ∪B) =

P (A ∩ C) =
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Axioms of Probability: Probability is a number that is assigned to each member of a collection

of events from a random experiment that satisfies the following properties: if S is the sample space

and E is any event in a random experiment,

1. P (S) = 1

2. 0 ≤ P (E) ≤ 1

3. For two events E1 and E2 with E1 ∩ E2 = ∅ (mutually exclusive),

P (E1 ∪ E2) = P (E1) + P (E2).

These axioms imply the following results. The derivations are left as exercises at the end of this

section. Now,

P (∅) =

and for any event E,

P (E′) =

Furthermore, if the event E1 is contained in the event E2,

P (E1) P (E2).

Addition rule:

P (A ∪B) =

A collection of events, E1, E2, . . . , Ek, is said to be mutually exclusive if for all pairs,

Ei ∩ Ej = ∅.

For a collection of mutually exclusive events,

P (E1 ∪ E2 ∪ · · · ∪ Ek) =

Example 2.2.3. Let S = [0,∞) be the sample space of working time of an air conditioner. Define

the events E1 = (2, 10), E2 = (5, 20), E3 = (5, 10), E4 = (0, 2]. Suppose P (E1) = .4, P (E2) = 0.7,

P (E3) = 0.2, P (E4) = .05. Then

P (E5 = (2, 20)) =

P (E6 = (0, 20)) =
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2.3 Conditional Probability and Multiplication Rule

Sometimes probabilities need to be reevaluated as additional information becomes available. A useful

way to incorporate additional information into a probability model is to assume that the outcome

that will be generated is a member of a given event. This event, say A, defines the conditions that

the outcome is known to satisfy. Then probabilities can be revised to include this knowledge. The

probability of an event B under the knowledge that the outcome will be in event A is denoted as

and this is called the conditional probability of B given A.

Example 2.3.1. Let consider Example 2.2.1.

Of the parts with surface flaws (40 parts), the number of defective ones is 10. Therefore,

P (D | F ) =

and of the parts without surface flaws (360 parts), the number of defective ones is 18. Therefore,

P (D | F ′) =

Practical Interpretation: The probability of being defective is five times greater for parts with

surface flaws. This calculation illustrates how probabilities are adjusted for additional information.

The result also suggests that there may be a link between surface flaws and functionally defective

parts, which should be investigated.

The conditional probability of an event B given an event A, denoted as P (B | A), is

P (B | A) = P (A ∩B)/P (A).

Recalculate the probabilities in last example, we have

P (D | F ) =

P (D | F ′) =

13



Multiplication Rule:

P (A ∩B) = P (B | A)P (A) = P (A | B)P (B).

Total Probability Rule (Multiple Events): A collection of sets E1, E2, . . . , Ek is said to be

exhaustive if and only if

E1 ∪ E2 ∪ · · · ∪ Ek = S.

Assume E1, E2, . . . , Ek are k mutually exclusive and exhaustive sets, then for any event B, we have

P (B) =P (B ∩ E1) + P (B ∩ E2) + · · ·+ P (B ∩ Ek)

=P (B | E1)P (E1) + P (B | E2)P (E2) + · · ·+ P (B | Ek)P (Ek).

Example 2.3.2. Assume the following probabilities for product failure subject to levels of contam-

ination in manufacturing:

In a particular production run, 20% of the chips are subjected to high levels of contamination, 30%

to medium levels of contamination, and 50% to low levels of contamination. What is the probability

of the event F that a product using one of these chips fails?

Let

• H denote the event that a chip is exposed to high levels of contamination

• M denote the event that a chip is exposed to medium levels of contamination

• L denote the event that a chip is exposed to low levels of contamination

14



Then

P (F ) =

=

2.4 Independence

In some cases, the conditional probability of P (B | A) might equal P (B); i.e., the outcome of the

experiment is in event A does not affect the probability that the outcome is in event B.

Example 2.4.1. As in Example 2.2.1, surface flaws related to functionally defective parts since

P (D | F ) = 0.25 and P (D) = 0.07. Suppose now the situation is different as the following Table.

Then,

P (D | F ) = and P (D) = .

That is, the probability that the part is defective does not depend on whether it has surface flaws.

Also,

P (F | D) = and P (F ) =

so the probability of a surface flaw does not depend on whether the part is defective. Furthermore,

the definition of conditional probability implies that P (F ∩D) = P (D | F )P (F ), but in the special

case of this problem,

P (F ∩D) = P (D)P (F ).

Two events are independent if any one of the following equivalent statements is true:

1. P (A | B) = P (A)

2. P (B | A) = P (B)

3. P (A ∩B) = P (A)P (B)

15



Noting that when A and B are independent events,

P (A′ ∩B′) =

=

=

Question: If A and B are mutually exclusive, and P (A) > 0, P (B) > 0, Are A and B independent?

Example 2.4.2. (Series Circuit) The following circuit operates only if there is a path of functional

devices from left to right. The probability that each device functions is shown on the graph. Assume

that devices fail independently. What is the probability that the circuit operates?

Example 2.4.3. (Parallel Circuit) The following circuit operates only if there is a path of func-

tional devices from left to right. The probability that each device functions is shown on the graph.

Assume that devices fail independently. What is the probability that the circuit operates?

16



If the events E1, E2, . . . , Ek are independent, then

P (E1 ∩ E2 ∩ · · · ∩ Ek) = P (E1)P (E2) · · ·P (Ek).

Example 2.4.4. (Advanced Circuit) The following circuit operates only if there is a path of

functional devices from left to right. The probability that each device functions is shown on the

graph. Assume that devices fail independently. What is the probability that the circuit operates?
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3 Random Variables and Probability Distributions

A random variable is a function that assigns a real number to each outcome in the sample space

of a random experiment.

A discrete random variable is a random variable with a finite (or countably infinite) range.

A continuous random variable is a random variable with an interval (either finite or infinite) of

real numbers for its range.

Notation: A random variable is denoted by an uppercase letter such as X and Y . After experiment

is conducted, the measured value of the random variable is denoted by a lowercase letter such as x

and y.

For example, let X be a random variable denoting the outcome of flipping a coin. The sample

space of this random experiment is {head, tail}. We can let X = 1 if it is a head; X = 0 otherwise.

When you are actually conduct this experiment, you may observe a head. Then the notation for

describing this observation is x = 1.

• Examples of discrete random variables: result of flipping a coin, number of scratches on a

surface, proportion of defective parts among 1000 tested, number of transmitted bits received

in error.

• Examples of continuous random variables: electrical current, length, pressure, temperature,

time, voltage, weight.

3.1 General Discrete Distributions

3.1.1 Probability Mass Function

The probability distribution of a random variable X is a description of the probabilities associated

with the possible values of X. For a discrete random variable, the distribution is often specified by

just a list of the possible values along with the probability of each. In some cases, it is convenient to

express the probability in terms of a formula.

For a discrete random variable X with possible values x1, x2, . . . , xk, a probability mass function

(pmf) is a function such that

(1) f(xi) ≥ 0

(2)
∑k

i=1 f(xi) = 1

(3) f(xi) = P (X = xi)
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Example 3.1.1. (Digital Channel) There is a chance that a bit transmitted through a digital

transmission channel is received in error. Let X equal the number of bits in error in the next four

bits transmitted. The possible values for X are {0, 1, 2, 3, 4}. Based on a model for the errors that

is presented in the following section, probabilities for these values will be determined.

P (X = 0) = 0.6561, P (X = 1) = 0.2916,

P (X = 2) = 0.0486, P (X = 3) = 0.0036,

P (X = 4) = 0.0001.

The probability distribution of X is specified by the possible values along with the probability of

each. The pmf of X is then

A graphical description of the probability distribution of X is shown as

Once a probability mass function of X is presented, one should be able to calculate all types of

events in the sample space; i.e., P (X ≤ a), P (X < a), P (X ≥ a), P (X > a), P (a < X < b), P (a ≤
X < b), P (a < X ≤ b), P (a ≤ X ≤ b). For example, in the example above,

P (X < 1) =

P (X ≤ 1) =

P (X ≤ 3)− P (X ≤ 2) =

P (1 ≤ X < 3) =

P (1 < X < 3) =

P (1 < X ≤ 3) =

P (1 ≤ X ≤ 3) =
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3.1.2 Cumulative Distribution Function

The cumulative distribution function (cdf) of a discrete random variable X, denoted as F (X),

is

F (x) = P (X ≤ x) =
∑
xi≤x

f(xi).

F (x) satisfies the following properties.

1. F (x) = P (X ≤ x) =
∑

xi≤x f(xi)

2. 0 ≤ F (x) ≤ 1

3. if x ≤ y, then F (x) ≤ F (y)

For the last example, the cdf function is then

The cdf function can be plotted as
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And based on cdf F (x), you should be able to calculate the probabilities of the following types

P (X < 1) =

P (X ≤ 1) =

P (X ≤ 3)− P (X ≤ 2) =

P (1 ≤ X < 3) =

P (1 < X < 3) =

P (1 < X ≤ 3) =

P (1 ≤ X ≤ 3) =

3.1.3 Mean and Variance

Two numbers are often used to summarize a probability distribution for a random variable X. The

mean is a measure of the center or middle of the probability distribution, and the variance is a

measure of the dispersion, or variability in the distribution.

The mean or expected value of the discrete random variable X, denoted as µ or E(X), is

µ = E(X) =
∑
x

xf(x).

The expected value for a discrete random variable Y is simply a weighted average of the possible

values of X. Each value x is weighted by its probability f(x). In statistical applications, µ = E(Y )

is commonly called the population mean.

Example 3.1.2. The number of email messages received per hour has the following distribution:

Determine the mean and standard deviation of the number of messages received per hour.

µ =

Interpretation: On average, we would expect email messages per hour.

Interpretation: Over the long run, if we observed many values of Y with this pmf, then the average

of these X observations would be close to
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Let X be a discrete random variable with pmf f(x). Suppose that g, g1, g2, ..., gk are real-valued

functions, and let c be any real constant.

E[g(X)] =
∑
all x

g(x)f(x).

Further expectations satisfy the following (linearity) properties:

1. E(c) = c

2. E[cg(X)] = cE[g(X)]

3. E[
∑k

j=1 gj(X)] =
∑k

j=1E[gj(X)]

For linear function g(x) = ax+ b where a, b are constants, we have

E[g(X)] =

Note: These rules are also applicable if X is continuous (coming up).

Example 3.1.3. In Example 3.1.2, suppose that each email message header reserves 15 kilobytes

of memory space for storage. Let the random variable Y denote the memory space reserved for all

message headers per hour (in kilobytes). Then

Y =

Thus

E(Y ) =

The expected reserved memory space for all message headers per hour is

The population variance of X, denoted as σ2 or V (X), is

σ2 = V (X) = E(X − µ)2 =
∑
x

(x− µ)2f(x) =
∑
x

x2f(x)− µ2 = E(X2)− [E(X)]2.

The population standard deviation of X is σ =
√
σ2.

Facts: The population variance σ2 satisfies the following:

1. σ2 ≥ 0. σ2 = 0 if and only if the random variable Y has a degenerate distribution; i.e., all

the probability mass is located at one support point.

2. The larger (smaller) σ2 is, the more (less) spread in the possible values of X about the popu-

lation mean µ = E(X).

3. σ2 is measured in (units)2 and σ is measured in the original units.
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Let X be a discrete random variable with pmf f(x). Suppose g(x) = ax+ b where a, b are constants,

we have

V [aX + b] =

Note: These rules are also applicable if X is continuous (coming up).

In Example 3.1.3, we have

V (Y ) =

The variance of reserved memory space for all message headers per hour is

The measures of mean and variance do not uniquely identify a probability distribution. That is,

two different distributions can have the same mean and variance. Still, these measures are simple,

useful summaries of the probability distribution of X.
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3.2 Bernoulli Distribution and Binomial Distribution

Let us consider the following random experiments and random variables:

1. A worn machine tool produces 1% defective parts. Let X = number of defective parts in the

next 25 parts produced.

2. Each sample of air has a 10% chance of containing a particular rare molecule. Let X = the

number of air samples that contain the rare molecule in the next 18 samples analyzed.

3. Of all bits transmitted through a digital transmission channel, 40% are received in error. Let

X = the number of bits in error in the next five bits transmitted.

4. A multiple-choice test contains 10 questions, each with four choices, and for each question, the

chance of you gets right is 90%. Let X = the number of questions answered correctly.

5. In the next 20 births at a hospital, let X = the number of female births.

Each of these random experiments can be thought of as consisting of a series of repeated, random

trials:

1. The production of 25 parts in the 1st example

2. Detecting rare molecule in 18 samples of air

3. Counting errors in 5 transmitted bits

4. Answering 10 multiple-choice questions

5. Gender of the next 20 babies

Each of the repeated trials consists of two possible outcomes: (generally speaking) success and

failure, and we want to know how many (generally speaking) successes occur in the a certain

number of trials. The terms success and failure are just labels. Sometime it can mislead you. For

example, in the 1st example, we are interested in the number of defective parts (herein, “success”

means defective).

To model a trial with two outcomes, we typically use Bernoulli Distribution. We say random

variable X follows a Bernoulli distribution, if it has the following probability mass function:

f(x) =

{
p if x = 1, represents success

1− p if x = 0, represents failure

The mean and variance of X are

µ = E[X] =

σ2 = V [X] =
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Now, let us get back to our original examples. What we are interested in is the number of

successes occurs in a certain number of identical trails, each trail has two possible outcomes (success

and failure) with certain probability of success. Thus, we are investigating the summation of a given

number of identical Bernoulli random variables.

1. In the first example: we investigate the random variable X is the summation of n = 25 identical

Bernoulli random variables, each of which has two possible outcomes (defective = “success,”

indefective=“failure”), with probability of success being p = 0.01

2. In the second example: we investigate the random variable X is the summation of n =

identical Bernoulli random variables, each of which has two possible outcomes (

= “success,” =“failure”), with probability of success being p =

3. In the third example: we investigate the random variable X is the summation of n =

identical Bernoulli random variables, each of which has two possible outcomes (

= “success,” =“failure”), with probability of success being p =

4. In the forth example: we investigate the random variable X is the summation of n =

identical Bernoulli random variables, each of which has two possible outcomes (

= “success,” =“failure”), with probability of success being p =

5. In the fifth example: we investigate the random variable X is the summation of n =

identical Bernoulli random variables, each of which has two possible outcomes (

= “success,” =“failure”), with probability of success being p =

To model these quantities, one commonly used distribution is Binomial Distribution: Suppose

that n independent and identical Bernoulli trials are performed. Define

X = the number of successes (out of n trials performed).

We say the X has a Binomial Distribution with number of trials n and success probability p.

Shorthand notation is X ∼ B(n, p). The probability mass function of X is given by

f(x) =


(
n

x

)
px(1− p)n−x, x = 0, 1, 2, 3, . . . , n

0, otherwise

where (
n

x

)
=

n!

x!(n− x)!
, and r! = r × (r − 1)× · · · × 2× 1 (note 0! = 1).

The mean and variance are

µ = E[X] =

σ2 = V [X] =
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There are three key elements for correctly identifying a Bernoulli distribution:

(1) The trials are independent.

(2) Each trial results in only two possible outcomes, labeled as “success” and “failure.”

(3) The probability of a success in each trial, denoted as p, remains constant.

Let us see the 3rd example: Of all bits transmitted through a digital transmission channel, 40% are

received in error. Let X = the number of bits in error in the next five bits transmitted. Now we

calculate P (X = 2) by assuming all the transmitted bits are independent.
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Thus, from above we can see that X is actually a Binomial random variable; i.e., X ∼ B(5, 0.4).

Now let us answer the following questions:

(a) What is the probability that at least one bits are received in error?

(b) What are E(X) and V (X)?

Now considering the first example, we have X ∼ , what is the probability when

X ≤ 10? Computing this probability “by hand” could be very time-consuming. We will use TI-84.

The codes are (in “DISTR”):

f(x) = P (X = x) F (x) = P (X ≤ x)

binompdf(n, p, x) binomcdf(n, p, x)

(a) What is the probability that there are exactly five defective parts?

(b) What is the probability that there are at least five defective parts?

(c) What is the probability that there are at most ten defective parts?

(d) What is P (2 ≤ X ≤ 8)? {Hint: a general formula P (a < X ≤ b) = F (b)− F (a)}
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3.3 Geometric Distributions

The geometric distribution also arises in experiments involving Bernoulli trials:

1. Each trial results in a “success” or a “failure.”

2. The trials are independent.

3. The probability of a “success,” denoted by p, remains constant on every trial.

However, instead of fixing a certain number of trials and then finding out how many of them are

successes, trials are conducted until a success is obtained.

Suppose that Bernoulli trials are continually observed. Define

X = the number of trials to observe the first success.

We say that X has a geometric distribution with success probability p. Shorthand notation is

X ∼ Geom(p).

Example 3.3.1. The probability that a bit transmitted through a digital transmission channel is

received in error is 0.1. Assume that the transmissions are independent events, and let the random

variable X denote the number of bits transmitted until the first error. Calculate P (X = 5).

If X ∼ Geom(p), then the probability mass function of X is given by

f(x) =

{
(1− p)(x−1)p, x = 1, 2, 3, . . .

0, otherwise.

And the mean and variance of X are

µ = E(X) =
1

p

σ2 = V (X) =
1− p
p2

.
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Figure 3.3.1: Geometric distribution of selected values of the parameter p.

Back to Example 3.3.1, the probability mass function is plotted in the above figure with solid

dots. And

µ = E(X) =

σ2 = V (X) =

if X ∼ Geom(p), its cumulative distribution function is

F (x) = P (X ≤ x) =

x∑
k=1

f(k) =

x∑
k=1

(1− p)k−1p = 1− (1− p)x.

Example 3.3.2. Biology students are checking the eye color of fruit flies. For each fly, the probability

of observing white eyes is p = 0.25. In this situation, we interpret the Bernoulli trials as

• fruit fly = “trial.”

• fly has white eyes = “success.”

• p = P (“success”) = P (white eyes) = 0.25.

If the Bernoulli trial assumptions hold (independent flies, same probability of white eyes for each
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fly), then

X = the number of flies needed to find the first white-eyed

∼ Geom(p = 0.25)

(a) What is the probability the first white-eyed fly is observed on the fifth fly checked?

(b) What is the probability the first white-eyed fly is observed before the fourth fly is examined?
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3.4 Negative Binomial Distributions

The negative binomial distribution also arises in experiments involving Bernoulli trials:

1. Each trial results in a “success” or a “failure.”

2. The trials are independent.

3. The probability of a “success,” denoted by p, remains constant on every trial.

However, instead of fixing a certain number of trials and then finding out how many of them are

successes, trials are conducted until the rth success is obtained.

Suppose that Bernoulli trials are continually observed. Define

X = the number of trials to observe the rth success.

We say that X has a negative binomial distribution with waiting parameter r and success probability

p. Shorthand notation is X ∼ NB(r, p).

Example 3.4.1. The probability that a bit transmitted through a digital transmission channel is

received in error is 0.1. Assume that the transmissions are independent events, and let the random

variable X denote the number of bits transmitted until the 3rd error. Calculate P (X = 5).
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If X ∼ NB(r, p), then the probability mass function of X is given by

f(x) =


(
x− 1

r − 1

)
pr(1− p)(x−r), x = r, r + 1, r + 2, . . .

0, otherwise.

And the mean and variance of X are

µ = E(X) =
r

p

σ2 = V (X) =
r(1− p)
p2

.

Note that the negative binomial distribution is a mere generalization of the geometric. If r = 1, then

the NB(r, p) distribution reduces to the Geom(p).

Back to Example 3.4.1, the probability mass function is plotted in the above figure with solid

dots. And

µ = E(X) =

σ2 = V (X) =

To calculate f(x) = P (X = x) when X ∼ NB(r, p), one could use the TI-84:

f(x) = P (X = x) = p× binompdf(x− 1, p, r − 1).

Unfortunately, there is no simple TI-84 codes to calculate the cumulative distribution function of a

negative binomial distribution; i.e., F (x) = P (X ≤ x). The only way is

F (x) =

x∑
k=r

p× binompdf(k − 1, p, r − 1) = p×

{
x∑
k=r

binompdf(k − 1, p, r − 1)

}
.

However, when you can use computer (like when doing homework but not in exams), you can always

use R to compute this type of probability.

Type f(x) = P (X = x) F (x) = P (X ≤ x)

X ∼ B(n, p) dbinom(x, n, p) pbinom(x, n, p)

X ∼ Geom(p) dgeom(x− 1, p) pgeom(x− 1, p)

X ∼ NB(r, p) dnbinom(x− r, r, p) pnbinom(x− r, r, p)
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Example 3.4.2. At an automotive paint plant, 25 percent of all batches sent to the lab for chemical

analysis do not conform to specifications. In this situation, we interpret

• batch = “trial.”

• batch does not conform = “success.”

• p = P (“success”) = P (not conforming) = 0.25.

If the Bernoulli trial assumptions hold (independent batches, same probability of nonconforming for

each batch), then

X = the number of batches needed to find the rth nonconforming

∼ NB(r, p = 0.25)

(a) What is the probability the third nonconforming batch is observed on the tenth batch sent to

the lab?

(b) What is the probability that no more than two nonconforming batches will be observed among

the first 4 batches sent to the lab?

(c) What is the probability that no more than three nonconforming batches will be observed

among the first 30 batches sent to the lab?
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3.5 Hypergeometric Distribution

Consider a population of N objects and suppose that each object belongs to one of two dichotomous

classes: Class 1 and Class 2. For example, the objects (classes) might be people (infected/not), parts

(defective/not), new born babies (boy/girl), etc.

In the population of interest, we have

N = total number of objects

K = number of objects in Class 1

N −K = number of objects in Class 2.

Randomly select n objects from the population (objects are selected at random, random means

each remain object has the same chance of getting selected, and without replacement). Define

X = the number of objects in Class 1 (out of the n selected).

We say that X has a hypergeometric distribution and write X ∼ hyper(N,n,K). The probability

function of X ∼ hyper(N,n,K) is

f(x) =


(Kx)(N−K

n−x )
(Nn)

, x ≤ K and n− x ≤ N −K

0, otherwise.

Further, its mean and variance are

µ = E(X) = n

(
K

N

)
and σ2 = V (X) = n

(
K

N

)(
N −K
N

)(
N − n
N − 1

)
.

Figure 3.5.2: Hypergeometric distributions for selected values of N,K, and n.
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Example 3.5.1. A supplier ships parts to a company in lots of 100 parts. The company has an

acceptance sampling plan which adopts the following acceptance rule:

“....sample 5 parts at random and without replacement.

If there are no defectives in the sample, accept the entire lot;

otherwise, reject the entire lot.”

Suppose among the 100 parts there are 10 parts which are defective.

(a) What is the probability that the lot will be accepted?

(b) What is the probability that at least 3 of the 5 parts sampled are defective?

R codes for hypergeometric distribution:

Type f(x) = P (X = x) F (x) = P (X ≤ x)

X ∼ hyper(N,n,K) dhyper(x, K, N −K, n) phyper(x, K, N −K, n)

In the previous example, we could compute the probabilities of interest, using R, as follows:

> dhyper(0,10,100-10,5) ## Part (a)

[1] 0.5837524

> 1-phyper(2,10,100-10,5) ## Part (b)

[1] 0.006637913
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3.6 Poisson Distribution

The Poisson distribution is commonly used to model counts in an interval of time, an area, a volume

or other unit, such as

1. the number of customers entering a post office in a given hour

2. the number of α-particles discharged from a radioactive substance in one second

3. the number of machine breakdowns per month

4. the number of insurance claims received per day

5. the number of defects on a piece of raw material.

In general, we define

X = the number of “occurrences” over a unit interval of time (or space).

A Poisson distribution for X emerges if these “occurrences” obey the following rules:

(I) the number of occurrences in non-overlapping intervals (of time or space) are

independent random variables.

(II) the probability of an occurrence in a sufficiently short interval is proportional to the length of

the interval.

(III) The probability of 2 or more occurrences in a sufficiently short interval is zero.

We say that X has a Poisson distribution and write X ∼ Poisson(λ). A process that produces

occurrences according to these rules is called a Poisson process.

If X ∼ Poisson(λ), then the probability mass function of X is given by

f(x) =


λxe−λ

x! , x = 0, 1, 2, . . .

0, otherwise.

and

E(X) = λ

V (X) = λ.

Remark: In a Poisson process, suppose the mean of counts in one unit is λ, then the

mean of counts in 2 units is 2λ, in 3 unites is 3λ, ...
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Example 3.6.1. Let X denote the number of times per month that a detectable amount of radioac-

tive gas is recorded at a nuclear power plant. Suppose that X follows a Poisson distribution with

mean λ = 2.5 times per month.

(a) What is the probability that there are exactly three times a detectable amount of gas is recorded

in a given month?

(b) What is the probability that there are no more than four times a detectable amount of gas is

recorded in a given month?

(c) What is the probability that there are exactly three times a detectable amount of gas is recorded

in two given month?

(d) Given the event that there are four times a detectable amount of gas is recorded in September,

what is the probability that there are exactly three times a detectable amount of gas is recorded

in October?

TI-84 codes for Poisson distribution:

Type f(x) = P (X = x) F (x) = P (X ≤ x)

X ∼ Poisson(λ) poissonpdf(λ, x) poissoncdf(λ, x)

R codes for Poisson distribution:

Type f(x) = P (X = x) F (x) = P (X ≤ x)

X ∼ Poisson(λ) dpois(x, λ) ppois(x, λ)
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Example 3.6.2. Orders arrive at a Web site according to a Poisson process with a mean of 12 per

hour. Determine the following:

(a) Probability of no orders in five minutes.

(b) Probability of 3 or more orders in five minutes.

(c) Length of a time interval such that the probability of no orders in an interval of this length is

0.001.
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3.7 General Continuous Distribution

Recall: A continuous random variable is a random variable with an interval (either finite or

infinite) of real numbers for its range.

• Contrast this with a discrete random variable whose values can be “counted.”

• For example, if X = time (measured in seconds), then the set of all possible values of X is

{x : x > 0}

If X = temperature (measured in degree oC), the set of all possible values of X (ignoring

absolute zero and physical upper bounds) might be described as

{x : −∞ < x <∞}.

Neither of these sets of values can be “counted.”

Assigning probabilities to events involving continuous random variables is different than in dis-

crete models. We do not assign positive probability to specific values (e.g., X = 3, etc.) like we did

with discrete random variables. Instead, we assign positive probability to events which are intervals

(e.g., 2 < X < 4, etc.).

Every continuous random variable we will discuss in this course has a probability density

function (pdf), denoted by f(x). This function has the following characteristics:

1. f(x) ≥ 0, that is, f(x) is nonnegative.

2. The area under any pdf is equal to 1, that is,∫ ∞
−∞

f(x)dx = 1.

3. If x0 is a specific value of interest, then the cumulative distribution function (cdf) of X

is given by

F (x0) = P (X ≤ x0) =

∫ x0

−∞
f(x)dx.

In another way, f(x) can be view as the first derivative of F (x); i.e.,

f(x) = F ′(x).

4. If x1 and x2 are specific values of interest (x1 < x2), then

P (x1 ≤ X ≤ x2) =

∫ x2

x1

f(x)dx

= F (x2)− F (x1).
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5. For any specific value x0, P (X = x0) = 0. In other words, in continuous probability models,

specific points are assigned zero probability (see #4 above and this will make perfect mathe-

matical sense). An immediate consequence of this is that if X is continuous,

P (x1 ≤ X ≤ x2) = P (x1 ≤ X < x2) = P (x1 < X ≤ x2) = P (x1 < X < x2)

and each is equal to ∫ x2

x1

f(x)dx.

This is not true if X has a discrete distribution because positive probability is assigned to

specific values of X. Evaluating a pdf at a specific value x0, that is, computing f(x0), does not

give you a probability! This simply gives you the height of the pdf f(x) at x = x0.

6. The expected value (or population mean) of X is given by

µ = E(X) =

∫ ∞
−∞

xf(x)dx.

And the population variance of X is given by

σ2 = V (X) = E(X2)− {E(X)}2 =

∫ ∞
−∞

x2f(x)dx− µ2.

The population standard deviation of X is given by the positive square root of the variance:

σ =
√
σ2 =

√
V (X).

Let X be a continuous random variable with pdf f(x). Suppose that g, g1, g2, ..., gk are real-valued

functions, and let c be any real constant.

E[g(X)] =

∫ ∞
−∞

g(x)f(x)dx.

Further expectations satisfy the following (linearity) properties:

1. E(c) = c

2. E[cg(X)] = cE[g(X)]

3. E[
∑k

j=1 gj(X)] =
∑k

j=1E[gj(X)]

For linear function g(x) = ax+ b where a, b are constants, we have

E[g(X)] = aE[X] + b and V [aX + b] = a2V [X].
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Example 3.7.1. Suppose that X has the pdf

f(x) =

{
3x2, 0 < x < 1

0, otherwise.

(a) Find the cdf of X.

(b) Calculate P (X < 0.3)

(c) Calculate P (X > 0.8)

(d) Calculate P (0.3 < X < 0.8)

(e) Find the mean of X

(f) Find the standard deviation of X.

(g) If we define Y = 3X, find the cdf and pdf of Y . Further calculate the mean and variance of Y .
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3.8 Exponential Distribution

The Exponential Distribution is commonly used to answer the following questions:

• How long do we need to wait before a customer enters a shop?

• How long will it take before a call center receives the next phone call?

• How long will a piece of machinery work without breaking down?

All these questions concern the time we need to wait before a given event occurs. We often model

this waiting time by assuming it follows an exponential distribution.

A random variable X is said to have an exponential distribution with parameter λ > 0 if its pdf

is given by

f(x) =

{
λe−λx, x > 0

0, otherwise.

Shorthand notation is X ∼ Exp(λ). The parameter λ is called rate parameter.

Now, let us calculate the cumulative distribution function of X ∼ Exp(λ):

F (x0) = P (X ≤ x0) =

=

{

Thus, for any specified time x0 (of course it is positive), the probability of the event happens no later

than x0 is

P (X ≤ x0) = F (x0) =

The probability of the event happens later than x0 is

P (X > x0) = 1− F (x0) =

Now, let us define Y = λX. What is the cdf and pdf of Y ? What are the mean and variance of Y ?
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Using Y , we are able to calculate the mean and variable of X ∼ Exp(λ) as

µ = E(X) =

σ2 = V (X) =

Consequently, the standard deviation of X is then σ =
√
σ2 = .

Example 3.8.1. Assume that the length of a phone call in minutes is an exponential random variable

X with parameter λ = 1/10, (or the question may tell you the value of λ through the expectation;

i.e., this based the expected waiting time for a phone call is 10 minuets). If someone arrives at a

phone booth just before you arrive, find the probability that you will have to wait

(a) less than 5 minuets

(b) greater than 10 minuets

(c) between 5 and 10 minuets

Also compute the expected value and variance.
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Memoryless property: Suppose Z is a continuous random variable whose values are all non-

negative. We say Z is memoryless if for any r ≥ 0, s ≥ 0, we have

P (Z > t+ s | Z > t) = P (Z > s).

Interpretation: suppose Z represents the waiting time until something happens. This property

says that, conditioning on that you have waited at least t time, the probability of waiting for addi-

tionally at leat s time is the same with the probability of waiting for at least s time starting from

the beginning. In other words, In other words, the fact that Z has made it to time t has been

“forgotten.”

In the following, we show that any exponential random variable, X ∼ Exp(λ) has the memoryless

property.

Example 3.8.2. In previous example, what is probability that you need wait for more than 10

minuets given the fact you have waited for more than 3 minutes?
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Poisson relationship: Suppose that we are observing “occurrences” over time according to a

Poisson distribution with rate λ. Define the random variable

W = the time until the first occurrence.

Then,

W ∼ Exp(λ).

NOTE THAT it is also true that the time between any two consecutive occurrences in a Poisson

process follows this same exponential distribution (these are called “interarrival times”).

Example 3.8.3. Suppose that customers arrive at a check-out according to a Poisson process with

mean λ = 12 per hour. What is the probability that we will have to wait longer than 10 minutes to

see the first customer? (Note: 10 minutes is 1/6th of an hour.)
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3.9 Gamma Distribution

We start this subsection with a very interesting function: the Gamma Function, defined by

Γ(α) =

∫ ∞
0

tα−1e−tdt, where α > 0.

When α > 1,the gamma function satisfies the recursive relationship,

Γ(α) = (α− 1)Γ(α− 1).

Therefore, if n is an integer, then

Γ(n) = (n− 1)!

Notice that

1 =

∫ ∞
0

1

Γ(α)
tα−1e−tdt

(change variable x = t/λ, for λ > 0)

=

∫ ∞
0

1

Γ(α)
(λx)α−1e−λxd(λx)

=

∫ ∞
0

λα

Γ(α)
xα−1e−λxdx

=

∫ ∞
−∞

f(x)dx (Thus f(x) is a valid pdf.)

where

f(x) =

{
λα

Γ(α)x
α−1e−λx, x > 0

0, otherwise.

A random variable X is said to has a gamma distribution with parameters α > 0 and λ > 0 if its

pdf is given by

f(x) =

{
λα

Γ(α)x
α−1e−λx, x > 0

0, otherwise.

Shorthand notation is X ∼ Gamma(α, λ). Its mean and variance are

E(X) =
α

λ
, V (X) =

α

λ2
.

• When α = 1, we have

f(x) =

{
λ1

Γ(1)x
1−1e−λx = λe−λx, x > 0

0, otherwise.

Hence, exponential distribution Exp(λ) is a special case of Gamma distribution; i.e., Gamma(1, λ).

In other words, the gamma distribution is more flexible than the exponential distribution.
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• Plot of pdf and cdf:
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• Plot of pdf and cdf:
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• Poisson relationship: Suppose that we are observing “occurrences” over time according to

a Poisson distribution with rate λ. Define the random variable

W = the time until the αth occurrence (herein α is an integer).

Then,

W ∼ Gamma(α, λ).

NOTE THAT it is also true that the time between any two occurrences (unlike last subsection,

these two occurrences does not need to be consecutive) in a Poisson process follows a gamma

distribution.

• The cdf of a gamma random variable does not exist in closed form. Therefore, probabilities

involving gamma random variables (when α 6= 1) must be computed numerically (e.g., using

R).

R codes for Exponential and Gamma distributions:

Type F (x) = P (X ≤ x)

X ∼ Exp(λ) pexp(x, λ) or pgamma(x, 1, λ)

X ∼ Gamma(α, λ) pgamma(x, α, λ)

Example 3.9.1. Calls to the help line of a large computer distributor follow a Poisson distribution

with a mean of 20 calls per minute. Determine the following:

(a) Mean time until the one-hundredth call

(b) Mean time between call numbers 50 and 80

(c) Probability that the time till the third call occur within 15 seconds
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3.10 Normal Distribution

A random variable X is said to have a normal distribution if its pdf is given by

f(x) =
1√
2πσ

e−
1
2(x−µσ )

2

, −∞ < x <∞.

Shorthand notation is X ∼ N(µ, σ2). Another name for the normal distribution is the Gaussian

distribution.

E(X) = µ, V (X) = σ2.

Example 3.10.1. If X ∼ N(1, 4), find the mean, variance, and standard deviation of X.
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Figure 3.10.3: The left one presents the plot of pdf of N(−10, 1), N(−5, 1), N(0, 1), N(5, 1), N(10, 1)
(from left to right).
The right one presents the plot of pdf of N(0, 1), N(0, 22), N(0, 32), N(0, 42), N(0, 55), N(0, 88)
(from top to down)

Example 3.10.2. Denote Z = X−µ
σ , identify the distribution of Z.
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Standard normal distribution: when µ = 0 and σ2 = 1, we say the normal distribution N(0, 1)

is the standard normal distribution. We denote a standard normal random variable by Z; i.e.,

Z ∼ N(0, 1).

If random variable X ∼ N(µ, σ2), we can standardize X to get a standard normal random variable:

X − µ
σ

= Z ∼ N(0, 1).

The cumulative function of a standard normal random variable is denoted as

Φ(z) = P (Z ≤ z).

However, the function Φ(z) does not exist in closed form. Actually, for any normal random variable,

its cdf does not exists in closed form.

TI-84 codes for Normal distributions N(µ, σ2):

Type Commands (input σ not σ2)

P (a ≤ X ≤ b) normalcdf (a, b,µ,σ)

P (a ≤ X) normalcdf (a, 1099,µ,σ)

P (X ≤ b) normalcdf (−1099, b,µ,σ)
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For X ∼ N(µ, σ2),
X − µ
σ

= Z ∼ N(0, 1).

In the other way, we can express

X = µ+ σZ.

Thus, all the normal distribution shares a common thing which is the standard normal distribution. If

we know standard normal, we know every normal distribution. For example, in terms of calculating

probabilities, if X ∼ N(µ, σ2), we can always standardize it to get the standard normal Z and

calculate the probabilities based on standard normal.

P (x1 < X < x2) =

=

=

=

Similarly, we have

P (X > x1) = , P (X < x2) =

Example 3.10.3. Find the following properties:

Z ∼ N(0, 1) X ∼ N(1, 4) X ∼ N(−1, 9)

P (−1 < Z < 1) P (−1 < X < 3) P (−4 < X < 2)

P (−2 < Z < 2) P (−3 < X < 5) P (−7 < X < 5)

P (−3 < Z < 3) P (−5 < X < 7) P (−10 < X < 8)

Three important things about normal distributions:

• Empirical rule, or the 68-95-99.7% rule: For X ∼ N(µ, σ2), calculate

(a) P (µ− σ ≤ X ≤ µ+ σ) =

(b) P (µ− 2σ ≤ X ≤ µ+ 2σ) =

(c) P (µ− 3σ ≤ X ≤ µ+ 3σ) =
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Interpretation:

– about of the distribution is between µ− σ and µ+ σ.

– about of the distribution is between µ− 2σ and µ+ 2σ.

– about of the distribution is between µ− 3σ and µ+ 3σ.

• Symmetric: The pdf of a normal distribution is always symmetric respect to its mean. Thus

P (Z > z) = P (Z < −z)

P (−z < Z < z) = 1− 2P (Z > z) if z > 0

For X ∼ N(µ, σ2),

P (X − µ > x) = P (X − µ < x)

P (−x < X − µ < x) = 1− 2P (X − µ > x) if x > 0.

• Find the inverse of the cdf of a normal distribution: We have already known how to

compute F (x) = P (X ≤ x) when X ∼ N(µ, σ2). In the opposite way, suppose the question

tells you P (X ≤ x) = α, how to find x based on the value of α?

TI-84 codes for the inverse of the cdf of N(µ, σ2):

For any given 0 < α < 1,

the value of x, such that P (X ≤ x) = α

can be found using the TI-84 code:

invNorm(α, µ, σ).

In the other way, if you need find the value of x such that P (X > x) = α, use

invNorm(1− α, µ, σ).
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Example 3.10.4. If X is normally distributed with a mean of 10 and a standard deviation of 2.

(a) Find P (2 < X < 8), P (X > 10), P (X < 9).

(b) Determine the value for x that solves each of the following:

(1) P (X > x) = 0.5

(2) P (X > x) = 0.95

(3) P (x < X < 11) = 0.3

(4) P (−x < X − 10 < x) = 0.95

(5) P (−x < X − 10 < x) = 0.99

Example 3.10.5. Suppose that the current measurements in a strip of wire are assumed to follow

a normal distribution with a mean of 10 milliamperes and a variance of σ2 (milliamperes)2, where

σ2 is unknown.

(a) Suppose we know the probability that a measurement exceeds 12 milliamperes is 0.16, approxi-

mate σ2 via the Empirical rule.

(b) Based on part (a), find the value x satisfies that the probability that a measurement exceeds x

milliamperes is 0.05.

(c) Ignoring the findings in (a-b), suppose we know the probability that a measurement exceeds

13.29 milliamperes is 0.05, find σ.
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3.11 Weibull Distribution

Reliability analysis is important in engineering. It deals with failure time (i.e., lifetime, time-to-

event) data. For example,

• T = time from start of product service until failure

• T = time of sale of a product until a warranty claim

• T = number of hours in use/cycles until failure:

We call T a lifetime random variable if it measures the time to an “event;” e.g., failure, death,

eradication of some infection/condition, etc. Engineers are often involved with reliability studies

in practice, because reliability is related to product quality. There are many well known lifetime

distributions, including

• exponential

• Weibull

• lognormal

• others: gamma, inverse Gaussian, Gompertz-Makeham, Birnbaum-Sanders, extreme value,

log-logistic, etc.

• The normal (Gaussian) distribution is rarely used to model lifetime variables.

In this section, we will learn Weibull distribution.

A random variable T is said to have a Weibull distribution with parameter β > 0 and η > 0 if its

pdf is given by

fT (t) =


β

η

(
t

η

)β−1

e−(t/η)β , t > 0

0, otherwise.

Shorthand notation is T ∼Weibull(β, η).

• We call

β = shape parameter

η = scale parameter.

• By changing the values of β and η, the Weibull pdf can assume many shapes. The Weibull

distribution is very popular among engineers in reliability applications; e.g., here are the plots
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of probability density function and cumulative distribution function of several Weibull distri-

butions.
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• The cdf of T exists in closed form and is given by

FT (t) = P (T ≤ t) =

{
1− e−(t/η)β , t > 0,

0, t ≤ 0.

• If T ∼Weibull(β, η), then its mean and variance are

E(T ) = ηΓ

(
1 +

1

β

)
, V (T ) = η2

{
Γ

(
1 +

2

β

)
−
[
Γ

(
1 +

1

β

)]2
}
.

• Note that when β = 1, the Weibull pdf reduces to the exponential(λ = 1/η) pdf.

Example 3.11.1. Suppose that the lifetime of a rechargeable battery, denoted by T (measured in

hours), follows a Weibull distribution with parameters β = 2 and η = 10.

(a) What is the mean time to failure?

E(T ) = 10Γ

(
3

2

)
≈ 8.862 hours.

(b) What is the probability that a battery is still functional at time t = 20?
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(c) What is the probability that a battery is still functional at time t = 20 given that the battery is

functional at time t = 10?

(d) What is the value of t such that P (T ≤ t) = .99?

3.12 Reliability functions

We now describe some different, but equivalent, ways of defining the distribution of a (continuous)

lifetime random variable T .

• The cumulative distribution function (cdf)

FT (t) = P (T ≤ t).

This can be interpreted as the proportion of units that have failed by time t.

• The survivor function

ST (t) = P (T > t) = 1− FT (t).

This can be interpreted as the proportion of units that have not failed by time t; e.g., the unit

is still functioning, a warranty claim has not been made, etc.

• The probability density function (pdf)

fT (t) =
d

dt
FT (t) = − d

dt
ST (t).

Also, recall that

FT (t) =

∫ t

0
fT (u)du and ST (t) =

∫ ∞
t

fT (u)du.

The hazard function is defined as

hT (t) = lim
ε→0

P (t ≤ T < t+ ε|T ≥ t)
ε

.

The hazard function is not a probability; rather, it is a probability rate. Therefore, it is possible

that a hazard function may exceed one.

The hazard function (or hazard rate) is a very important characteristic of a lifetime distribution.

It indicates the way the risk of failure varies with time. Distributions with increasing hazard

functions are seen in units for whom some kind of aging or “wear out” takes place. Certain types of
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units (e.g., electronic devices, etc.) may display a decreasing hazard function, at least in the early

stages of their lifetimes. It is insightful to note that

hT (t) = lim
ε→0

P (t ≤ T < t+ ε|T ≥ t)
ε

= lim
ε→0

P (t ≤ T < t+ ε)

εP (T ≥ t)

=
1

P (T ≥ t)
lim
ε→0

FT (t+ ε)− FT (t)

ε
=
fT (t)

ST (t)
.

We can therefore describe the distribution of the continuous lifetime random variable T by using

either fT (t), FT (t), ST (t), or hT (t).

Example 3.12.1. In this example, we find the hazard function for T ∼ Weibull(β, η). Recall that

when t > 0, the pdf of T is

fT (t) =
β

η

(
t

η

)β−1

e−(t/η)β

The cdf and survivor function of T are, respectively,

FT (t) = 1− e−(t/η)β and ST (t) = 1− FT (t) = e−(t/η)β .

Therefore, the hazard function, for t > 0, is

hT (t) =
fT (t)

ST (t)
=

β
η

(
t
η

)β−1
e−(t/η)β

e−(t/η)β
=
β

η

(
t

η

)β−1

.

Plots of Weibull hazard functions are given in Figure 3.12.4. It is easy to show

• hT (t) is increasing if β > 1 (wear out; population of units get weaker with aging)

• hT (t) is constant if β = 1 (constant hazard; exponential distribution)

• hT (t) is decreasing if β < 1 (infant mortality; population of units gets stronger with aging).

Figure 3.12.4: Weibull hazard functions with η = 1. Upper left: β = 3. Upper right: β = 1.5. Lower
left: β = 1. Lower right: β = 0.5.
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4 One-Sample Statistical Inference

4.1 Populations and samples

Overview: This chapter is about statistical inference. This deals with making (probabilistic)

statements about a population of individuals based on information that is contained in a sample

taken from the population.

Example 4.1.1. Suppose that we wish to study the performance of lithium batteries used in a

certain calculator. The purpose of our study is to determine the mean lifetime of these batteries

so that we can place a limited warranty on them in the future. Since this type of battery has not

been used in this calculator before, no one (except the Oracle) can tell us the distribution of X, the

battery’s lifetime. In fact, not only is the distribution not known, but all parameters which index

this distribution aren’t known either.

A population refers to the entire group of “individuals” (e.g., parts, people, batteries, etc.) about

which we would like to make a statement (e.g., proportion defective, median weight, mean lifetime,

etc.).

• It is generally accepted that the entire population can not be measured. It is too large and/or

it would be too time consuming to do so.

• To draw inferences (make probabilistic statements) about a population, we therefore observe

a sample of individuals from the population.

• We will assume that the sample of individuals constitutes a random sample. Mathematically,

this means that all observations are independent and follow the same probability distribution.

Informally, this means that each sample (of the same size) has the same chance of being selected.

Our hope is that a random sample of individuals is “representative” of the entire population

of individuals.

Notation: We will denote a random sample of observations by

X1, X2, ..., Xn.

That is, X1 is the value of X for the first individual in the sample, X2 is the value of X for the

second individual in the sample, and so on. The sample size tells us how many individuals are in the

sample and is denoted by n. Statisticians refer to the set of observations X1, X2, ..., Xn generically

as data. Lower case notation x1, x2, ..., xn is used when citing numerical values (or when referring

to realizations of the upper case versions).
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Figure 4.1.1: Histogram of battery lifetime data (measured in hours).

Example 4.1.2. BATTERY DATA: Consider the following random sample of n = 50 battery life-

times x1, x2, ..., x50 (measured in hours):

4285 2066 2584 1009 318 1429 981 1402 1137 414

564 604 14 4152 737 852 1560 1786 520 396

1278 209 349 478 3032 1461 701 1406 261 83

205 602 3770 726 3894 2662 497 35 2778 1379

3920 1379 99 510 582 308 3367 99 373 454

In Figure 4.1.1, we display a histogram of the battery lifetime data. We see that the (empirical)

distribution of the battery lifetimes is skewed towards the high side.

• Which continuous probability distribution seems to display the same type of pattern that we

see in histogram?

• An exponential Exp(λ) model seems reasonable here (based on the histogram shape). What is

λ?

• In this example, λ is called a (population) parameter. It describes the theoretical distribution

which is used to model the entire population of battery lifetimes.
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• In general, (population) parameters which index probability distributions (like the exponential)

are unknown.

• All of the probability distributions that we discussed in Chapter 3 are meant to describe (model)

population behavior.

4.2 Parameters and statistics

A parameter is a numerical quantity that describes a population. In general, population parameters

are unknown. Some very common examples are:

µ = population mean

σ2 = population variance

p = population proportion.

All of the probability distributions that we talked about in Chapter 3 were indexed by population

(model) parameters. For example,

• the N(µ, σ2) distribution is indexed by two parameters, the population mean µ and the popu-

lation variance σ2.

• the Poisson(λ) distribution is indexed by one parameter, the population mean λ.

• the Weibull(β, η) distribution is indexed by two parameters, the shape parameter β and the

scale parameter η.

• the B(n, p) distribution is indexed by two parameters, the size n and the population proportion

of successes p.

Suppose that X1, X2, ..., Xn is a random sample from a population. The sample mean is

X =
1

n

n∑
i=1

Xi.

The sample variance is

S2 =
1

n− 1

n∑
i=1

(Xi −X)2.

The sample standard deviation is the positive square root of the sample variance; i.e.,

S =
√
S2 =

√√√√ 1

n− 1

n∑
i=1

(Xi −X)2.

Important: These quantities can be computed from a sample of data X1, X2, ..., Xn.
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A statistic is a numerical quantity that can be calculated from a sample of data. Some very common

examples are:

X = sample mean

S2 = sample variance

p̂ = sample proportion.

For example, with the battery lifetime data (a random sample of n = 50 lifetimes),

x = 1274.14 hours

s2 = 1505156 (hours)2

s ≈ 1226.85 hours.

In R, the following codes can help you calculate the sample mean, sample variance, and sample

standard deviation. In the following codes, the battery data is saved in the variable with the name

“battery.”

> mean(battery) ## sample mean

[1] 1274.14

> var(battery) ## sample variance

[1] 1505156

> sd(battery) ## sample standard deviation

[1] 1226.848

Summary: The table below succinctly summarizes the salient differences between a population and

a sample (a parameter and a statistic):

Group of individuals Numerical quantity Status

Population (Not observed) Parameter Unknown

Sample (Observed) Statistic Calculated from sample data

Statistical inference deals with making (probabilistic) statements about a population of individuals

based on information that is contained in a sample taken from the population. We do this by

(a) estimating unknown population parameters with sample statistics

(b) quantifying the uncertainty (variability) that arises in the estimation process.

These are both necessary to construct confidence intervals and to perform hypothesis tests, two

important exercises discussed in this chapter.
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4.3 Point estimators and sampling distributions

NOTATION: To keep our discussion as general as possible (as the material in this subsection can be

applied to many situations), we will let θ denote a population parameter.

• For example, θ could denote a population mean, a population variance, a population proportion,

a Weibull or gamma model parameter, etc. It could also denote a parameter in a regression

context (Chapter 6-7).

A point estimator θ̂ is a statistic that is used to estimate a population parameter θ. Common

examples of point estimators are:

X −→ a point estimator for µ (population mean)

S2 −→ a point estimator for σ2 (population variance)

S −→ a point estimator for σ (population standard deviation).

Important: It is important to note that, in general, an estimator θ̂ is a statistic, so it depends on

the sample of data X1, X2, ..., Xn.

• The data X1, X2, ..., Xn come from the sampling process; e.g., different random samples will

yield different data sets X1, X2, ..., Xn.

• In this light, because the sample values X1, X2, ..., Xn will vary from sample to sample, the

value of θ̂ will too! It therefore makes sense to think about all possible values of θ̂; that is, the

distribution of θ̂.

The distribution of an estimator θ̂ (a statistic) is called its sampling distribution. A sampling

distribution describes mathematically how θ̂ would vary in repeated sampling. We will study many

sampling distributions in this chapter.

We say that θ̂ is an unbiased estimator of θ if and only if

E(θ̂) = θ.

In other words, the mean of the sampling distribution of θ̂ is equal to θ. Note that unbiasedness is

a characteristic describing the center of a sampling distribution. This deals with accuracy.

RESULT : Mathematics shows that when X1, X2, ..., Xn is a random sample,

E(X) = µ

E(S2) = σ2.

That is, X and S2 are unbiased estimators of their population analogues.
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• Goal: Not only do we desire to use point estimators θ̂ which are unbiased, but we would also

like for them to have small variability. In other words, when θ̂ “misses” θ, we would like for it

to “not miss by much.” This deals with precision.

• Main point: Accuracy and precision are the two main mathematical characteristics that arise

when evaluating the quality of a point estimator θ̂. We desire point estimators θ̂ which are

unbiased (perfectly accurate) and have small variance (highly precise).

The standard error of a point estimator θ̂ is equal to

se(θ̂) =

√
var(θ̂).

In other words, the standard error is equal to the standard deviation of the sampling distribution

of θ̂. An estimator’s standard error measures the amount of variability in the point estimator θ̂.

Therefore,

smaller se(θ̂) ⇐⇒ θ̂ more precise.

4.4 Sampling distributions involving X

Sampling distribution of X from normal distribution: Suppose thatX1, X2, ..., Xn is a random

sample from a N(µ, σ2) distribution. The sample mean X has the following sampling distribution:

X ∼ N
(
µ,
σ2

n

)
.

• This result reminds us that

E(X) = µ.

That is, the sample mean X is an unbiased estimator of the population mean µ.

• This result also shows that the standard error of X (as a point estimator) is

se(X) =

√
var(X) =

√
σ2

n
=

σ√
n
.

Example 4.4.1. Suppose

X = time (in seconds) to react to brake lights during in-traffic driving.

We assume

X ∼ N(µ = 1.5, σ2 = 0.16).

We call this the population distribution, because it describes the distribution of values of X for

all individuals in the population (here, in-traffic drivers).
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Question: suppose that we take a random sample of n = 5 drivers with times X1, X2, ..., X5. What

is the distribution of the sample mean X?

Solution: If the sample size is n = 5, then with µ = 1.5 and σ2 = 0.16, we have

X ∼ N
(
µ,
σ2

n

)
=⇒ X ∼ N(1.5, 0.032).

This distribution describes the values of X we would expect to see in repeated sampling, that is, if

we repeatedly sampled n = 5 individuals from this population of in-traffic drivers and calculated the

sample mean X each time.

Question: Suppose that we take a random sample of n = 25 drivers with times X1, X2, ..., X25.

What is the distribution of the sample mean X?

Solution: If the sample size is n = 25, then with µ = 1.5 and σ2 = 0.16, we have

X ∼ N
(
µ,
σ2

n

)
=⇒ X ∼ N(1.5, 0.0064).

Central Limit Theorem: Suppose that X1, X2, ..., Xn is a random sample from a population

distribution (does not have to be normal distribution) with mean µ and variance σ2 (not necessarily

a normal distribution). When the sample size n is large, we have

X ∼ AN
(
µ,
σ2

n

)
.

The symbol AN is read “approximately normal.” This result is called the Central Limit Theorem

(CLT).

• Sampling distribution of X from normal distribution guarantees that when the under-

lying population distribution is N(µ, σ2), the sample mean

X ∼ N
(
µ,
σ2

n

)
.

• The Central Limit Theorem says that even if the population distribution is not normal

(Guassian), the sampling distribution of the sample mean X will be approximately norma

when the sample size is sufficiently large.

• The central limit theorem demonstrates that, for the population mean µ, the point estimator

X works consistently well in terms of that, se(X) = σ/
√
n converges to zero as sample size n

increases (which is reasonable, since a larger sample size means that it contain more information

about the population, thus the resulting estimator should be more accurate).

• Waring: The central limit theorem says no matter which distribution the samples are collected

from, the sample mean follows approximately normal when sample size is large. However,

this does not mean that when sample size is large, any distribution becomes normal.
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Figure 4.4.2: Rat death times. Population distribution: X ∼ Exp(λ = 1/5). Also depicted are the
sampling distributions of X when n = 5 and n = 25.

Example 4.4.2. The time to death for rats injected with a toxic substance, denoted by X (measured

in days), follows an exponential distribution with λ = 1/5. That is,

X ∼ Exp(λ = 1/5).

This is the population distribution, that is, this distribution describes the time to death for all

rats in the population.

• In Figure 4.4.2, I have shown the Exp(1/5) population distribution (solid curve). I have also

depicted the theoretical sampling distributions of X when n = 5 and when n = 25.

• Main point: Notice how the sampling distribution of X begins to (albeit distantly) resemble

a normal distribution when n = 5. When n = 25, the sampling distribution of X looks very

much to be normal. This is precisely what is conferred by the CLT. The larger the sample size

n, the better a normal distribution approximates the true sampling distribution of X.
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Example 4.4.3. When a batch of a certain chemical product is prepared, the amount of a particular

impurity in the batch (measured in grams) is a random variable X with the following population

parameters:

µ = 4.0g

σ2 = (1.5g)2.

Suppose that n = 50 batches are prepared (independently). What is the probability that the sample

mean impurity amount X is greater than 4.2 grams?

Solution: With n = 50, µ = 4, and σ2 = (1.5)2, the CLT says that

X ∼ AN
(
µ,
σ2

n

)
=⇒ X ∼ AN(4, 0.045).

Therefore,

P (X > 4.2) ≈ normalcdf(4.2,1099,4,
√

0.045) = 0.1728893.

Important: Note that in making this (approximate) probability calculation, we never made an

assumption about the underlying population distribution shape.

4.5 Confidence intervals for a population mean µ

Before getting to confidence intervals, I need introduce a new definition:

Upper quantiles of a distribution: we say x is the upper α-th quantile of a distribution of

random variable X, if

P (X > x) = α.

(Lower) quantiles of a distribution: we say x is the (lower) α-th quantile of a distribution of

random variable X, if

P (X ≤ x) = α.

Quantiles of the standard normal distribution. Recall in Section 3.10, I have introduced that,

when X ∼ N(µ, σ2), Find x such that P (X > x) = α can use the commend “invNorm(1− α, µ, σ).”

Thus, for standard normal distribution; i.e., Z ∼ N(0, 1), we denote its upper α-th quantile as zα

which can be calculated as

zα = invNorm(1− α, 0, 1).

Based on the symmetric of standard normal distribution (with respect to 0), we have

the lower α-th quantile of the standard normal distribution = −zα.
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Figure 4.5.3: N(0, 1) pdf. The upper 0.025 and lower 0.025 areas have been shaded. The associated
quantiles are the upper 0.025-th quantile as z0.025 ≈ 1.96 and the lower 0.025-th quantile as −z0.025 ≈
−1.96, respectively.

For example, if α = 0.05 (see Figure 4.5.3), we know that the upper α/2-th quantile and the

lower α/2-th quantile are

z0.05/2 = z0.025 = invNorm(1− 0.025, 0, 1) ≈ 1.96

−z0.05/2 = −z0.025 ≈ −1.96.

Then, it is easy to see that,

1− α = P (−zα/2 < Z < zα/2).

It means that the probability of a standard random variable Z follows in the interval (−zα/2, zα/2)

is 1 − α. When α = 0.05, we have the probability of a standard random variable Z follows in the

interval (−1.96, 1.96) is 95%.

Example 4.5.1. When α = 0.01, find the upper and lower α/2-th quantiles.

upper: z0.01/2 = z0.005 = invNorm(1− 0.005, 0, 1) ≈ 2.576

lower: − z0.01/2 = −z0.005 ≈ −2.576.
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4.5.1 Known population variance σ2

To get things started, we will assume that X1, X2, ..., Xn is a random sample from a N(µ, σ2) popu-

lation distribution. We will assume that

• the population variance σ2 is known (largely unrealistic).

• the goal is to estimate the population mean µ.

We already know that X is an unbiased (point) estimator for µ, that is,

E(X) = µ.

However, reporting X alone does not acknowledge that there is variability attached to this estimator.

For example, in Example 4.4.3, for with the n = 50 measured amount of impurity, reporting

x ≈ 4.099 g

as an estimate of the population mean µ does not account for the fact that

• the 50 batches measured were drawn randomly from a population of all pipes, and

• different samples would give different sets of pipes (and different values of x).

In other words, using a point estimator only ignores important information; namely, how variable

the population of the amount of impurity in a batch is.

To avoid this problem (i.e., to account for the uncertainty in the sampling procedure), we therefore

pursue the topic of interval estimation (also known as confidence intervals). The main difference

between a point estimate and an interval estimate is that

• a point estimate is a “one-shot guess” at the value of the parameter; this ignores the variability

in the estimate.

• an interval estimate (i.e., confidence interval) is an interval of values. It is formed by

taking the point estimate and then adjusting it downwards and upwards to account for the

point estimate’s variability. The end result is an “interval estimate.”

We start our discussion by revisiting the sampling distribution of X from normal distribution in

the last subsection. Recall that if X1, X2, ..., Xn is a random sample from a N(µ, σ2) distribution,

then the sampling distribution of X is

X ∼ N
(
µ,
σ2

n

)
and therefore

Z =
X − µ
σ/
√
n
∼ N(0, 1).
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Now we start building a confidence interval estimator of µ. In general, for any value of α, 0 < α < 1,

1− α = P (−zα/2 < Z < zα/2)

= P

(
−zα/2 <

X − µ
σ/
√
n
< zα/2

)
= P

(
−zα/2

σ√
n
< X − µ < zα/2

σ√
n

)
= P

(
zα/2

σ√
n
> µ−X > −zα/2

σ√
n

)
= P

(
X + zα/2

σ√
n
> µ > X − zα/2

σ√
n

)
= P

(
X − zα/2

σ√
n
< µ < X + zα/2

σ√
n

)
.

We call (
X − zα/2

σ√
n
, X + zα/2

σ√
n

)
a 100× (1−α) percent confidence interval for the population mean µ. This is sometimes written

(more succinctly) as

X ± zα/2
σ√
n
.

• Note the form of the interval:

point estimate︸ ︷︷ ︸
X

± quantile︸ ︷︷ ︸
zα/2

× standard error︸ ︷︷ ︸
σ/
√
n

.

Many confidence intervals we will study follow this same general form.

• Here is how we interpret this interval: We say

“We are 100(1−α) percent confident that the population mean µ is in this interval.”

• Unfortunately, the word “confident” does not mean “probability.” The term “confidence” in

confidence interval means that if we were able to sample from the population over and over

again, each time computing a 100(1 − α) percent confidence interval for µ, then 100(1 − α)

percent of the intervals we would compute would contain the population mean µ.

• That is, “confidence” refers to “long term behavior” of many intervals; not probability for a

single interval. Because of this, we call 100(1 − α) the confidence level. Typical confidence

levels are

– 90 percent (α = 0.10) =⇒ z0.05 ≈ 1.645

– 95 percent (α = 0.05) =⇒ z0.025 ≈ 1.96

– 99 percent (α = 0.01) =⇒ z0.005 ≈ 2.58.
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• The length of the 100(1− α) percent confidence interval

X ± zα/2
σ√
n

is equal to

2zα/2
σ√
n
.

Therefore,

– the larger the sample size n, the smaller the interval length.

– the larger the population variance σ2, the larger the interval length.

– the larger the confidence level 100(1− α), the larger the interval length.

Clearly, shorter confidence intervals are preferred. They are more informative!

Example 4.5.2. Civil engineers have found that the ability to see and read a sign at night depends

in part on its “surround luminance;” i.e., the light intensity near the sign. The data below are

n = 30 measurements of the random variable Y , the surround luminance (in candela per m2). The

30 measurements constitute a random sample from all signs in a large metropolitan area.

10.9 1.7 9.5 2.9 9.1 3.2 9.1 7.4 13.3 13.1

6.6 13.7 1.5 6.3 7.4 9.9 13.6 17.3 3.6 4.9

13.1 7.8 10.3 10.3 9.6 5.7 2.6 15.1 2.9 16.2

Based on past experience, the engineers assume a normal population distribution (for the population

of all signs) with known population variance σ2 = 20.

Question. Find a 90 percent confidence interval for µ, the mean surround luminance.

Solution. We first use TI-84 to calculate the sample mean x. Put numbers in a list L1, then call

“1-Var Stats.” It gives us x = 8.62. For a 90 percent confidence level; i.e., with α = 0.10, we use

z0.10/2 = z0.05 ≈ 1.645.

This can be determined from TI-84: invNorm(1-.05,0,1)≈ 1.645. With n = 30 and σ2 = 20, a 90

percent confidence interval for the mean surround luminance µ is

x± zα/2
σ√
n

=⇒ 8.62± 1.645

(√
20√
30

)
=⇒ (7.28, 9.96) candela/m2.

Interpretation (no credits if no interpretation): We are 90 percent confident that the mean

surround luminance µ for all signs in the population is between 7.28 and 9.96 candela/m2.
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One-sided confidence bounds: A 100(1− α)% upper-confidence bound for µ is

µ ≤ x+ zασ/
√
n

and a 100(1− α)% lower-confidence bound for µ is

x− zασ/
√
n ≤ µ

Example 4.5.3. ASTM Standard E23 defines standard test methods for notched bar impact testing

of metallic materials. The Charpy V-notch (CVN) technique measures impact energy and is often

used to determine whether or not a material experiences a ductile-to-brittle transition with decreasing

temperature. Ten measurements of impact energy (J ) on specimens of A238 steel cut at 60oC are

as follows: 64.1, 64.7, 64.5, 64.6, 64.5, 64.3, 64.6, 64.8, 64.2, and 64.3. Assume that impact energy is

normally distributed with σ = 1J.

Question. Construct a lower, one-sided 95% confidence interval for the mean impact energy.

Solution. The interval is

x− zασ/
√
n ≤ µ⇒ 64.46− 1.64

1√
10
≤ µ⇒ 63.94 ≤ µ.

Practical Interpretation: The lower limit for the two-sided 95% confidence interval in last example

was 63.84. Because zα < zα/2, the lower limit of a one-sided interval is always greater than the lower

limit of a two-sided interval of equal confidence. The one-sided interval does not bound µ from above

so that it still achieves 95% confidence with a slightly larger lower limit. If our interest is only in the

lower limit for µ, then the one-sided interval is preferred because it provides equal confidence with a

greater limit. Similarly, a one-sided upper limit is always less than a two-sided upper limit of equal

confidence.

TI-84 can help you calculate confident intervals.

Make sure you know it.

Note that, we assume that we know the population distribution is normal. And based on nor-

mality, we have all the confidence intervals derived. However, what if we do not know that? Is this

a serious cause for concern? Probably not. Recall that even if the population distribution (here, the

distribution of all light intensity measurements in the city) is not perfectly normal, we still have

X ∼ AN
(
µ,
σ2

n

)
,

for n large, by the Central Limit Theorem. Therefore, our confidence interval is still approximately

valid. A sample of size n = 30 is “pretty large.” In other words, at n = 30, the CLT approximation

above is usually “kicking in” rather well unless the underlying population distribution is grossly

skewed (and I mean very grossly).
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4.5.2 Sample size determination

MOTIVATION : In the planning stages of an experiment or investigation, it is often of interest to

determine how many individuals are needed to write a confidence interval with a given level of

precision. For example, we might want to construct a 95 percent confidence interval for a population

mean µ so that the interval length is no more than 5 units (e.g., days, inches, dollars, etc.). Of

course, collecting data almost always costs money! Therefore, one must be cognizant not only of the

statistical issues associated with sample size determination, but also of the practical issues like

cost, time spent in data collection, personnel training, etc.

Suppose that X1, X2, ..., Xn is a random sample from a N(µ, σ2) population, where σ2 is known. In

this (known σ2) situation, recall that a 100(1− α) percent confidence interval for µ is given by

X ± zα/2
(
σ√
n

)
︸ ︷︷ ︸

=E, say

.

The quantity E is called the margin of error.

FORMULA: In the setting described above, it is possible to determine the sample size n necessary

once we specify these three pieces of information:

• the value of σ2 (or an educated guess at its value; e.g., from past information, etc.)

• the confidence level, 100(1− α)

• the margin of error, E.

This is true because

E = zα/2

(
σ√
n

)
⇐⇒ n =

(zα/2σ
E

)2

.

Choice of Sample Size: If x is used as an estimate of µ, we can be 100(1 − α)% confident that

the error |x− µ| will not exceed a specified amount E when the sample size is

n =
(zα/2σ

E

)2

Note that n must be an integer. Herein, always round your calculation up.

Example 4.5.4. In a biomedical experiment, we would like to estimate the population mean re-

maining life µ of healthy rats that are given a certain dose of a toxic substance. Suppose that we

would like to write a 95 percent confidence interval for µ with a margin of error equal to E = 2 days.

From past studies, remaining rat lifetimes have been approximated by a normal distribution with

standard deviation σ = 8 days. How many rats should we use for the experiment?

Solution. With z0.05/2 = z0.025 ≈ 1.96, E = 2, and σ = 8, the desired sample size to estimate µ is

n =
(zα/2σ

B

)2

=

(
1.96× 8

2

)2

≈ 61.46 ≈ 62.
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4.5.3 Unknown population variance σ2

In last section, we assume that we know the value of the population variance, but what if we do not

know (which is a more common)?

What if σ2 is unknown: Suppose that X1, X2, ..., Xn is a random sample from a N(µ, σ2) distri-

bution. Result 1 says the sample mean X has the following sampling distribution:

X ∼ N
(
µ,
σ2

n

)
.

If we standardize X, we obtain

Z =
X − µ
σ/
√
n
∼ N(0, 1).

Replacing the population standard deviation σ with the sample standard deviation S, we get a new

sampling distribution:

t =
X − µ
S/
√
n
∼ t(n− 1),

a t distribution with degrees of freedom ν = n− 1.
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Figure 4.5.4: Probability density functions of N(0, 1), t(2), and t(10).
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The t distribution has the following characteristics:

• It is continuous and symmetric about 0 (just like the standard normal distribution).

• It is indexed by a value ν called the degrees of freedom.

• In practice, ν is often an integer (related to the sample size).

• As ν →∞, t(ν)→ N(0, 1); thus, when ν becomes larger, the t(ν) and the N(0, 1) distributions

look more alike.

• When compared to the standard normal distribution, the t distribution, in general, is less

peaked and has more probability (area) in the tails.

• The t pdf formula is complicated and is unnecessary for our purposes. R will compute t

probabilities and quantiles from the t distribution.

We continue to assume that X1, X2, ..., Xn is a random sample from a N(µ, σ2) population distribu-

tion.

• Our goal is the same; namely, to write a 100(1−α) percent confidence interval for the population

mean µ.

• However, we will no longer make the (rather unrealistic) assumption that population variance

σ2 is known.

Recall: If you look back in the notes at the “known σ2 case,” you will see that to derive a 100(1−α)

percent confidence interval for µ, we started with the following distributional result:

Z =
X − µ
σ/
√
n
∼ N(0, 1).

This led us to the following confidence interval formula:

X ± zα/2
σ√
n
.

The obvious problem is that, because σ2 is now unknown, we can not calculate the interval. Not to

worry; we just need a different starting point. Recall that

t =
X − µ
S/
√
n
∼ t(n− 1),

where S is the sample standard deviation (a point estimator for the population standard deviation).

This result is all we need; in fact, it is straightforward to reproduce the “known σ2” derivation and

tailor it to this (now more realistic) case. A 100(1−α) percent confidence interval for µ is given

by

X ± tn−1,α/2
S√
n
.
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The symbol tn−1,α/2 denotes the upper α/2 quantile from a t distribution with ν = n− 1 degrees

of freedom.

• We see that the interval again has the same form:

point estimate︸ ︷︷ ︸
X

± quantile︸ ︷︷ ︸
tn−1,α/2

× standard error︸ ︷︷ ︸
S/
√
n

.

We interpret the interval in the same way.

“We are 100(1−α) percent confident that the population mean µ is in this interval.”

TI-84 can help you calculate confident intervals.

Make sure you know it.

Example 4.5.5. Acute exposure to cadmium produces respiratory distress and kidney and liver

damage (and possibly death). For this reason, the level of airborne cadmium dust and cadmium

oxide fume in the air, denoted by X (measured in milligrams of cadmium per m3 of air), is closely

monitored. A random sample of n = 35 measurements from a large factory are given below:

0.044 0.030 0.052 0.044 0.046 0.020 0.066

0.052 0.049 0.030 0.040 0.045 0.039 0.039

0.039 0.057 0.050 0.056 0.061 0.042 0.055

0.037 0.062 0.062 0.070 0.061 0.061 0.058

0.053 0.060 0.047 0.051 0.054 0.042 0.051

Based on past experience, engineers assume a normal population distribution (for the population of

all cadmium measurements).

Question. Find a 99 percent confidence interval for µ, the mean level of airborne cadmium.

Solution. Input this dataset into Calculator List L1. Then press stat, go to tests, and choose

TInterval. Input, choose data, List is L1, Freq: 1, C-level: 0.99 (since the question is asking for

a 99% confidence interval). Press Calculate. The results are

(.04417, .0544) This is your 99% confidence interval

x = .492857143 (sample mean x)

Sx = .0110893999 (sample standard deviation s)

n = 35 (sample size n)

Interpretation: We are 99 percent confident that the population mean level of airborne cadmium

µ is between 0.044 and 0.054 mg/m3.
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4.6 Confidence interval for a population proportion p

We now switch gears and focus on a new parameter: the population proportion p. This parameter

emerges when the characteristic we measure on each individual is binary (i.e., only 2 outcomes

possible). Here are some examples:

p = proportion of defective circuit boards

p = proportion of customers who are “satisfied”

p = proportion of payments received on time

p = proportion of HIV positives in SC.

To start our discussion, we need to recall the Bernoulli trial assumptions for each individual in the

sample:

1. each individual results in a “success” or a “failure,”

2. the individuals are independent, and

3. the probability of “success,” denoted by p, 0 < p < 1, is the same for every individual.

In our examples above,

“success” −→ circuit board defective

“success” −→ customer satisfied

“success” −→ payment received on time

“success” −→ HIV positive individual.

Recall: If the individual success/failure statuses in the sample adhere to the Bernoulli trial assump-

tions, then

Y = the number of successes out of n sampled individuals

follows a binomial distribution, that is, Y ∼ B(n, p). The statistical problem at hand is to use the

information in Y to estimate p.

Point estimator: A natural point estimator for p, the population proportion, is

p̂ =

the sample proportion. This statistic is simply the proportion of “successes” in the sample (out

of n individuals).
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Fairly simple arguments can be used to show the following results:

E(p̂) =

se(p̂) =

The first result says that the sample proportion p̂ is an unbiased estimator of the population

proportion p. The second (standard error) result quantifies the precision of p̂ as an estimator of p.

Sample Distribution: Knowing the sampling distribution of p̂ is critical if we are going to formalize

statistical inference procedures for p. In this situation, we appeal to an approximate result (conferred

by the CLT) which says that

p̂ ∼ AN
[
p,

p(1− p)
n

]
,

when the sample size n is large.

Result: An approximate 100(1− α) percent confidence interval for p is given by

TI-84 codes: “1-PropZInt.” Three inputs:

x: ;

n: ;

C-level: .

• This interval should be used only when the sample size n is “large.” A common rule of thumb

(to use this interval formula) is to require

np̂ ≥ 5

n(1− p̂) ≥ 5.

Under these conditions, the CLT should adequately approximate the true sampling distribution

of p̂, thereby making the confidence interval formula above approximately valid.

• Note again the form of the interval:

point estimate︸ ︷︷ ︸
p̂

± quantile︸ ︷︷ ︸
zα/2

× standard error︸ ︷︷ ︸√
p̂(1−p̂)
n

.

We interpret the interval in the same way.

“We are 100(1 − α) percent confident that the population proportion p is in this

interval.”

• The value zα/2 is the upper α/2 quantile from the N(0, 1) distribution.
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Example 4.6.1. One source of water pollution is gasoline leakage from underground storage tanks.

In Pennsylvania, a random sample of n = 74 gasoline stations is selected and the tanks are inspected;

10 stations are found to have at least one leaking tank. Calculate a 95 percent confidence interval

for p, the population proportion of gasoline stations with at least one leaking tank.

Question: Suppose that we would like to write a 100(1 − α) percent confidence interval for p, a

population proportion. We know that

p̂± zα/2

√
p̂(1− p̂)

n

is an approximate 100(1 − α) percent confidence interval for p. What sample size n should we

use?

Sample size determination: To determine the necessary sample size, we first need to specify two

pieces of information:

• the confidence level 100(1− α)

• the margin of error:

E = zα/2

√
p̂(1− p̂)

n
.

A small problem arises. Note that B depends on p̂. Unfortunately, p̂ can only be calculated once we

know the sample size n. We overcome this problem by replacing p̂ with p0, an a priori guess at its

value. The last expression becomes

E = zα/2

√
p0(1− p0)

n
.

Solving this equation for n, we get

n =
(zα/2
E

)2

p0(1− p0).

This is the desired sample size n to find a 100(1−α) percent confidence interval for p with a prescribed

margin of error (roughly) equal to E. I say “roughly,” because there may be additional uncertainty

arising from our use of p0 (our best guess).
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Conservative approach: If there is no sensible guess for p available, use p0 = 0.5. In this situation,

the resulting value for n will be as large as possible. Put another way, using p0 = 0.5 gives the most

conservative solution (i.e., the largest sample size, n). This is true because

n = n(p0) =
(zα/2
E

)2

p0(1− p0),

when viewed as a function of p0, is maximized when p0 = 0.5; i.e.,

n =

Example 4.6.2. You have been asked to estimate the proportion of raw material (in a certain

manufacturing process) that is being “scrapped;” e.g., the material is so defective that it can not

be reworked. If this proportion is larger than 10 percent, this will be deemed (by management) to

be an unacceptable continued operating cost and a substantial process overhaul will be performed.

Past experience suggests that the scrap rate is about 5 percent, but recent information suggests that

this rate may be increasing.

Question. You would like to write a 95 percent confidence interval for p, the population proportion

of raw material that is to be scrapped, with a margin of error equal to E = 0.02. How many pieces

of material should you ask to be sampled?

Solution. For 95 percent confidence, we need z0.05/2 = z0.025 ≈ 1.96. In providing an initial guess,

we have options; we could use

p0 = 0.05 (historical scrap rate)

p0 = 0.10 (“critical mass” value)

p0 = 0.50 (most conservative choice).

For these choices, we have

n =

(
1.96

0.02

)2

0.05(1− 0.05) ≈ 457

n =

(
1.96

0.02

)2

0.10(1− 0.10) ≈ 865

n =

(
1.96

0.02

)2

0.50(1− 0.50) ≈ 2401.

As we can see, the “guessed” value of p0 has a substantial impact on the final sample size calculation.
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4.7 Confidence interval for a population variance σ2

MOTIVATION : In many situations, one is concerned not with the mean of an underlying (continu-

ous) population distribution, but with the variance σ2 instead. If σ2 is excessively large, this could

point to a potential problem with a manufacturing process, for example, where there is too much

variation in the measurements produced. In a laboratory setting, chemical engineers might wish

to estimate the variance σ2 attached to a measurement system (e.g., scale, caliper, etc.). In field

trials, agronomists are often interested in comparing the variability levels for different cultivars or

genetically-altered varieties. In clinical trials, physicians are often concerned if there are substantial

differences in the variation levels of patient responses at different clinic sites.

Suppose that X1, X2, ..., Xn is a random sample from a N(µ, σ2) distribution. The quantity

Q =
(n− 1)S2

σ2
∼ χ2(n− 1),

a χ2 distribution with ν = n− 1 degrees of freedom.

The χ2 distribution has the following characteristics:

• It is continuous, skewed to the right, and always positive.

• It is indexed by a value ν called the degrees of freedom. In practice, ν is often an integer

(related to the sample size).

• The χ2 pdf formula is unnecessary for our purposes. R will compute χ2 probabilities and

quantiles from the χ2 distribution.
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Figure 4.7.5: χ2 probability density functions with different degrees of freedom.
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Goal: Suppose that X1, X2, ..., Xn is a random sample from a N(µ, σ2) distribution. We would

like to write a 100(1− α) percent confidence interval for σ2.

Notation: Let χ2
n−1,α/2 denote the upper α/2 quantile and let χ2

n−1,1−α/2 denote the lower α/2

quantile of the χ2(n− 1) distribution; i.e., χ2
n−1,α/2 and χ2

n−1,1−α/2 satisfy

P (Q > χ2
n−1,α/2) = α/2

P (Q < χ2
n−1,1−α/2) = α/2,

respectively. Note that, unlike the N(0, 1) and t distributions, the χ2 distribution is not symmetric.

Therefore, different notation is needed to identify the quantiles of χ2 distributions (this is nothing to

get worried about). Use the chi-square table to find these values. (Unfortunately, TI-84

cannot help you in this case).

Example 4.7.1. Using the chi-square table, find the following values: χ2
n−1,α/2, and χ2

n−1,1−α/2, for

all combination of n = 10, 20, 30 and α = 0.1, 0.05, 0.01.

DERIVATION : Because Q ∼ χ2(n− 1), we write

1− α = P (χ2
n−1,1−α/2 < Q < χ2

n−1,α/2)

= P

[
χ2
n−1,1−α/2 <

(n− 1)S2

σ2
< χ2

n−1,α/2

]
= P

[
1

χ2
n−1,1−α/2

>
σ2

(n− 1)S2
>

1

χ2
n−1,α/2

]

= P

[
(n− 1)S2

χ2
n−1,1−α/2

> σ2 >
(n− 1)S2

χ2
n−1,α/2

]

= P

[
(n− 1)S2

χ2
n−1,α/2

< σ2 <
(n− 1)S2

χ2
n−1,1−α/2

]
.

This argument shows that (
(n− 1)S2

χ2
n−1,α/2

,
(n− 1)S2

χ2
n−1,1−α/2

)
is a 100(1 − α) percent confidence interval for the population variance σ2. We interpret the

interval in the same way.

“We are 100(1−α) percent confident that the population variance σ2 is in this interval.”
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Chi-Square Distribution Table

2χ0

The shaded area is equal to α for χ2 = χ2
α.

df χ2
.995 χ2

.990 χ2
.975 χ2

.950 χ2
.900 χ2

.100 χ2
.050 χ2

.025 χ2
.010 χ2

.005

1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589
10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766
50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490
60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952
70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215
80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321
90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299
100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169
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Important: A 100(1− α) percent confidence interval for the population standard deviation σ

arises from simply taking the square root of the endpoints of the σ2 interval. That is,(√
(n− 1)S2

χ2
n−1,α/2

,

√
(n− 1)S2

χ2
n−1,1−α/2

)

is a 100(1−α) percent confidence interval for the population standard deviation σ. In practice, this

interval may be preferred over the σ2 interval, because standard deviation is a measure of variability

in terms of the original units (e.g., dollars, inches, days, etc.). The variance is measured in squared

units (e.g., dollars2, in2, days2, etc.).

Major warning: Unlike the z and t confidence intervals for a population mean µ, the χ2 interval for

σ2 (and for σ) is not robust to departures from normality. If the underlying population distribution

is non-normal (non-Guassian), then the confidence interval formulas for σ2 and σ are not to be used.

Therefore, it is very important to “check” the normality assumption with these interval procedures

(e.g., use a qq-plot which will be introduced later).

Example 4.7.2. Indoor swimming pools are noted for their poor acoustical properties. Suppose

your goal is to design a pool in such a way that

• the population mean time that it takes for a low-frequency sound to die out is µ = 1.3 seconds

• the population standard deviation for the distribution of die-out times is σ = 0.6 seconds.

Computer simulations of a preliminary design are conducted to see whether these standards are being

met; here are data from n = 20 independently-run simulations. The data are obtained on the time

(in seconds) it takes for the low-frequency sound to die out.

1.34 2.56 1.28 2.25 1.84 2.35 0.77 1.84 1.80 2.44

0.86 1.29 0.12 1.87 0.71 2.08 0.71 0.30 0.54 1.48

Question. Find a 95 percent confidence interval for the population standard deviation of times

σ. What does this interval suggest about whether the preliminary design conforms to specifications

(with respect to variability)?
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4.8 Statistical Hypotheses

In the previous sections we have discussed how one could use data, observed from an experiment, to

estimate unknown parameters. Often, we will also wish to use this data to make a decision about a

statement about the parameters; e.g.,

• The mean number of car accidents that occur in Atlanta during rush hour on a given day is

greater than 3.

• The mean number of car accidents that occur in Atlanta during rush hour on a given day is

less than 5.

• The proportion of people who voted Democrat in the last election is greater than the proportion

of people who voted Republican.

In all of these situations, we are forming a hypothesis about the structure of the underlying popula-

tion(s) and we will develop data driven techniques that will allow us to decide whether or not our

hypothesis is reasonable.

A statistical hypothesis is a statement about the parameters of one or more populations.

Example 4.8.1. Suppose that we are interested in the burning rate of solid propellant used to power

aircrew escape systems; burning rate is a random variable that can be described by a probability

distribution. Suppose that we are interested in the mean burning rate (a parameter of this distribu-

tion). Specifically, we are interested in whether or not the mean burning rate is 50cm/s. This can

be formally expressed as

H0 : µ = 50cm/s

Ha : µ 6= 50cm/s.

The statement H0 : µ = 50cm/s is referred to as the null hypothesis, and the statement

Ha : µ = 50cm/s is called the alternative hypothesis. The alternative hypothesis, as expressed

above, is referred to as a two-sided alternative hypothesis since it specifies values of µ both greater and

less than 50cm/s. In some situations we may wish to formulate a one-sided alternative hypothesis;

e.g.,

H0 : µ = 50cm/s

Ha : µ < 50cm/s.

or

H0 : µ = 50cm/s

Ha : µ > 50cm/s.
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In general, we will collect data and summarize it in an effort to assess the validity of either H0 or

Ha. For example, suppose that a sample of n specimens are tested an that the mean burning rate

x is observed. The sample mean is an estimate of the population mean µ. A value of x that is

“reasonable” with respect to H0(Ha) tends to suggest that the null(alternative) hypothesis might be

favorable. So what is reasonable? Consider defining a region such that if x falls in this region we

will decide to reject H0 in favor of Ha, we refer to this region as the critical region, and subsequently

refer to the boundaries of this region as the critical values. For example, we might decide to reject

H0 : µ = 50cm/s if x < 48 or x > 52, consequently the values of x that are less than 48 and greater

than 52 are the critical region and the critical values are 48 and 52.

This decision process can naturally lead one to make either one of the two following types of mistakes:

• Rejecting the null hypothesis, H0, when it is in fact true (Type I error).

• Failing to reject the null hypothesis, H0, when the alternative hypothesis, H1, is in fact true

(Type II error).

Since the decision making process is based on random variables, probabilities can be associated

with the Type I and II errors. Typically the probability of making a type I error is denoted by α,

i.e,

α = P (type I error) = P (Reject H0 when H0 is true) :

The type I error is often referred to as the significance level or size of the test. Likewise, we can

quantify the probability of making a type II error as

1− β = P (type II error) = P (Fail to reject H0 when H0 is false).

where β = P (reject H0 when H0 is false) is often called as power of the test.

Example 4.8.2. The FDA’s policy is that the pharmaceutical company must provide substantial

evidence that a new drug is safe prior to receiving FDA approval, so that the FDA can confidently

certify the safety of the drug to potential customers. The null hypothesis is typically make by the

status quo. For any new drug, FDA always assume it is unsafe. For testing the new drug, the null

hypothesis is: “the new drug is unsafe”; and the alternative hypothesis is “the new drug is safe.”

(a) Given the choice of null and alternative hypothesis, describe type I and II errors in terms of this

application.

(b) If the FDA wants to very confident that the drug is safe before premitting to be marketed, is it

more important that α or 1− β be small? Explain.
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A few important points with regard to type I and II errors:

• Type I and II errors are related. A decrease in the probability of a type I error always results

in an increase in the probability of a type II error, and vice versa, provided the sample size n

does not change.

• An increase in the sample size will generally reduce both α and 1− β.

• When the null hypothesis is false, β decreases as the true value of the parameter approaches the

value hypothesized in the null hypothesis. The value of β increases as the difference between

the true parameter and the hypothesized value increases.

Typically, when designing a hypothesis test one controls (or specifies) the type I error probability.

It is common to specify values of 0.10, 0.05, and 0.01 for α, but these values may not be appropriate

in all situations.

There are typically three ways to test hypotheses: the confidence interval approach, the critical

value approach, and the P-value approach.

4.9 Testing hypotheses on the mean µ with known variance σ2

In this case, the population variance σ2 is given, like in Section 4.5.1. Suppose X1, . . . , Xn is a

random sample of size n from a population. The population is normally distributed, (if it is not, the

conditions of the central limit theorem apply, and n is sufficiently large.). Then, we have the sample

mean X as a point estimator for µ, and its sampling distribution as

X ∼ N(µ, σ2/n).

To test hypotheses on the mean µ, we use this point estimator and its sample distribution.

In this course, the null hypothesis is always

H0 : µ = µ0

But, we have three different types of alternative

Ha : µ 6= µ0

Ha : µ > µ0

Ha : µ < µ0
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Firstly, we introduce the confidence interval approach:

1. Find the right type of confidence interval.

2. Find the corresponding rejection region:

Alternative hypothesis Reject Criterion

Ha : µ 6= µ0 µ0 /∈
[
x± zα/2 σ√

n

]
: µ0 is not in two-sided confidence interval

Ha : µ > µ0 x− zα σ√
n
> µ0 : µ0 is less than the lower confidence bound

Ha : µ < µ0 x+ zα
σ√
n
< µ0 : µ0 is larger than the upper confidence bound

3. Compare: find whether or not the rejection criterion is satisfied

4. Conclusions (no credits if no conclusion: At α% significance level, the data (do

or do not) provide sufficient evidence to conclude that the real population mean is

(less than, greater than, or differs from) .

Secondly, we introduce the critical value approach:

1. Comput the test statistics:

z0 =
x− µ0

σ/
√
n

2. Find the corresponding rejection region:

Alternative hypothesis Rejection Criterion

Ha : µ 6= µ0 z0 > zα/2 or z0 < −zα/2
Ha : µ > µ0 z0 > zα

Ha : µ < µ0 z0 < −zα

3. Compare: find whether or not the rejection criterion is satisfied

4. Conclusions (no credits if no conclusion: At α% significance level, the data (do

or do not) provide sufficient evidence to conclude that the real population mean is

(less than, greater than, or differs from) .

Why the first two approaches are equivalent? We only show it for the two-sided alternative, i.e.,

Ha : µ 6= µ0.

z0 > zα/2 or z0 < −zα/2

⇔ x− µ0

σ/
√
n
> zα/2 or

x− µ0

σ/
√
n
< −zα/2

⇔ x− zα/2
σ√
n
> µ0 or x+ zα/2

σ√
n
< µ0

⇔ µ0 /∈
[
x± zα/2

σ√
n

]
.
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Finally, we have the P-value approach:

1. Comput the test statistics:

z0 =
x− µ0

σ/
√
n

2. Find the corresponding rejection region:

Alternative hypothesis P-value Rejection Criterion

Ha : µ 6= µ0 2{1− Φ(|z0|)} if P-value < α

Ha : µ > µ0 1− Φ(z0) if P-value < α

Ha : µ < µ0 Φ(z0) if P-value < α

Recall that Φ(·) is the cumulative distribution function of the standard normal distribution;

i.e., Φ(z) = P (Z ≤ z).

3. Compare: find whether or not the rejection criterion is satisfied

4. Conclusions (no credits if no conclusion: At α% significance level, the data (do

or do not) provide sufficient evidence to conclude that the real population mean is

(less than, greater than, or differs from) .

Why the three approaches are equivalent? We only show the P-value approach and the critical value

approach are the same for the two-sided alternative, i.e., Ha : µ 6= µ0:

z0 > zα/2 or z0 < −zα/2
⇔ P (Z ≥ |z0|) < P (Z ≥ zα/2)

⇔ 1− P (Z ≤ |z0|) <
α

2

⇔ 2{1− P (Z ≤ |z0|)} < α

⇔ 2{1− Φ(|z0|)} < α

⇔ P-value < α

With the same spirit, we can see that these three approaches are essentially the same.

TI- 84 for P-value: stat→tests→ “1: Z-test”. Input has two options: Data or Stats. Like

in confidence intervals, correctly input the rest information, and correctly choose the type of your

alternative hypothesis, press Calculate. The output p is the P-value. Then compare it with α.

Example 4.9.1. Civil engineers have found that the ability to see and read a sign at night depends

in part on its “surround luminance;” i.e., the light intensity near the sign. It is believed that the

mean surround luminance is 10 candela per m2 in a large metropolitan area. The data below are

n = 30 measurements of the random variable X, the surround luminance (in candela per m2). The

30 measurements constitute a random sample from all the signs in the large metropolitan area in
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question:

10.9 1.7 9.5 2.9 9.1 3.2 9.1 7.4 13.3 13.1

6.6 13.7 1.5 6.3 7.4 9.9 13.6 17.3 3.6 4.9

13.1 7.8 10.3 10.3 9.6 5.7 2.6 15.1 2.9 16.2

Based on past experience, the engineers assume a normal population distribution (for the population

of all signs) with known population variance σ2 = 20. From this data what conclusions should we

draw about the hypothesized mean surround luminance, at the α = 0.05 significance level.

Solution. In order to solve this problem one can complete the following 6-step procedure:

1. Identify the parameter of interest: In this case it is the population mean µ.

2. Identify the null hypothesis: In this case H0 : µ = µ0, where µ0 = 10.

3. Identify the alternative hypothesis: In this case Ha : µ 6= µ0, where µ0 = 10.

4. Follow one of the three approach to perform test.

• If choosing the confidence interval approach, for the question, we should use the (two-

sided) 100× (1− α)% = 95% confidence interval, which is

[6.9344, 10.19].

We can see it covers µ0; i.e., µ0 = 10 ∈ [6.9344, 10.19].

• If choosing the critical value approach, first compute the test statistics:

z0 =
x− µ0

σ/
√
n

=
8.62− 10

4.47/
√

20
≈ −1.69.

Since α = 0.05, the Ha : µ 6= µ0, the rejection region is z0 < −zα2 = −1.96 or z0 > zα/2 =

1.96. We can see that our computed z0 is not in the rejection region.

• If choosing P-value approach: TI-84 shows that P-value is p ≈ 0.091 which is not smaller

than α = 0.05.

5. Compare: since

• µ0 is covered by the 100× (1− α)% two-sided confidence interval;

• z0 = −1.69 is not in the rejection region;

• the P-value is not less than α = 0.05;

we would fail to reject the null hypothesis.

6. Conclusion: At the 0.05 significance level, the data do not provide sufficient evidence to con-

clude that the mean surround luminance for the specified large metropolitan area differs from

10 candela per m2.
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4.10 Testing hypotheses on the mean µ with unknown variance σ2

In this case, the population variance σ2 is not given (which is more common in real applications),

like in Section 4.5.3. Suppose X1, . . . , Xn is a random sample of size n from a population. The

population is normally distributed, (if it is not, the conditions of the central limit theorem apply,

and n is sufficiently large.). Then, we have

X − µ
S/
√
n
∼ t(n− 1).

Using this fact, we are now able to test the null hypothesis

H0 : µ = µ0

versus one of three different types of alternative

Ha : µ 6= µ0

Ha : µ > µ0

Ha : µ < µ0

Firstly, we introduce the confidence interval approach:

1. Find the right type of confidence interval.

2. Find the corresponding rejection region:

Alternative hypothesis Reject Criterion

Ha : µ 6= µ0 µ0 /∈
[
x± tn−1,α/2

s√
n

]
: µ0 is not in two-sided confidence interval

Ha : µ > µ0 x− tn−1,α
s√
n
> µ0 : µ0 is less than the lower confidence bound

Ha : µ < µ0 x+ tn−1,α
s√
n
< µ0 : µ0 is larger than the upper confidence bound

3. Compare: find whether or not the rejection criterion is satisfied

4. Conclusions (no credits if no conclusion: At α% significance level, the data (do

or do not) provide sufficient evidence to conclude that the real population mean is

(less than, greater than, or differs from) .

Secondly, we introduce the critical value approach:

1. Comput the test statistics:

t0 =
x− µ0

s/
√
n
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2. Find the corresponding rejection region:

Alternative hypothesis Rejection Criterion

Ha : µ 6= µ0 t0 > tn−1,α/2 or t0 < −tn−1,α/2

Ha : µ > µ0 t0 > tn−1,α

Ha : µ < µ0 t0 < −tn−1,α

3. Compare: find whether or not the rejection criterion is satisfied

4. Conclusions (no credits if no conclusion: At α% significance level, the data (do

or do not) provide sufficient evidence to conclude that the real population mean is

(less than, greater than, or differs from) .

The value of tn−1,a for a = α or α/2 can be found in the following T-table in the same spirit of

founding χ2
n−1,a via the “Chi-squre Distribution Table”

Finally, we have the P-value approach:

1. Comput the test statistics:

t0 =
x− µ0

s/
√
n

2. Find the corresponding rejection region:

Alternative hypothesis P-value Rejection Criterion

Ha : µ 6= µ0 2P (tn−1 > |t0|) if P-value < α

Ha : µ > µ0 P (tn−1 > t0) if P-value < α

Ha : µ < µ0 P (tn−1 < t0) if P-value < α

Recall that Φ(·) is the cumulative distribution function of the standard normal distribution;

i.e., Φ(z) = P (Z ≤ z).

3. Compare: find whether or not the rejection criterion is satisfied

4. Conclusions (no credits if no conclusion: At α% significance level, the data (do

or do not) provide sufficient evidence to conclude that the real population mean is

(less than, greater than, or differs from) .

Using similar argument in previous section, we can see that these three approaches are essentially

the same.

TI- 84 for P-value: stat→tests→ “2: T-test”. Input has two options: Data or Stats. Like

in confidence intervals, correctly input the rest information, and correctly choose the type of your

alternative hypothesis, press Calculate. The output p is the P-value. Then compare it with α.
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t Table upper-tail probability: t Table upper-tail probability:

df .25 .10 .05 .025 .01 .005 df .25 .10 .05 .025 .01 .005

1 1.0000 3.0777 6.314 12.706 31.821 63.657 51 0.6793 1.2984 1.6753 2.0076 2.4017 2.6757

2 0.8165 1.8856 2.9200 4.3027 6.9646 9.925 52 0.6792 1.2980 1.6747 2.0066 2.4002 2.6737

3 0.7649 1.6377 2.3534 3.1824 4.5407 5.8409 53 0.6791 1.2977 1.6741 2.0057 2.3988 2.6718

4 0.7407 1.5332 2.1318 2.7764 3.7469 4.6041 54 0.6791 1.2974 1.6736 2.0049 2.3974 2.6700

5 0.7267 1.4759 2.0150 2.5706 3.3649 4.0321 55 0.6790 1.2971 1.6730 2.0040 2.3961 2.6682

6 0.7176 1.4398 1.9432 2.4469 3.1427 3.7074 56 0.6789 1.2969 1.6725 2.0032 2.3948 2.6665

7 0.7111 1.4149 1.8946 2.3646 2.9980 3.4995 57 0.6788 1.2966 1.6720 2.0025 2.3936 2.6649

8 0.7064 1.3968 1.8595 2.3060 2.8965 3.3554 58 0.6787 1.2963 1.6716 2.0017 2.3924 2.6633

9 0.7027 1.3830 1.8331 2.2622 2.8214 3.2498 59 0.6787 1.2961 1.6711 2.0010 2.3912 2.6618

10 0.6998 1.3722 1.8125 2.2281 2.7638 3.1693 60 0.6786 1.2958 1.6706 2.0003 2.3901 2.6603

11 0.6974 1.3634 1.7959 2.2010 2.7181 3.1058 61 0.6785 1.2956 1.6702 1.9996 2.3890 2.6589

12 0.6955 1.3562 1.7823 2.1788 2.6810 3.0545 62 0.6785 1.2954 1.6698 1.9990 2.3880 2.6575

13 0.6938 1.3502 1.7709 2.1604 2.6503 3.0123 63 0.6784 1.2951 1.6694 1.9983 2.3870 2.6561

14 0.6924 1.3450 1.7613 2.1448 2.6245 2.9768 64 0.6783 1.2949 1.6690 1.9977 2.3860 2.6549

15 0.6912 1.3406 1.7531 2.1314 2.6025 2.9467 65 0.6783 1.2947 1.6686 1.9971 2.3851 2.6536

16 0.6901 1.3368 1.7459 2.1199 2.5835 2.9208 66 0.6782 1.2945 1.6683 1.9966 2.3842 2.6524

17 0.6892 1.3334 1.7396 2.1098 2.5669 2.8982 67 0.6782 1.2943 1.6679 1.9960 2.3833 2.6512

18 0.6884 1.3304 1.7341 2.1009 2.5524 2.8784 68 0.6781 1.2941 1.6676 1.9955 2.3824 2.6501

19 0.6876 1.3277 1.7291 2.0930 2.5395 2.8609 69 0.6781 1.2939 1.6672 1.9949 2.3816 2.6490

20 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453 70 0.6780 1.2938 1.6669 1.9944 2.3808 2.6479

21 0.6864 1.3232 1.7207 2.0796 2.5176 2.8314 71 0.6780 1.2936 1.6666 1.9939 2.3800 2.6469

22 0.6858 1.3212 1.7171 2.0739 2.5083 2.8188 72 0.6779 1.2934 1.6663 1.9935 2.3793 2.6459

23 0.6853 1.3195 1.7139 2.0687 2.4999 2.8073 73 0.6779 1.2933 1.6660 1.9930 2.3785 2.6449

24 0.6848 1.3178 1.7109 2.0639 2.4922 2.7969 74 0.6778 1.2931 1.6657 1.9925 2.3778 2.6439

25 0.6844 1.3163 1.7081 2.0595 2.4851 2.7874 75 0.6778 1.2929 1.6654 1.9921 2.3771 2.6430

26 0.6840 1.3150 1.7056 2.0555 2.4786 2.7787 76 0.6777 1.2928 1.6652 1.9917 2.3764 2.6421

27 0.6837 1.3137 1.7033 2.0518 2.4727 2.7707 77 0.6777 1.2926 1.6649 1.9913 2.3758 2.6412

28 0.6834 1.3125 1.7011 2.0484 2.4671 2.7633 78 0.6776 1.2925 1.6646 1.9908 2.3751 2.6403

29 0.6830 1.3114 1.6991 2.0452 2.4620 2.7564 79 0.6776 1.2924 1.6644 1.9905 2.3745 2.6395

30 0.6828 1.3104 1.6973 2.0423 2.4573 2.7500 80 0.6776 1.2922 1.6641 1.9901 2.3739 2.6387

31 0.6825 1.3095 1.6955 2.0395 2.4528 2.7440 81 0.6775 1.2921 1.6639 1.9897 2.3733 2.6379

32 0.6822 1.3086 1.6939 2.0369 2.4487 2.7385 82 0.6775 1.2920 1.6636 1.9893 2.3727 2.6371

33 0.6820 1.3077 1.6924 2.0345 2.4448 2.7333 83 0.6775 1.2918 1.6634 1.9890 2.3721 2.6364

34 0.6818 1.3070 1.6909 2.0322 2.4411 2.7284 84 0.6774 1.2917 1.6632 1.9886 2.3716 2.6356

35 0.6816 1.3062 1.6896 2.0301 2.4377 2.7238 85 0.6774 1.2916 1.6630 1.9883 2.3710 2.6349

36 0.6814 1.3055 1.6883 2.0281 2.4345 2.7195 86 0.6774 1.2915 1.6628 1.9879 2.3705 2.6342

37 0.6812 1.3049 1.6871 2.0262 2.4314 2.7154 87 0.6773 1.2914 1.6626 1.9876 2.3700 2.6335

38 0.6810 1.3042 1.6860 2.0244 2.4286 2.7116 88 0.6773 1.2912 1.6624 1.9873 2.3695 2.6329

39 0.6808 1.3036 1.6849 2.0227 2.4258 2.7079 89 0.6773 1.2911 1.6622 1.9870 2.3690 2.6322

40 0.6807 1.3031 1.6839 2.0211 2.4233 2.7045 90 0.6772 1.2910 1.6620 1.9867 2.3685 2.6316

41 0.6805 1.3025 1.6829 2.0195 2.4208 2.7012 91 0.6772 1.2909 1.6618 1.9864 2.3680 2.6309

42 0.6804 1.3020 1.6820 2.0181 2.4185 2.6981 92 0.6772 1.2908 1.6616 1.9861 2.3676 2.6303

43 0.6802 1.3016 1.6811 2.0167 2.4163 2.6951 93 0.6771 1.2907 1.6614 1.9858 2.3671 2.6297

44 0.6801 1.3011 1.6802 2.0154 2.4141 2.6923 94 0.6771 1.2906 1.6612 1.9855 2.3667 2.6291

45 0.6800 1.3006 1.6794 2.0141 2.4121 2.6896 95 0.6771 1.2905 1.6611 1.9853 2.3662 2.6286

46 0.6799 1.3002 1.6787 2.0129 2.4102 2.6870 96 0.6771 1.2904 1.6609 1.9850 2.3658 2.6280

47 0.6797 1.2998 1.6779 2.0117 2.4083 2.6846 97 0.6770 1.2903 1.6607 1.9847 2.3654 2.6275

48 0.6796 1.2994 1.6772 2.0106 2.4066 2.6822 98 0.6770 1.2902 1.6606 1.9845 2.3650 2.6269

49 0.6795 1.2991 1.6766 2.0096 2.4049 2.6800 99 0.6770 1.2902 1.6604 1.9842 2.3646 2.6264

50 0.6794 1.2987 1.6759 2.0086 2.4033 2.6778 100 0.6770 1.2901 1.6602 1.9840 2.3642 2.6259

110 0.6767 1.2893 1.6588 1.9818 2.3607 2.6213

120 0.6765 1.2886 1.6577 1.9799 2.3578 2.6174

∞ 0.6745 1.2816 1.6449 1.9600 2.3264 2.5758
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Example 4.10.1. Civil engineers have found that the ability to see and read a sign at night depends

in part on its “surround luminance;” i.e., the light intensity near the sign. It is believed that the

mean surround luminance is 10 candela per m2 in a large metropolitan area. The data below are

n = 30 measurements of the random variable X, the surround luminance (in candela per m2). The

30 measurements constitute a random sample from all the signs in the large metropolitan area in

question:

10.9 1.7 9.5 2.9 9.1 3.2 9.1 7.4 13.3 13.1

6.6 13.7 1.5 6.3 7.4 9.9 13.6 17.3 3.6 4.9

13.1 7.8 10.3 10.3 9.6 5.7 2.6 15.1 2.9 16.2

Based on past experience, the engineers assume a normal population distribution (for the population

of all signs). From this data what conclusions should we draw about the hypothesized mean surround

luminance, at the α = 0.05 significance level.
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4.11 Testing hypotheses on the population proportion p

To test the null hypothesis

H0 : p = p0

versus one of three different types of alternative

Ha : p 6= p0

Ha : p > p0

Ha : p < p0

We only introduce the critical approach and the P-value approach:

To estimate the population proportion p, we have our point estimator; i.e., sample proportion p̂.

When np̂ ≥ 5 and n(1− p̂) ≥ 5, the CLT says we have

p̂ ∼ AN
(
p,
p(1− p)

n

)
To control the type I error, recalling that the type I error is under the assumption H0 is in fact true.

So when H0 is true, we have p = p0. Thus,

p̂ ∼ AN
(
p0,

p0(1− p0)

n

)
Then

z0 =
p̂− p0√

p0(1− p0)/n
∼ AN(0, 1).

Based on this, we can design the testing procedures as the following.

Firstly, we introduce the critical value approach:

1. Comput the test statistics:

z0 =
p̂− p0√

p0(1− p0)/n

2. Find the corresponding rejection region:

Alternative hypothesis Rejection Criterion

Ha : p 6= p0 z0 > zα/2 or z0 < −zα/2
Ha : p > p0 z0 > zα

Ha : p < p0 z0 < −zα

3. Compare: find whether or not the rejection criterion is satisfied

4. Conclusions (no credits if no conclusion: At α% significance level, the data (do

or do not) provide sufficient evidence to conclude that the real population proportion is
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(less than, greater than, or differs from) .

Then, we have the P-value approach:

1. Comput the test statistics:

z0 =
p̂− p0√

p0(1− p0)/n

2. Find the corresponding rejection region:

Alternative hypothesis P-value Rejection Criterion

Ha : p 6= p0 2{1− Φ(|z0|)} if P-value < α

Ha : p > p0 1− Φ(z0) if P-value < α

Ha : p < p0 Φ(z0) if P-value < α

Recall that Φ(·) is the cumulative distribution function of the standard normal distribution;

i.e., Φ(z) = P (Z ≤ z).

3. Compare: find whether or not the rejection criterion is satisfied

4. Conclusions (no credits if no conclusion: At α% significance level, the data (do

or do not) provide sufficient evidence to conclude that the real population proportion is

(less than, greater than, or differs from) .

TI- 84 for P-value: stat→tests→ “5: 1-PropZTest”. Like in confidence intervals, correctly input

the rest information, and correctly choose the type of your alternative hypothesis, press Calculate.

The output p is the P-value. Then compare it with α.

Example 4.11.1. Suppose that 500 parts are tested in manufacturing and 10 are rejected. Using

both the approaches (critical value approach and P-value approach) to test the hypothesis H0 : p =

0.03 against Ha : p < 0.03 at significance level α = 0.05.
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4.12 Testing hypotheses on the population variance σ2

In Section 4.7, we have introduced that

Suppose that X1, X2, ..., Xn is a random sample from a N(µ, σ2) distribution (normality is important

in this case). The quantity

Q =
(n− 1)S2

σ2
∼ χ2(n− 1),

a χ2 distribution with ν = n− 1 degrees of freedom.

Using this fact, we are now able to test the null hypothesis

H0 : σ = σ0 ( or H0 : σ2 = σ2
0)

against one of three different types of alternative

Ha : σ 6= σ0 ( or Ha : σ2 6= σ2
0)

Ha : σ > σ0 ( or Ha : σ2 > σ2
0)

Ha : σ < σ0 ( or Ha : σ2 < σ2
0)

Since one can easily transform testing hypotheses on the population standard deviation σ to testing

on the population variance σ2. Thus, we only need know how to test on σ2. We have the confidence

interval approach and the critical value approach. Unfortunately, TI-84 cannot help us on this case.

Thus the P-value approach is not required.

Firstly, we introduce the confidence interval approach:

1. Find the right type of confidence interval.

2. Find the corresponding rejection region:

Alternative hypothesis Reject Criterion

Ha : σ2 6= σ2
0 σ2

0 /∈
[

(n−1)s2

χ2
n−1,α/2

, (n−1)s2

χ2
n−1,1−α/2

]
: σ2

0 is not in two-sided confidence interval

Ha : σ2 > σ2
0

(n−1)s2

χ2
n−1,α

> σ2
0 : σ2

0 is less than the lower confidence bound

Ha : σ2 < σ2
0

(n−1)s2

χ2
n−1,1−α

< σ2
0 : σ2

0 is larger than the upper confidence bound

3. Compare: find whether or not the rejection criterion is satisfied

4. Conclusions (no credits if no conclusion: At α% significance level, the data (do

or do not) provide sufficient evidence to conclude that the real population variance is

(less than, greater than, or differs from) .
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Secondly, we introduce the critical value approach:

1. Comput the test statistics:

Q0 =
(n− 1)s2

σ2
0

2. Find the corresponding rejection region:

Alternative hypothesis Rejection Criterion

Ha : σ2 6= σ2
0 Q0 > χ2

n−1,α/2 or Q0 < χ2
n−1,1−α/2

Ha : σ2 > σ2
0 Q0 > χ2

n−1,α

Ha : σ2 < σ2
0 Q0 < χ2

n−1,1−α

3. Compare: find whether or not the rejection criterion is satisfied

4. Conclusions (no credits if no conclusion: At α% significance level, the data (do

or do not) provide sufficient evidence to conclude that the real population variance is

(less than, greater than, or differs from) .

The value of χ2
n−1,a can be found via the “Chi-square Distribution Table”

Example 4.12.1. An automated filling machine is used to fill bottles with liquid detergent. A

random sample of 20 bottles results in a sample variance of fill volume of s2 = 0.0153 (fluid ounces)2.

If the variance of fill volume exceeds 0.01 (fluid ounces)2, an unacceptable proportion of bottles will

be underfilled or overfilled. Is there evidence in the sample data to suggest that the manufacturer

has a problem with underfilled or overfilled bottles? Use α = 0.05, and assume that fill volume has

a normal distribution (use both the confidence interval and critical value approaches).
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5 Two-sample Statistical Inference

5.1 For the difference of two population means µ1 − µ2: Independent samples

REMARK : In practice, it is very common to compare the same characteristic (mean, proportion,

variance) from two different distributions. For example, we may wish to compare

• the mean starting salaries of male and female engineers (compare µ1 and µ2)

• the proportion of scrap produced from two manufacturing processes (compare p1 and p2)

• the variance of sound levels from two indoor swimming pool designs (compare σ2
1 and σ2

2).

Our previous work is applicable only for a single distribution (i.e., a single mean µ, a single proportion

p, and a single variance σ2). We therefore need to extend these procedures to handle two distributions.

We start with comparing two means.

Two-sample problem: Suppose that we have two independent samples:

Sample 1 : X11, X12, ..., X1n1 ∼ N(µ1, σ
2
1) random sample

Sample 2 : X21, X22, ..., X2n2 ∼ N(µ2, σ
2
2) random sample.

GOAL: Construct statistical inference, including a 100(1 − α) percent confidence interval and hy-

pothesis test at significance level α for the difference of population means µ1 − µ2.

Point Estimators: We define the statistics

X1· =
1

n1

n1∑
j=1

X1j = sample mean for sample 1

X2· =
1

n2

n2∑
j=1

X2j = sample mean for sample 2

S2
1 =

1

n1 − 1

n1∑
j=1

(X1j −X1·)
2 = sample variance for sample 1

S2
2 =

1

n2 − 1

n2∑
j=1

(X2j −X2·)
2 = sample variance for sample 2.
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5.1.1 Known variance case: both σ2
1 and σ2

2 are known

Goal: We want to write a confidence interval for µ1−µ2, but how this interval is constructed depends

on the values of σ2
1 and σ2

2. In particular, we consider three cases:

• We know the values of σ2
1 and σ2

2.

• We do not know the values of σ2
1 or σ2

2. However, we know σ2
1 = σ2

2; that is, the two population

variances are equal.

• We do not know the values of σ2
1 or σ2

2, also σ2
1 6= σ2

2; that is, the two population variances are

not equal.

We first consider the equal variance case. Addressing this case requires us to start with the

following (sampling) distribution result:

Z =
(X1· −X2·)− (µ1 − µ2)√

σ2
1
n1

+
σ2
2
n2

∼

Some comments are in order:

• For this sampling distribution to hold (exactly), we need

– the two samples to be independent

– the two population distributions to be normal (Gaussian)

• The sampling distribution Z ∼ N(0, 1) should suggest to you that confidence interval quantiles

will come from the standard normal distribution; note that this distribution depends on the

sample sizes from both samples.

• In particular, because Z ∼ N(0, 1), we can find the value zα/2 that satisfies

P (−zα/2 < Z < zα/2) = 1− α.

• Substituting Z into the last expression and performing algebraic manipulations, we obtain

This is a 100(1− α) percent confidence interval for the mean difference µ1 − µ2.

TI-84: Stat: Tests: 2-SampZInt

• We see that the interval again has the same form:

point estimate︸ ︷︷ ︸
X1·−X2·

± quantile︸ ︷︷ ︸
zα/2

× standard error︸ ︷︷ ︸√
σ21
n1

+
σ22
n2

.

We interpret the interval in the same way.
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“We are 100(1−α) percent confident that the population mean difference µ1−µ2 is

in this interval.”

• The 100(1− α) percent confident upper bound of µ1 − µ2 is

and the 100(1− α) percent confident lower bound of µ1 − µ2 is

• Testing hypothesis: Following the six steps:

H0 : µ1 − µ2 = ∆0

versus each one of the following:

H0 : µ1 − µ2 6= ∆0

H0 : µ1 − µ2 > ∆0

H0 : µ1 − µ2 < ∆0

Confidence interval approach

Alternative hypothesis Reject Criterion

Ha : µ1 − µ2 6= ∆0 ∆0 /∈
[
(X1· −X2·)± zα/2

√
σ2
1
n1

+
σ2
2
n2

]
Ha : µ1 − µ2 > ∆0 (X1· −X2·)− zα

√
σ2
1
n1

+
σ2
2
n2
> ∆0

Ha : µ1 − µ2 < ∆0 (X1· −X2·) + zα

√
σ2
1
n1

+
σ2
2
n2
< ∆0

Critical value approach

z0 =
[
(X1· −X2·)−∆0

]
/

√
σ2
1
n1

+
σ2
2
n2

Alternative hypothesis Rejection Criterion

Ha : µ1 − µ2 6= ∆0 z0 > zα/2 or z0 < −zα/2
Ha : µ1 − µ2 > ∆0 z0 > zα

Ha : µ1 − µ2 < ∆0 z0 < −zα

P-value approach TI-84: Stat: Tests: 2-SampZTest

Alternative hypothesis Rejection Criterion

Ha : µ1 − µ2 6= ∆0 P-value = 2{1− Φ(|z0|)} < α

Ha : µ1 − µ2 > ∆0 P-value = 1− Φ(z0) < α

Ha : µ1 − µ2 < ∆0 P-value = Φ(z0) < α
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Example 5.1.1. In the vicinity of a nuclear power plant, environmental engineers from the EPA

would like to determine if there is a difference between the mean weight in fish (of the same species)

from two locations. Independent samples are taken from each location and the following weights (in

ounces) are observed:

Location 1: 21.9 18.5 12.3 16.7 21.0 15.1 18.2 23.0 36.8 26.6

Location 2: 22.0 20.6 15.4 17.9 24.4 15.6 11.4 17.5

Suppose we know both distributions are normal and σ1 = 7, σ2 = 4.

(a) Construct a 90 percent confidence interval for the mean difference µ1−µ2. Here, µ1 (µ2) denotes

the population mean weight of all fish at location 1 (2).

(b) Test whether the two distribution have the same mean at α = 0.05.
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5.1.2 Unknown variance case, but we know they are equal; i.e., σ2
1 = σ2

2

We now consider the equal variance (but unknown) case. Addressing this case requires us to start

with the following (sampling) distribution result:

T =
(X1· −X2·)− (µ1 − µ2)√

S2
p

(
1
n1

+ 1
n2

) ∼ t(n1 + n2 − 2),

where

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.

Some comments are in order:

• For this sampling distribution to hold (exactly), we need

– the two samples to be independent

– the two population distributions to be normal (Gaussian)

– the two population distributions to have the same variance; i.e., σ2
1 = σ2

2.

• The statistic S2
p is called the pooled sample variance estimator of the common population

variance, say, σ2. Algebraically, it is simply a weighted average of the two sample variances S2
1

and S2
2 (where the weights are functions of the sample sizes n1 and n2).

• The sampling distribution T ∼ t(n1 + n2 − 2) should suggest to you that confidence interval

quantiles will come from this t distribution; note that this distribution depends on the sample

sizes from both samples.

• In particular, because T ∼ t(n1 + n2 − 2), we can find the value tn1+n2−2,α/2 that satisfies

P (−tn1+n2−2,α/2 < T < tn1+n2−2,α/2) = 1− α.

• Substituting T into the last expression and performing algebraic manipulations, we obtain

(X1· −X2·)± tn1+n2−2,α/2

√
S2
p

(
1

n1
+

1

n2

)
.

This is a 100(1− α) percent confidence interval for the mean difference µ1 − µ2.

TI-84: Stat: Tests: 2-SampTInt (Pooled: Yes)

• We see that the interval again has the same form:

point estimate︸ ︷︷ ︸
X1·−X2·

± quantile︸ ︷︷ ︸
tn1+n2−2,α/2

× standard error︸ ︷︷ ︸√
S2
p

(
1
n1

+ 1
n2

) .

We interpret the interval in the same way.
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“We are 100(1−α) percent confident that the population mean difference µ1−µ2 is

in this interval.”

• The 100(1− α) percent confident upper bound of µ1 − µ2 is

and the 100(1− α) percent confident lower bound of µ1 − µ2 is

• Testing hypothesis: Following the six steps:

H0 : µ1 − µ2 = ∆0

versus each one of the following:

H0 : µ1 − µ2 6= ∆0

H0 : µ1 − µ2 > ∆0

H0 : µ1 − µ2 < ∆0

Confidence interval approach

Alternative hypothesis Reject Criterion

Ha : µ1 − µ2 6= ∆0 ∆0 /∈
[
(X1· −X2·)± tn1+n2−2,α/2

√
S2
p

(
1
n1

+ 1
n2

)]
Ha : µ1 − µ2 > ∆0 (X1· −X2·)− tn1+n2−2,α

√
S2
p

(
1
n1

+ 1
n2

)
> ∆0

Ha : µ1 − µ2 < ∆0 (X1· −X2·) + tn1+n2−2,α

√
S2
p

(
1
n1

+ 1
n2

)
< ∆0

Critical value approach

t0 =
[
(X1· −X2·)−∆0

]
/

√
S2
p

(
1
n1

+ 1
n2

)
Alternative hypothesis Rejection Criterion

Ha : µ1 − µ2 6= ∆0 t0 > tn1+n2−2,α/2 or t0 < −tn1+n2−2,α/2

Ha : µ1 − µ2 > ∆0 t0 > tn1+n2−2,α

Ha : µ1 − µ2 < ∆0 t0 < −tn1+n2−2,α

P-value approach TI-84: Stat: Tests: 2-SampTTest (Pooled: Yes)

Alternative hypothesis Rejection Criterion

Ha : µ1 − µ2 6= ∆0 P-value < α

Ha : µ1 − µ2 > ∆0 P-value < α

Ha : µ1 − µ2 < ∆0 P-value < α
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Figure 5.1.1: Boxplots of fish weights by location in Example 5.1.2.

Example 5.1.2. In the vicinity of a nuclear power plant, environmental engineers from the EPA

would like to determine if there is a difference between the mean weight in fish (of the same species)

from two locations. Independent samples are taken from each location and the following weights (in

ounces) are observed:

Location 1: 21.9 18.5 12.3 16.7 21.0 15.1 18.2 23.0 36.8 26.6

Location 2: 22.0 20.6 15.4 17.9 24.4 15.6 11.4 17.5

Suppose we know both distributions are normal and σ2
1 = σ2

2.

(a) Construct a 90 percent confidence interval for the mean difference µ1−µ2. Here, µ1 (µ2) denotes

the population mean weight of all fish at location 1 (2).

(b) Test whether the two distribution have the same mean at α = 0.05.
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5.1.3 Unknown and unequal variance case: σ2
1 6= σ2

2

REMARK : When σ2
1 6= σ2

2, the problem of constructing a 100(1− α) percent confidence interval for

µ1−µ2 becomes more difficult theoretically. However, we can still write an approximate confidence

interval.

An approximate 100(1− α) percent confidence interval µ1 − µ2 is given by

(X1· −X2·)± tν,α/2

√
S2

1

n1
+
S2

2

n2
,

where the degrees of freedom ν is calculated as

ν =

(
S2
1
n1

+
S2
2
n2

)2

(
S21
n1

)2
n1−1 +

(
S22
n2

)2
n2−1

.

• This interval is always approximately valid, as long as

– the two samples are independent

– the two population distributions are approximately normal (Gaussian).

• No one in their right mind would calculate this interval “by hand” (particularly nasty is the

formula for ν). TI-84: Stat: Tests: 2-SampTInt (Pooled: No) will produce the interval on

request.

• We see that the interval again has the same form:

point estimate︸ ︷︷ ︸
X1·−X2·

± quantile︸ ︷︷ ︸
tν,α/2

× standard error︸ ︷︷ ︸√
S21
n1

+
S22
n2

.

We interpret the interval in the same way.

“We are 100(1−α) percent confident that the population mean difference µ1−µ2 is

in this interval.”

• The 100(1− α) percent confident upper bound of µ1 − µ2 is

and the 100(1− α) percent confident lower bound of µ1 − µ2 is
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• Testing hypothesis: Following the six steps:

H0 : µ1 − µ2 = ∆0

versus each one of the following:

H0 : µ1 − µ2 6= ∆0

H0 : µ1 − µ2 > ∆0

H0 : µ1 − µ2 < ∆0

Confidence interval approach

Alternative hypothesis Reject Criterion

Ha : µ1 − µ2 6= ∆0 ∆0 /∈
[
(X1· −X2·)± tν,α/2

√
S2
1
n1

+
S2
2
n2

]
Ha : µ1 − µ2 > ∆0 (X1· −X2·)− tν,α

√
S2
1
n1

+
S2
2
n2
> ∆0

Ha : µ1 − µ2 < ∆0 (X1· −X2·) + tν,α

√
S2
1
n1

+
S2
2
n2
< ∆0

P-value approach TI-84: Stat: Tests: 2-SampTTest (Pooled: No)

Alternative hypothesis Rejection Criterion

Ha : µ1 − µ2 6= ∆0 P-value < α

Ha : µ1 − µ2 > ∆0 P-value < α

Ha : µ1 − µ2 < ∆0 P-value < α

Remark: In the last two subsections, we have presented two confidence intervals for µ1 − µ2. One

assumes σ2
1 = σ2

2 (equal variance assumption) and one that assumes σ2
1 6= σ2

2 (unequal variance

assumption). If you are unsure about which interval to use, go with the unequal variance

interval. The penalty for using it when σ2
1 = σ2

2 is much smaller than the penalty for using the

equal variance interval when σ2
1 6= σ2

2.
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Figure 5.1.2: Boxplots of discarded white paper amounts (in 100s lb) in Example 5.1.3.

Example 5.1.3. You are part of a recycling project that is examining how much paper is being

discarded (not recycled) by employees at two large plants. These data are obtained on the amount

of white paper thrown out per year by employees (data are in hundreds of pounds). Samples of

employees at each plant were randomly selected.

Plant 1: 3.01 2.58 3.04 1.75 2.87 2.57 2.51 2.93 2.85 3.09

1.43 3.36 3.18 2.74 2.25 1.95 3.68 2.29 1.86 2.63

2.83 2.04 2.23 1.92 3.02

Plant 2: 3.79 2.08 3.66 1.53 4.07 4.31 2.62 4.52 3.80 5.30

3.41 0.82 3.03 1.95 6.45 1.86 1.87 3.78 2.74 3.81

Question. Are there differences in the mean amounts of white paper discarded by employees at the

two plants? (use α = 0.05).
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5.2 For the difference of two population proportions p1−p2: Independent samples

We also can extend our confidence interval procedure for a single population proportion p to two

populations. Define

p1 = population proportion of “successes” in Population 1

p2 = population proportion of “successes” in Population 2.

For example, we might want to compare the proportion of

• defective circuit boards for two different suppliers

• satisfied customers before and after a product design change (e.g., Facebook, etc.)

• on-time payments for two classes of customers

• HIV positives for individuals in two demographic classes.

Point estimators: We assume that there are two independent random samples of individuals (one

sample from each population to be compared). Define

Y1 = number of “successes” in Sample 1 (out of n1 individuals) ∼ b(n1, p1)

Y2 = number of “successes” in Sample 2 (out of n2 individuals) ∼ b(n2, p2).

The point estimators for p1 and p2 are the sample proportions, defined by

p̂1 =
Y1

n1

p̂2 =
Y2

n2
.

Goal: We would like to write a 100(1− α) percent confidence interval and conduct hypothesis test

for p1 − p2, the difference of two population proportions.

To accomplish this goal, we need the following distributional result. When the sample sizes n1

and n2 are large,

Z =
(p̂1 − p̂2)− (p1 − p2)√

p1(1−p1)
n1

+ p2(1−p2)
n2

∼ AN (0, 1).

If this sampling distribution holds approximately, then

(p̂1 − p̂2)± zα/2

√
p̂1(1− p̂1)

n1
+
p̂2(1− p̂2)

n2

is an approximate 100(1− α) percent confidence interval for p1 − p2.

• For the Z sampling distribution to hold approximately (and therefore for the interval above to

be useful), we need
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– the two samples to be independent

– the sample sizes n1 and n2 to be “large;” common rules of thumb are to require

nip̂i ≥ 5

ni(1− p̂i) ≥ 5,

for each sample i = 1, 2. Under these conditions, the CLT should adequately approximate

the true sampling distribution of Z, thereby making the confidence interval formula above

approximately valid.

– Note again the form of the interval:

point estimate︸ ︷︷ ︸
p̂1−p̂2

± quantile︸ ︷︷ ︸
zα/2

× standard error︸ ︷︷ ︸√
p̂1(1−p̂1)

n1
+
p̂2(1−p̂2)

n2

.

We interpret the interval in the same way.

“We are 100(1 − α) percent confident that the population proportion difference

p1 − p2 is in this interval.”

– The value zα/2 is the upper α/2 quantile from the N(0, 1) distribution.

• This confidence interval can be calculated through 2-PropZInt in TI-84.

Hypothesis testing: In two-sample situations, it is often of interest to see if the proportions p1

and p2 are different; i.e.,

H0 : p1 = p2

versus one of the following alternatives; i.e.,

Ha : p1 6= p2

Ha : p1 > p2

Ha : p1 < p2

To do this, we need find a testing statistics. Remember that, while we are designing a test, we always

want to bound the Type I Error, which is defined as “reject H0 when H0 in fact is true.” So, when

H0 is in fact true, we can view the two independent samples are from the same population; i.e.,

p1 = p2 = p. Then we have Z (define above) can be written as

Z0 =
(p̂1 − p̂2)− (p1 − p2)√

p1(1−p1)
n1

+ p2(1−p2)
n2

=
(p̂1 − p̂2)√

p(1− p)
(

1
n1

+ 1
n2

) ∼ AN (0, 1).

Further, a natural estimator of p is then

p̂ =
Y1 + Y2

n1 + n2
.
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Thus, we have

Z0 =
(p̂1 − p̂2)√

p̂(1− p̂)
(

1
n1

+ 1
n2

) ∼ AN (0, 1).

Thus, the testing procedure can be summarized as below:

Critical value approach

z0 = (p̂1 − p̂2)/
√
p̂(1− p̂)(n−1

1 + n−1
2 )

Alternative hypothesis Rejection Criterion

Ha : p1 6= p2 z0 > zα/2 or z0 < −zα/2
Ha : p1 > p2 z0 > zα

Ha : p1 < p2 z0 < −zα

P-value approach TI-84: Stat: Tests: 2-PropZTest

Alternative hypothesis Rejection Criterion

Ha : p1 6= p2 P-value = 2{1− Φ(|z0|)} < α

Ha : p1 > p2 P-value = 1− Φ(z0) < α

Ha : p1 < p2 P-value = Φ(z0) < α

Example 5.2.1. A programmable lighting control system is being designed. The purpose of the

system is to reduce electricity consumption costs in buildings. The system eventually will entail the

use of a large number of transceivers (a device comprised of both a transmitter and a receiver). Two

types of transceivers are being considered. In life testing, 200 transceivers (randomly selected) were

tested for each type.

Transceiver 1: 20 failures were observed (out of 200)

Transceiver 2: 14 failures were observed (out of 200).

Question. Define p1 (p2) to be the population proportion of Transceiver 1 (Transceiver 2) failures.

Write a 95 percent confidence interval for p1−p2. Is there a significant difference between the failure

rates p1 and p2?
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5.3 For the ratio of two population variances σ2
2/σ

2
1: Independent samples

You will recall that when we wrote a confidence interval for µ1−µ2, the difference of the population

means (with independent samples), we proposed two different intervals:

• one interval that assumed σ2
1 = σ2

2

• one interval that assumed σ2
1 6= σ2

2.

We now propose a confidence interval procedure that can be used to determine which assumption is

more appropriate. This confidence interval is used to compare the population variances in two

independent samples.

Suppose that we have two independent samples:

Sample 1 : Y11, Y12, ..., Y1n1 ∼ N(µ1, σ
2
1) random sample

Sample 2 : Y21, Y22, ..., Y2n2 ∼ N(µ2, σ
2
2) random sample.

Goal: Construct a 100(1− α) percent confidence interval and conduct hypothesis test for the ratio

of population variances σ2
2/σ

2
1.

To accomplish this, we need the following sampling distribution result:

R =
S2

1/σ
2
1

S2
2/σ

2
2

∼ F (n1 − 1, n2 − 1),

an F distribution with (numerator) ν1 = n1−1 and (denominator) ν2 = n2−1 degrees of freedom.

Facts: The F distribution has the following characteristics:

• continuous, skewed right, and always positive

• indexed by two degree of freedom parameters ν1 and ν2; these are usually integers and are

often related to sample sizes

• The F pdf formula is complicated and is unnecessary for our purposes.

112



0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

q

f(
q

)

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

F; df = 5,5

F; df = 5,10

F; df = 10,10

Figure 5.3.3: F probability density functions with different degrees of freedom.

Notation: Let Fn1−1,n2−1,α/2 and Fn1−1,n2−1,1−α/2 denote the upper and lower quantiles, respec-

tively, of the F (n1 − 1, n2 − 1) distribution; i.e., these values satisfy

P (R > Fn1−1,n2−1,α/2) = α/2

P (R < Fn1−1,n2−1,1−α/2) = α/2,

respectively. Similar to the χ2 distribution, the F distribution is not symmetric. Therefore,

different notation is needed to identify the quantiles of F distributions.

Because

R =
S2

1/σ
2
1

S2
2/σ

2
2

∼ F (n1 − 1, n2 − 1),

we can write

1− α = P
(
Fn1−1,n2−1,1−α/2 ≤ R ≤ Fn1−1,n2−1,α/2

)
= P

(
Fn1−1,n2−1,1−α/2 ≤

S2
1/σ

2
1

S2
2/σ

2
2

≤ Fn1−1,n2−1,α/2

)
= P

(
S2

2

S2
1

× Fn1−1,n2−1,1−α/2 ≤
σ2

2

σ2
1

≤ S2
2

S2
1

× Fn1−1,n2−1,α/2

)
.
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This shows that [
S2

2

S2
1

× Fn1−1,n2−1,1−α/2,
S2

2

S2
1

× Fn1−1,n2−1,α/2

]
is a 100(1−α) percent confidence interval for the ratio of the population variances σ2

2/σ
2
1. Also,

we can obtained 100(1− α) percent confidence interval for σ2
1/σ

2
2 as[

S2
1

S2
2

× 1

Fn1−1,n2−1,α/2
,
S2

1

S2
2

× 1

Fn1−1,n2−1,1−α/2

]
Based on the following relationship,

Fν2,ν1,a =
1

Fν1,ν2,1−a
,

we can simplify the above results as

• 100(1− α) percent confidence interval for σ2
1/σ

2
2 is[

S2
1

S2
2

× 1

Fn1−1,n2−1,α/2
,
S2

1

S2
2

× Fn2−1,n1−1,α/2

]
We interpret the interval in the same way.

“We are 100(1− α) percent confident that the ratio σ2
1/σ

2
2 is in this interval.”

• Taking square root of the interval, we have[
S1

S2
×
√

1

Fn1−1,n2−1,α/2
,
S1

S2
×
√
Fn2−1,n1−1,α/2

]

as a 100(1− α) percent confidence interval for σ1/σ2
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746  Appendix A/Statistical Tables and Charts
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Hypothesis testing: Now we are interested in testing

H0 : σ2
1 = σ2

2

versus one of the following:

Ha :σ2
1 6= σ2

2

Ha :σ2
1 > σ2

2

Ha :σ2
1 < σ2

2

Noting that, when H0 is true, we have

r0 =
S2

1/σ
2
1

S2
2/σ

2
2

=
S2

1

S2
2

∼ F (n1 − 1, n2 − 1)

Thus

Critical value approach

r0 = s2
1/s

2
2

Alternative hypothesis Rejection Criterion

Ha : σ2
1 6= σ2

2 r0 > Fn1−1,n2−1,α/2 or r0 < Fn1−1,n2−1,1−α/2 = 1/Fn2−1,n1−1,α/2

Ha : σ2
1 > σ2

2 r0 > Fn1−1,n2−1,α

Ha : σ2
1 < σ2

2 r0 < Fn1−1,n2−1,1−α = 1/Fn2−1,n1−1,α

Confidence interval approach

Alternative hypothesis Rejection Criterion

Ha : σ2
1 6= σ2

2 1 /∈
[
S2
1

S2
2
× 1

Fn1−1,n2−1,α/2
,
S2
1

S2
2
× Fn2−1,n1−1,α/2

]
Ha : σ2

1 > σ2
2 1 <

S2
1

S2
2
× 1

Fn1−1,n2−1,α

Ha : σ2
1 < σ2

2 1 >
S2
1

S2
2
× Fn2−1,n1−1,α

P-value approach TI-84: Stat: Tests: 2-SampFTest

Alternative hypothesis Rejection Criterion

Ha : σ2
1 6= σ2

2 P-value < α

Ha : σ2
1 > σ2

2 P-value < α

Ha : σ2
1 < σ2

2 P-value < α

Some statisticians recommend to use this “equal/unequal variance test” before deciding which con-

fidence interval or testing procedure to use for µ1 − µ2. Some statisticians do not.

Major warning: Like the χ2 interval for single population variance σ2, the two-sample F in-
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terval for the ratio of two variances is not robust to departures from normality. If the underlying

population distributions are non-normal (non-Guassian), then this interval should not be used. One

easy solution, to check whether the sample is from a normal distribution or not, is the so-called

“normal qq plot.” It plots sample quantiles against theoretical normal quantiles.

• If it fits well by a line, it is normal.

• Otherwise, non-normal.

You do not need know details about how to construct it. In R program (a famous statistical software),

use commend qqnorm to draw the plot. such as

data=rnorm(100,3,2) #generate 100 samples from N(3,4)

qqnorm(data) #plot the dots

qqline(data) #fit the dots by a line

The output is in Figure 5.3.4 (a).
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(a) Data from N(3,4)
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(b) Data from Exp(1)

Figure 5.3.4: Normal qq plots for normal and exponentional

If it is not normal, what happens?

data=rexp(100,1) #generate 100 samples from Exp(1)

qqnorm(data) #plot the dots

qqline(data) #fit the dots by a line

The output is in Figure 5.3.4 (b).
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Example 5.3.1. We consider again the recycling project in Example 5.1.3 that examined the amount

of white paper discarded per employee at two large plants. The data (presented in Example 4.13)

were obtained on the amount of white paper thrown out per year by employees (data are in hundreds

of pounds). Samples of employees at each plant (n1 = 25 and n2 = 20) were randomly selected.

Plant 1: 3.01 2.58 3.04 1.75 2.87 2.57 2.51 2.93 2.85 3.09

1.43 3.36 3.18 2.74 2.25 1.95 3.68 2.29 1.86 2.63

2.83 2.04 2.23 1.92 3.02

Plant 2: 3.79 2.08 3.66 1.53 4.07 4.31 2.62 4.52 3.80 5.30

3.41 0.82 3.03 1.95 6.45 1.86 1.87 3.78 2.74 3.81

The boxplots in Figure 5.1.2 did suggest that the population variances may be different, and the

following are the normal qq plots.
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Figure 5.3.5: Normal quantile-quantile (qq) plots for employee recycle data for two plants.

Find a 95 percent confidence interval for σ2
2/σ

2
1, the ratio of the population variances. Here, σ2

1 (σ2
2)

denotes the population variance of the amount of white paper by employees at Plant 1 (Plant 2).
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5.4 For the difference of two population means µ1 − µ2: Dependent samples

(Matched-pairs)

Example 5.4.1. Creatine is an organic acid that helps to supply energy to cells in the body, pri-

marily muscle. Because of this, it is commonly used by those who are weight training to gain muscle

mass. Does it really work? Suppose that we are designing an experiment involving USC male

undergraduates who exercise/lift weights regularly.

Design 1 (Independent samples): Recruit 30 students who are representative of the popula-

tion of USC male undergraduates who exercise/lift weights. For a single weight training session, we

will

• assign 15 students to take creatine.

• assign 15 students an innocuous substance that looks like creatine (but has no positive/negative

effect on performance).

For each student, we will record

Y = maximum bench press weight (MBPW).

We will then have two samples of data (with n1 = 15 and n2 = 15):

Sample 1 (Creatine): Y11, Y12, ..., Y1n1

Sample 2 (Control): Y21, Y22, ..., Y2n2 .

To compare the population means

µ1 = population mean MBPW for students taking creatine

µ2 = population mean MBPW for students not taking creatine,

we could construct a two-sample t confidence interval for µ1 − µ2 using

(X1· −X2·)± tn1+n2−2,α/2

√
S2
p

(
1

n1
+

1

n2

)
or

(X1· −X2·)± tν,α/2

√
S2

1

n1
+
S2

2

n2
,

depending on our underlying assumptions about σ2
1 and σ2

2.
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Design 2 (Matched Pairs): Recruit 15 students who are representative of the population of

USC male undergraduates who exercise/lift weights.

• Each student will be assigned first to take either creatine or the control substance.

• For each student, we will then record his value of Y (MBPW).

• After a period of recovery (e.g., 1 week), we will then have each student take the other “treat-

ment” (creatine/control) and record his value of Y again (but now on the other treatment).

• In other words, for each individual student, we will measure Y under both conditions.

Note: In Design 2, because MBPW measurements are taken on the same student, the difference

between the measurement (creatine/control) should be less variable than the difference between a

creatine measurement on one student and a control measurement on a different student.

• In other words, the student-to-student variation inherent in the latter difference is not present

in the difference between MBPW measurements taken on the same individual student.

Table 5.1: Creatine example. Sources of variation in the two independent sample and matched pairs
designs.

Design Sources of Variation

Two Independent Samples among students, within students
Matched Pairs within students

Matched pairs: In general, by obtaining a pair of measurements on a single individual (e.g., stu-

dent, raw material, machine, etc.), where one of measurement corresponds to “Treatment 1” and the

other measurement corresponds to “Treatment 2,” you eliminate variation among the individuals.

This allows you to compare the two experimental conditions (e.g., creatine/control, biodegradabil-

ity treatments, operators, etc.) under more homogeneous conditions where only variation within

individuals is present (that is, the variation arising from the difference in the two experimental con-

ditions).

Advantage: When you remove extra variability, this enables you to do a better job at comparing

the two experimental conditions (treatments). By “better job,” I mean, you can more precisely

estimate the difference between the treatments (excess variability that naturally arises among indi-

viduals is not getting in the way). This gives you a better chance of identifying a difference between

the treatments if one really exists.

Note: In matched pairs experiments, it is important to randomize the order in which treat-

ments are assigned. This may eliminate “common patterns” that may be seen when always following,

say, Treatment 1 with Treatment 2. In practice, the experimenter could flip a fair coin to determine

which treatment is applied first.
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Table 5.2: Creatine data. Maximum bench press weight (in lbs) for creatine and control treatments
with 15 students. Note: These are not real data.

Student j Creatine MBPW Control MBPW Difference (Dj = Y1j − Y2j)

1 230 200 30
2 140 155 −15
3 215 205 10
4 190 190 0
5 200 170 30
6 230 225 5
7 220 200 20
8 255 260 −5
9 220 240 −20
10 200 195 5
11 90 110 −20
12 130 105 25
13 255 230 25
14 80 85 −5
15 265 255 10

Implementation: (Basically, you take the difference, then perform a T-test on the differences)

Data from matched pairs experiments are analyzed by examining the difference in responses of the

two treatments. Specifically, compute

Dj = Y1j − Y2j ,

for each individual j = 1, 2, ..., n. After doing this, we have essentially created a “one sample

problem,” where our data are:

D1, D2, ..., Dn,

the so-called data differences. The one sample 100(1− α) percent confidence interval

D ± tn−1,α/2
SD√
n
,

where D and SD are the sample mean and sample standard deviation of the differences, respectively,

is an interval estimate for

µD = mean difference between the 2 treatments.

We interpret the interval in the same way.

“We are 100(1− α) percent confident that the mean difference µD is in this interval.”
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Testing hypothesis: (Basically, you need run a T-test on the differences) Following the six steps

(now we have µD = µ1 − µ2), test

H0 : µD = ∆0

versus each one of the following:

H0 : µD 6= ∆0

H0 : µD > ∆0

H0 : µD < ∆0

Confidence interval approach

Alternative hypothesis Reject Criterion

Ha : µD 6= ∆0 ∆0 /∈
[
D ± tn−1,α/2

SD√
n

]
Ha : µD > ∆0 ∆0 < D − tn−1,α

SD√
n

Ha : µD < ∆0 ∆0 > D + tn−1,α
SD√
n

Critical value approach

t0 = D−∆0

SD/
√
n

Alternative hypothesis Rejection Criterion

Ha : µD 6= ∆0 t0 > tn−1,α/2 or t0 < −tn−1,α/2

Ha : µD > ∆0 t0 > tn−1,α

Ha : µD < ∆0 t0 < −tn−1,α

P-value approach TI-84: Use T-test on the differences

Alternative hypothesis Rejection Criterion

Ha : µD 6= ∆0 P-value < α

Ha : µD > ∆0 P-value < α

Ha : µD < ∆0 P-value < α

Now let us finish the example of Creatine. Find a 95% confidence interval for µD and test whether

there is a difference using α = 0.05.
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5.5 One-way analysis of variance

So far in this chapter, we have discussed confidence intervals for a single population mean µ and for

the difference of two population means µ1 − µ2. When there are two means, we have recently seen

that the design of the experiment/study completely determines how the data are to be analyzed.

• When the two samples are independent, this is called a (two) independent-sample design.

• When the two samples are obtained on the same individuals (so that the samples are depen-

dent), this is called a matched pairs design.

• Confidence interval procedures for µ1 − µ2 depend on the design of the study.

More generally, the purpose of an experiment is to investigate differences between or among two

or more treatments. In a statistical framework, we do this by comparing the population means of

the responses to each treatment.

• In order to detect treatment mean differences, we must try to control the effects of error so

that any variation we observe can be attributed to the effects of the treatments rather than to

differences among the individuals.

Blocking: Designs involving meaningful grouping of individuals, that is, blocking, can help reduce

the effects of experimental error by identifying systematic components of variation among individuals.

• The matched pairs design for comparing two treatments is an example of such a design. In this

situation, individuals themselves are treated as “blocks.”

The analysis of data from experiments involving blocking will not be covered in this course (see, e.g.,

STAT 506, STAT 525, and STAT 706). We focus herein on a simpler setting, that is, a one-way

classification model. This is an extension of the two independent-sample design to more than two

treatments.

One-way Classification: Consider an experiment to compare t ≥ 2 treatments set up as follows:

• We obtain a random sample of individuals and randomly assign them to treatments. Samples

corresponding to the treatment groups are independent (i.e., the individuals in each treatment

sample are unrelated).

• In observational studies (where no treatment is physically applied to individuals), individuals

are inherently different to begin with. We therefore simply take random samples from each

treatment population.

• We do not attempt to group individuals according to some other factor (e.g., location, gender,

weight, variety, etc.). This would be an example of blocking.
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Main point: In a one-way classification design, the only way in which individuals are “clas-

sified” is by the treatment group assignment. Hence, such an arrangement is called a one-way

classification. When individuals are thought to be “basically alike” (other than the possible effect

of treatment), experimental error consists only of the variation among the individuals themselves,

that is, there are no other systematic sources of variation.

Example 5.5.1. Four types of mortars: (1) ordinary cement mortar (OCM), polymer impregnated

mortar (PIM), resin mortar (RM), and (4) polymer cement mortar (PCM), were subjected to a

compression test to measure strength (MPa). Here are the strength measurements taken on different

mortar specimens (36 in all).

OCM: 51.45 42.96 41.11 48.06 38.27 38.88 42.74 49.62

PIM: 64.97 64.21 57.39 52.79 64.87 53.27 51.24 55.87 61.76 67.15

RM: 48.95 62.41 52.11 60.45 58.07 52.16 61.71 61.06 57.63 56.80

PCM: 35.28 38.59 48.64 50.99 51.52 52.85 46.75 48.31

Side by side boxplots of the data are in Figure 5.5.6.
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Figure 5.5.6: Boxplots of strength measurements (MPa) for four mortar types.
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In this example,

• “Treatment” = mortar type (OCM, PIM, RM, and PCM). There are t = 4 treatment groups.

• Individuals = mortar specimens

• This is an example of an observational study; not an experiment. That is, we do not

physically apply a treatment here; instead, the mortar specimens are inherently different to

begin with. We simply take random samples of each mortar type.

Query: An initial question that we might have is the following:

“Are the treatment (mortar type) population means equal? Or, are the treatment pop-

ulation means different?”

This question can be answered by performing a hypothesis test, that is, by testing

H0 : µ1 = µ2 = µ3 = µ4

versus

Ha : the population means µi are not all equal.

Goal: We now develop a statistical procedure that allows us to test this type of hypothesis in a

one-way classification model.

ASSUMPTIONS : We have independent random samples from t ≥ 2 normal distributions, each

of which has the same variance (but possibly different means):

Sample 1: Y11, Y12, ..., Y1n1 ∼ N(µ1, σ
2)

Sample 2: Y21, Y22, ..., Y2n2 ∼ N(µ2, σ
2)

...
...

Sample t: Yt1, Yt2, ..., Ytnt ∼ N(µt, σ
2).

STATISTICAL HYPOTHESIS : Our goal is to develop a procedure to test

H0 : µ1 = µ2 = · · · = µt

versus

Ha : the population means µi are not all equal.

• The null hypothesis H0 says that there is “no treatment difference,” that is, all treatment

population means are the same.

• The alternative hypothesis Ha says that a difference among the t population means exists

somewhere (but does not specify how the means are different).

• The goal is to decide which hypothesis is more supported by the observed data.
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To do this, I need introduce some notation:

Notation: Let t denote the number of treatments to be compared. Define

Yij = response on the jth individual in the ith treatment group

for i = 1, 2, ..., t and j = 1, 2, ..., ni.

• ni is the number of replications for treatment i

• When n1 = n2 = · · · = nt = n, we say the design is balanced; otherwise, the design is

unbalanced.

• Let N = n1 + n2 + · · · + nt denote the total number of individuals measured. If the design is

balanced, then N = nt.

• Define

Xi· =
1

ni

ni∑
j=1

Yij

S2
i =

1

ni − 1

ni∑
j=1

(Yij −Xi·)
2

X ·· =
1

N

t∑
i=1

ni∑
j=1

Yij .

The statistics Xi· and S2
i are simply the sample mean and sample variance, respectively, of the

ith sample. The statistic X ·· is the sample mean of all the data (across all t treatment groups).

The procedure we develop is formulated by deriving two estimators for σ2. These two estimators

are formed by (1) looking at the variance of the observations within samples, and (2) looking at the

variance of the sample means across the t samples.

• “WITHIN” Estimator: To estimate σ2 within samples, we take a weighted average (weighted

by the sample sizes) of the t sample variances; that is, we “pool” all variance estimates together

to form one estimate. Define

SSres = (n1 − 1)S2
1 + (n2 − 1)S2

2 + · · ·+ (nt − 1)S2
t

=

t∑
i=1

ni∑
j=1

(Yij −Xi·)
2

︸ ︷︷ ︸
(ni−1)S2

i

.

We call SSres the residual sum of squares. Mathematics shows that

E

(
SSres
σ2

)
= N − t =⇒ E(MSres) = σ2,
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where

MSres =
SSres
N − t

.

Important: MSres is an unbiased estimator of σ2 regardless of whether or not H0 is true. We

call MSres the residual mean squares.

• “ACROSS” Estimator: To derive the “across-sample” estimator, we assume a common

sample size n1 = n2 = · · · = nt = n (to simplify notation). Recall that if a sample arises from

a normal population, then the sample mean is also normally distributed, i.e.,

Xi· ∼ N
(
µi,

σ2

n

)
.

NOTE : If all the treatment population means are equal, that is,

H0 : µ1 = µ2 = · · · = µt = µ, say,

is true, then

Xi· ∼ N
(
µ,
σ2

n

)
.

If H0 is true, then the t sample means X1·, X2·, ..., Xt· are a random sample of size t from a

normal distribution with mean µ and variance σ2/n. The sample variance of this “random

sample” is given by

1

t− 1

t∑
i=1

(Xi· −X ··)2

and has expectation

E

[
1

t− 1

t∑
i=1

(Xi· −X ··)2

]
=
σ2

n
.

Therefore,

MStrt =
1

t− 1

t∑
i=1

n(Xi· −X ··)2

︸ ︷︷ ︸
SStrt

,

is an unbiased estimator of σ2; i.e., E(MStrt) = σ2, when H0 is true. We call SStrt the

treatment sums of squares and MStrt the treatment mean squares. MStrt is our

second point estimator for σ2. Recall that MStrt is an unbiased estimator of σ2 only when

H0 : µ1 = µ2 = · · · = µt is true (this is important!). If we have different sample sizes,

we simply adjust MStrt to

MStrt =
1

t− 1

t∑
i=1

ni(Xi· −X ··)2

︸ ︷︷ ︸
SStrt

.

This is still an unbiased estimator for σ2 when H0 is true.
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Motivation:

• When H0 is true (i.e., the treatment means are the same), then

E(MStrt) = σ2

E(MSres) = σ2.

These two facts suggest that when H0 is true,

F =
MStrt
MSres

≈ 1.

• When H0 is not true (i.e., the treatment means are different), then

E(MStrt) > σ2

E(MSres) = σ2.

These two facts suggest that when H0 is not true,

F =
MStrt
MSres

> 1.

Sampling distribution: When H0 is true, the F statistic

F =
MStrt
MSres

∼ F (t− 1, N − t).

DECISION : We “reject H0” and conclude the treatment population means are different if the F

statistic is far out in the right tail of the F (t − 1, N − t) distribution. Why? Because a large value

of F is not consistent with H0 being true! Large values of F (far out in the right tail) are more

consistent with Ha. Thus, to test

H0 : µ1 = µ2 = µ3 = µ4

versus

Ha : the population means µi are not all equal,

The rejection criterion would be

F =
MStrt
MSres

> Ft−1,N−1,α.
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Figure 5.5.7: The F (3, 32) probability density function. This is the distribution of F in Example
4.17 if H0 is true. An “×” at F = 16.848 has been added.

Example 5.5.2. (continued Example 5.5.1.) Morta Data: We now use TI-84 to do this test for

the strength/mortar type data in Example 5.5.1 at α = 0.05.

Input data in to list L1, L2, L3, and L4. Then go to Stat, to Tests, select ANOVA

‘‘ANOVA(L1, L2, L3, L4)" The output are then:

One-way ANOVA

F=16.84834325 (This the F value used for test)

p=9.5764486E-7 (P-value for the test)

Factor

df=3 (t-1)

SS=1520.87591 (SStrt)

MS=506.958637 (MStrt)

Error

df=32 (N-t)

SS=962.864785 (SSres)

MS=30.0895245 (MSres)

Sxp=5.48539192 (estimate of the common standard deviation sigma)
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Conclusion: P-value is significantly smaller than α = 0.05 (i.e.; F = 16.848 is not an observation

we would expect from the F (3, 32) distribution (the distribution of F when H0 is true); see Figure

5.5.7). Therefore, we reject H0 and conclude the population mean strengths for the four mortar

types are different. In other words, at α = 0.05 (note that, not only for α = 0.05, but also for

α = 0.01, 0.005, 0.0005, the evidence from the data provides sufficient evidence to reject H0.

As we have just seen (from the recent R analysis), it is common to display one-way classification

results in an ANOVA table. The form of the ANOVA table for the one-way classification is given

below:

Source df SS MS F

Treatments t− 1 SStrt MStrt = SStrt
t−1 F = MStrt

MSres

Residuals N − t SSres MSres = SSres
N−t

Total N − 1 SStotal

For example, we can re-organize the above output as,

Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)

mortar.type 3 1520.88 506.96 16.848 9.576e-07

Residuals 32 962.86 30.09

Total 35 2483.74

• It is easy to show that

SStotal = SStrt + SSres.

• SStotal measures how observations vary about the overall mean, without regard to treatments;

that is, it measures the total variation in all the data. SStotal can be partitioned into two

components:

– SStrt measures how much of the total variation is due to the treatments

– SSres measures what is “left over,” which we attribute to inherent variation among the

individuals.

• Degrees of freedom (df) add down.

• Mean squares (MS) are formed by dividing sums of squares by the corresponding degrees of

freedom.
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6 Linear regression

6.1 Introduction

IMPORTANCE : A problem that arises in engineering, economics, medicine, and other areas is that

of investigating the relationship between two (or more) variables. In such settings, the goal is to

model a continuous random variable Y as a function of one or more independent variables, say,

x1, x2, ..., xk. Mathematically, we can express this model as

Y = g(x1, x2, ..., xk) + ε,

where g : Rk → R. This is called a regression model.

• The presence of the (random) error ε conveys the fact that the relationship between the de-

pendent variable Y and the independent variables x1, x2, ..., xk through g is not deterministic.

Instead, the term ε “absorbs” all variation in Y that is not explained by g(x1, x2, ..., xk).

LINEAR MODELS : In this course, we will consider models of the form

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk︸ ︷︷ ︸
g(x1,x2,...,xk)

+ ε,

that is, g is a linear function of β0, β1, ..., βk. We call this a linear regression model.

• The response variable Y is assumed to be random (but we do get to observe its value).

• The regression parameters β0, β1, ..., βk are assumed to be fixed and unknown.

• The independent variables x1, x2, ..., xk are assumed to be fixed (not random).

• The error term ε is assumed to be random (and not observed).

DESCRIPTION : More precisely, we call a regression model a linear regression model if the

regression parameters enter the g function in a linear fashion. For example, each of the models is a

linear regression model:

Y = β0 + β1x︸ ︷︷ ︸
g(x)

+ε

Y = β0 + β1x+ β2x
2︸ ︷︷ ︸

g(x)

+ε

Y = β0 + β1x1 + β2x2 + β3x1x2︸ ︷︷ ︸
g(x1,x2)

+ε.

Main point: The term “linear” does not refer to the shape of the regression function g. It refers to

how the regression parameters β0, β1, ..., βk enter the g function.
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6.2 Simple linear regression

Terminology: A simple linear regression model includes only one independent variable x and

is of the form

Y = g(x) + ε

= β0 + β1x+ ε.

The regression function

g(x) = β0 + β1x

is a straight line with intercept β0 and slope β1. If E(ε) = 0, then

E(Y ) = E(β0 + β1x+ ε)

= β0 + β1x+ E(ε)

= β0 + β1x.

Therefore, we have these interpretations for the regression parameters β0 and β1:

• β0 quantifies the mean of Y when x = 0.

• β1 quantifies the change in E(Y ) brought about by a one-unit change in x.

Example 6.2.1. As part of a waste removal project, a new compression machine for processing

sewage sludge is being studied. In particular, engineers are interested in the following variables:

Y = moisture control of compressed pellets (measured as a percent)

x = machine filtration rate (kg-DS/m/hr).

Engineers collect n = 20 observations of (x, Y ); the data are given below.

Obs x Y Obs x Y
1 125.3 77.9 11 159.5 79.9
2 98.2 76.8 12 145.8 79.0
3 201.4 81.5 13 75.1 76.7
4 147.3 79.8 14 151.4 78.2
5 145.9 78.2 15 144.2 79.5
6 124.7 78.3 16 125.0 78.1
7 112.2 77.5 17 198.8 81.5
8 120.2 77.0 18 132.5 77.0
9 161.2 80.1 19 159.6 79.0
10 178.9 80.2 20 110.7 78.6

Table 6.3: Sewage data. Moisture (Y , measured as a percentage) and machine filtration rate (x,
measured in kg-DS/m/hr). There are n = 20 observations.
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Figure 6.2.1: Scatterplot of pellet moisture Y (measured as a percentage) as a function of machine
filtration rate x (measured in kg-DS/m/hr).

Figure 6.2.1 displays the data in a scatterplot. This is the most common graphical display for

bivariate data like those seen above. From the plot, we see that

• the variables Y and x are positively related, that is, an increase in x tends to be associated

with an increase in Y .

• the variables Y and x are linearly related, although there is a large amount of variation that

is unexplained.

• this is an example where a simple linear regression model may be adequate.
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6.2.1 Least squares estimation

Terminology: When we say, “fit a regression model,” we mean that we would like to estimate

the regression parameters in the model with the observed data. Suppose that we collect (xi, Yi),

i = 1, 2, ..., n, and postulate the simple linear regression model

Yi = β0 + β1xi + εi,

for each i = 1, 2, ..., n. Our first goal is to estimate β0 and β1. Formal assumptions for the error

terms εi will be given later.

Least Squares: A widely-accepted method of estimating the model parameters β0 and β1 is least

squares. The method of least squares says to choose the values of β0 and β1 that minimize

Q(β0, β1) =

n∑
i=1

[Yi − (β0 + β1xi)]
2.

Denote the least squares estimators by β̂0 and β̂1, respectively, that is, the values of β0 and β1

that minimize Q(β0, β1). A two-variable minimization argument can be used to find closed-form

expressions for β̂0 and β̂1. Taking partial derivatives of Q(β0, β1), we obtain

∂Q(β0, β1)

∂β0
= −2

n∑
i=1

(Yi − β0 − β1xi)
set
= 0

∂Q(β0, β1)

∂β1
= −2

n∑
i=1

(Yi − β0 − β1xi)xi
set
= 0.

Solving for β0 and β1 gives the least squares estimators

β̂0 = Y − β̂1x

β̂1 =

∑n
i=1(xi − x)(Yi − Y )∑n

i=1(xi − x)2
=
SSxy
SSxx

.

In real life, it is rarely necessary to calculate β̂0 and β̂1 by hand, TI-84 and R automate the entire

model fitting process and subsequent analysis.

Example 6.2.2. (continued Example 6.2.1). We now use R to calculate the equation of the least

squares regression line for the sewage sludge data in Example 6.1. Here is the output:

> fit = lm(moisture~filtration.rate)

> fit

lm(formula = moisture ~ filtration.rate)

Coefficients:

(Intercept) filtration.rate

72.95855 0.04103
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Figure 6.2.2: Scatterplot of pellet moisture Y (measured as a percentage) as a function of filtration
rate x (measured in kg-DS/m/hr). The least squares line has been added.

From the output, we see the least squares estimates (to 3 dp) for the sewage data are

β̂0 = 72.959

β̂1 = 0.041.

Therefore, the equation of the least squares line that relates moisture percentage Y to the filtration

rate x is

Ŷ = 72.959 + 0.041x,

or, in other words,

̂Moisture = 72.959 + 0.041× Filtration rate.

The textbook authors call the least squares line the prediction equation. This is because we can

predict the value of Y (moisture) for any value of x (filtration rate). For example, when the filtration

rate is x = 150 kg-DS/m/hr, we would predict the moisture percentage to be

Ŷ (150) = 72.959 + 0.041(150) ≈ 79.109.
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6.2.2 Model assumptions and properties of least squares estimators

We wish to investigate the properties of β̂0 and β̂1 as estimators of the true regression parameters

β0 and β1 in the simple linear regression model

Yi = β0 + β1xi + εi,

for i = 1, 2, ..., n. To do this, we need assumptions on the error terms εi. Specifically, we will assume

throughout that

• E(εi) = 0, for i = 1, 2, ..., n

• var(εi) = σ2, for i = 1, 2, ..., n, that is, the variance is constant

• the random variables εi are independent

• the random variables εi are normally distributed.

Under these assumptions,

Yi ∼ N(β0 + β1xi, σ
2).

Fact 1. The least squares estimators β̂0 and β̂1 are unbiased estimators of β0 and β1, respectively,

that is,

E(β̂0) = β0

E(β̂1) = β1.

Fact 2. The least squares estimators β̂0 and β̂1 have the following sampling distributions:

β̂0 ∼ N(β0, c00σ
2) and β̂1 ∼ N(β1, c11σ

2),

where

c00 =
1

n
+

x2

SSxx
and c11 =

1

SSxx
.

Knowing these sampling distributions is critical if we want to write confidence intervals and perform

hypothesis tests for β0 and β1.

6.2.3 Estimating the error variance

Goal: In the simple linear regression model

Yi = β0 + β1xi + εi,

where εi ∼ N(0, σ2), we now turn our attention to estimating σ2, the error variance.
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Terminology: In the simple linear regression model, define the ith fitted value by

Ŷi = β̂0 + β̂1xi,

where β̂0 and β̂1 are the least squares estimators. Each observation has its own fitted value. Geo-

metrically, an observation’s fitted value is the (perpendicular) projection of its Y value, upward or

downward, onto the least squares line.

Terminology: We define the ith residual by

ei = Yi − Ŷi.

Each observation has its own residual. Geometrically, an observation’s residual is the vertical distance

(i.e., length) between its Y value and its fitted value.

• If an observation’s Y value is above the least squares regression line, its residual is positive.

• If an observation’s Y value is below the least squares regression line, its residual is negative.

• In the simple linear regression model (provided that the model includes an intercept term β0),

we have the following algebraic result:

n∑
i=1

ei =

n∑
i=1

(Yi − Ŷi) = 0,

that is, the sum of the residuals (from a least squares fit) is equal to zero.

SEWAGE DATA: In Table 6.2, I have used R to calculate the fitted values and residuals for

each of the n = 20 observations in the sewage sludge data set.

Obs x Y Ŷ = β̂0 + β̂1x e = Y − Ŷ Obs x Y Ŷ = β̂0 + β̂1x e = Y − Ŷ

1 125.3 77.9 78.100 −0.200 11 159.5 79.9 79.503 0.397
2 98.2 76.8 76.988 −0.188 12 145.8 79.0 78.941 0.059
3 201.4 81.5 81.223 0.277 13 75.1 76.7 76.040 0.660
4 147.3 79.8 79.003 0.797 14 151.4 78.2 79.171 −0.971
5 145.9 78.2 78.945 −0.745 15 144.2 79.5 78.876 0.624
6 124.7 78.3 78.075 0.225 16 125.0 78.1 78.088 0.012
7 112.2 77.5 77.563 −0.062 17 198.8 81.5 81.116 0.384
8 120.2 77.0 77.891 −0.891 18 132.5 77.0 78.396 −1.396
9 161.2 80.1 79.573 0.527 19 159.6 79.0 79.508 −0.508
10 178.9 80.2 80.299 −0.099 20 110.7 78.6 77.501 1.099

Table 6.4: Sewage data. Fitted values and residuals from the least squares fit.

Terminology: We define the residual sum of squares by

SSres ≡
n∑
i=1

e2
i =

n∑
i=1

(Yi − Ŷi)2.
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Fact 3. In the simple linear regression model,

MSres =
SSres
n− 2

is an unbiased estimator of σ2, that is, E(MSres) = σ2. The quantity

σ̂ =
√
MSres =

√
SSres
n− 2

estimates σ and is called the residual standard error.

Example 6.2.3. SEWAGE DATA: For the sewage data in Example 6.2.1, we use R to calculate

MSres:

> fitted.values = predict(fit)

> residuals = moisture-fitted.values

> # Calculate MS_res

> sum(residuals^2)/18

[1] 0.4426659

For the sewage data, an (unbiased) estimate of the error variance σ2 is

MSres ≈ 0.443.

The residual standard error is

σ̂ =
√
MSres =

√
0.4426659 ≈ 0.6653.

This estimate can also be seen in the following R output:

> summary(fit)

lm(formula = moisture ~ filtration.rate)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 72.958547 0.697528 104.596 < 2e-16 ***

filtration.rate 0.041034 0.004837 8.484 1.05e-07 ***

Residual standard error: 0.6653 on 18 degrees of freedom

Multiple R-squared: 0.7999, Adjusted R-squared: 0.7888

F-statistic: 71.97 on 1 and 18 DF, p-value: 1.052e-07
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6.2.4 Inference for β0 and β1

In the simple linear regression model

Yi = β0 + β1xi + εi,

the regression parameters β0 and β1 are unknown. It is therefore of interest to construct confidence

intervals and perform hypothesis tests for these parameters.

• In practice, inference for the slope parameter β1 is of primary interest because of its connection

to the independent variable x in the model.

• Inference for β0 is less meaningful, unless one is explicitly interested in the mean of Y when

x = 0. We will not pursue this.

Confidence interval for β1: Under our model assumptions, the following sampling distribution

arises:

t =
β̂1 − β1√

MSres/SSxx
∼ t(n− 2).

This result can be used to derive a 100(1− α) percent confidence interval for β1, which is given

by

β̂1 ± tn−2,α/2

√
MSres/SSxx.

• The value tn−2,α/2 is the upper α/2 quantile from the t(n− 2) distribution.

• Note the form of the interval:

point estimate︸ ︷︷ ︸
β̂1

± quantile︸ ︷︷ ︸
tn−2,α/2

× standard error︸ ︷︷ ︸√
MSres/SSxx

.

We interpret the interval in the same way.

“We are 100(1 − α) percent confident that the population regression slope β1 is in

this interval.”

• When interpreting the interval, of particular interest to us is the value β1 = 0.

– If β1 = 0 is in the confidence interval, this suggests that Y and x are not linearly related.

– If β1 = 0 is not in the confidence interval, this suggests that Y and x are linearly related.

• The 100(1− α) percent lower and upper confidence bounds are, respectively,

β̂1 − tn−2,α

√
MSres/SSxx and β̂1 + tn−2,α

√
MSres/SSxx.
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Hypothesis test for β1: If our interest was to test

H0 : β1 = 0

versus one of the following

Ha : β1 6= 0

Ha : β1 > 0

Ha : β1 < 0

where 0 is a fixed value (often, 0 = 0), we would focus our attention on

t0 =
β̂1√

MSres/SSxx
.

Critical value approach

Alternative hypothesis Rejection Criterion

Ha : β1 6= 0 t0 > tn−2,α/2 or t0 < −tn−2,α/2

Ha : β1 > 0 t0 > tn−2,α

Ha : β1 < 0 t0 < −tn−2,α

P-value approach

Alternative hypothesis Rejection Criterion

Ha : β1 6= 0 P-value < α

Ha : β1 > 0 P-value < α

Ha : β1 < 0 P-value < α

Confidence interval approach

Alternative hypothesis Reject Criterion

Ha : β1 6= 0 0 /∈
[
β̂1 ± tn−2,α/2

√
MSres/SSxx

]
Ha : β1 > 0 0 < β̂1 − tn−2,α

√
MSres/SSxx

Ha : β1 < 0 0 > β̂1 + tn−2,α

√
MSres/SSxx
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Example 6.2.4. (continued Example 6.2.1). We now use R to test

H0 : β1 = 0 versus Ha : β1 6= 0,

for the sewage sludge data in Example 6.2.1.

> summary(fit)

lm(formula = moisture ~ filtration.rate)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 72.958547 0.697528 104.596 < 2e-16 ***

filtration.rate 0.041034 0.004837 8.484 1.05e-07 ***

Analysis: We have t = 8.484 > tn−2,α/2 = t18,0.025 = 2.1009 and P-value = 0.000000105. In

other words, there is strong evidence to reject H0. Also a 95 percent confidence interval for β1 is

calculated as follows:

β̂1 ± t18,0.025se(β̂1) =⇒ 0.0410± 2.1009(0.0048) =⇒ (0.0309, 0.0511).

We are 95 percent confident that population regression slope β1 is between 0.0309 and 0.0511. Note

that this interval does not include “0.”

6.2.5 Confidence and prediction intervals for a given x = x0

Consider the simple linear regression model

Yi = β0 + β1xi + εi,

where εi ∼ N(0, σ2). We are often interested in using the fitted model to learn about the response

variable Y at a certain setting for the independent variable x = x0, say. For example, in our sewage

sludge example, we might be interested in the moisture percentage Y when the filtration rate is

x = 150 kg-DS/m/hr. Two potential goals arise:

• We might be interested in estimating the mean response of Y when x = x0. This mean

response is denoted by E(Y |x0). This value is the mean of the following probability distribution:

Y (x0) ∼ N(β0 + β1x0, σ
2).

• We might be interested in predicting a new response Y when x = x0. This predicted

response is denoted by Y ∗(x0). This value is a new outcome from

Y (x0) ∼ N(β0 + β1x0, σ
2).

In the first problem, we are interested in estimating the mean of the response variable Y at a

certain value of x. In the second problem, we are interested in predicting the value of a new
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random variable Y at a certain value of x. Conceptually, the second problem is far more difficult

than the first.

Goals: We would like to create 100(1− α) percent intervals for the mean E(Y |x0) and for the new

value Y ∗(x0). The former is called a confidence interval (since it is for a mean response) and the

latter is called a prediction interval (since it is for a new random variable).

Point estimator/Predictor: To construct either interval, we start with the same quantity:

Ŷ (x0) = β̂0 + β̂1x0,

where β̂0 and β̂1 are the least squares estimates from the fit of the model.

• In the confidence interval for E(Y |x0), we call Ŷ (x0) a point estimator.

• In the prediction interval for Y (x0), we call Ŷ (x0) a point predictor.

The primary difference in the intervals arises in assessing the variability of Ŷ (x0).

Confidence interval: A 100(1− α) percent confidence interval for the mean E(Y |x0) is given

by

Ŷ (x0)± tn−2,α/2

√
MSres

[
1

n
+

(x0 − x)2

SSxx

]
.

Prediction interval: A 100(1− α) percent prediction interval for the new response Y ∗(x0) is

given by

Ŷ (x0)± tn−2,α/2

√
MSres

[
1 +

1

n
+

(x0 − x)2

SSxx

]
.

• Comparison: The two intervals are identical except for the extra “1” in the standard error

part of the prediction interval. This extra “1” arises from the additional uncertainty associated

with predicting a new response from the N(β0 +β1x0, σ
2) distribution. Therefore, a 100(1−α)

percent prediction interval for Y ∗(x0) will be wider than the corresponding 100(1−α) percent

confidence interval for E(Y |x0).

• Interval length: The length of both intervals clearly depends on the value of x0. In fact,

the standard error of Ŷ (x0) will be smallest when x0 = x and will get larger the farther x0 is

from x in either direction. This implies that the precision with which we estimate E(Y |x0) or

predict Y ∗(x0) decreases the farther we get away from x. This makes intuitive sense, namely,

we would expect to have the most “confidence” in our fitted model near the “center” of the

observed data.

It is sometimes desired to estimate E(Y |x0) or predict Y ∗(x0) based on the fit of the model for

values of x0 outside the range of x values used in the experiment/study. This is called extrapolation

and can be very dangerous. In order for our inferences to be valid, we must believe that the straight

line relationship holds for x values outside the range where we have observed data. In some situations,
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this may be reasonable. In others, we may have no theoretical basis for making such a claim without

data to support it.

Example 6.2.5. (Continued Example 6.2.1). In our sewage sludge example, suppose that we are

interested in estimating E(Y |x0) and predicting a new Y ∗(x0) when the filtration rate is x0 = 150

kg-DS/m/hr.

• E(Y |x0) denotes the mean moisture percentage for compressed pellets when the machine fil-

tration rate is x0 = 150 kg-DS/m/hr. In other words, if we were to repeat the experiment

over and over again, each time using a filtration rate of x0 = 150 kg-DS/m/hr, then E(Y |x0)

denotes the mean value of Y (moisture percentage) that would be observed.

• Y ∗(x0) denotes a possible value of Y for a single run of the machine when the filtration rate is

set at x0 = 150 kg-DS/m/hr.

• R automates the calculation of confidence and prediction intervals, as seen below.

> predict(fit,data.frame(filtration.rate=150),level=0.95,interval="confidence")

fit lwr upr

79.11361 78.78765 79.43958

> predict(fit,data.frame(filtration.rate=150),level=0.95,interval="prediction")

fit lwr upr

79.11361 77.6783 80.54893

• Note that the point estimate (point prediction) is easily calculated:

Ŷ (x0 = 150) = 72.959 + 0.041(150) ≈ 79.11361.

• A 95 percent confidence interval for E(Y |x0 = 150) is (78.79, 79.44). When the filtration

rate is x0 = 150 kg-DS/m/hr, we are 95 percent confident that the mean moisture percentage

is between 78.79 and 79.44 percent.

• A 95 percent prediction interval for Y ∗(x0 = 150) is (77.68, 80.55). When the filtration rate

is x0 = 150 kg-DS/m/hr, we are 95 percent confident that the moisture percentage for a single

run of the experiment will be between 77.68 and 80.55 percent.
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Figure 6.2.3: Scatterplot of pellet moisture Y as a function of machine filtration rate x, including
the least squares regression line and ninety-five percent confidence/prediction bands.
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6.3 Multiple linear regression

6.3.1 Introduction

PREVIEW : We have already considered the simple linear regression model

Yi = β0 + β1xi + εi,

for i = 1, 2, ..., n, where εi ∼ N(0, σ2). We now extend this basic model to include multiple inde-

pendent variables x1, x2, ..., xk. This is much more realistic because, in practice, often Y depends on

many different factors (i.e., not just one). Specifically, we consider models of the form

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi,

for i = 1, 2, ..., n. We call this a multiple linear regression model.

• There are now p = k + 1 regression parameters β0, β1, ..., βk. These are unknown and are to

be estimated with the observed data.

• Schematically, we can envision the observed data as follows:

Individual Y x1 x2 · · · xk

1 Y1 x11 x12 · · · x1k

2 Y2 x21 x22 · · · x2k

...
...

...
...

. . .
...

n Yn xn1 xn2 · · · xnk

• Each of the n individuals contributes a response Y and a value of each of the independent

variables x1, x2, ..., xk.

• We continue to assume that εi ∼ N(0, σ2).

• We also assume that the independent variables x1, x2, ..., xk are fixed and measured without

error.

PREVIEW : To fit the multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi,

we again use the method of least squares. Simple computing formulae for the least squares esti-

mators are no longer available (as they were in simple linear regression). This is hardly a big deal

because we will use computing to automate all analyses. For instructional purposes, it is advanta-

geous to express multiple linear regression models in terms of matrices and vectors. This streamlines

notation and makes the presentation easier.
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6.3.2 Least square estimator

The notion of least squares is the same as it was in the simple linear regression model. To fit a

multiple linear regression model, we want to find the values of β0, β1, ..., βk that minimize

Q(β0, β1, ..., βk) =
n∑
i=1

[Yi − (β0 + β1xi1 + β2xi2 + · · ·+ βkxik)]
2.

This could be done by solving a system of linear equations,

∂Q(β0, β1, ..., βk)

∂βj
= 0, for j = 0, . . . , k.

And the R package can help you find the solution. See the following example.

Example 6.3.1. The taste of matured cheese is related to the concentration of several chemicals

in the final product. In a study from the LaTrobe Valley of Victoria, Australia, samples of cheddar

cheese were analyzed for their chemical composition and were subjected to taste tests. For each

specimen, the taste Y was obtained by combining the scores from several tasters. Data were collected

on the following variables:

Y = taste score (TASTE)

x1 = concentration of acetic acid (ACETIC)

x2 = concentration of hydrogen sulfide (H2S)

x3 = concentration of lactic acid (LACTIC).

Variables ACETIC and H2S were both measured on the log scale. The variable LACTIC has not

been transformed. Table 6.5 contains concentrations of the various chemicals in n = 30 specimens

of cheddar cheese and the observed taste score.

Specimen TASTE ACETIC H2S LACTIC Specimen TASTE ACETIC H2S LACTIC

1 12.3 4.543 3.135 0.86 16 40.9 6.365 9.588 1.74
2 20.9 5.159 5.043 1.53 17 15.9 4.787 3.912 1.16
3 39.0 5.366 5.438 1.57 18 6.4 5.412 4.700 1.49
4 47.9 5.759 7.496 1.81 19 18.0 5.247 6.174 1.63
5 5.6 4.663 3.807 0.99 20 38.9 5.438 9.064 1.99
6 25.9 5.697 7.601 1.09 21 14.0 4.564 4.949 1.15
7 37.3 5.892 8.726 1.29 22 15.2 5.298 5.220 1.33
8 21.9 6.078 7.966 1.78 23 32.0 5.455 9.242 1.44
9 18.1 4.898 3.850 1.29 24 56.7 5.855 10.20 2.01
10 21.0 5.242 4.174 1.58 25 16.8 5.366 3.664 1.31
11 34.9 5.740 6.142 1.68 26 11.6 6.043 3.219 1.46
12 57.2 6.446 7.908 1.90 27 26.5 6.458 6.962 1.72
13 0.7 4.477 2.996 1.06 28 0.7 5.328 3.912 1.25
14 25.9 5.236 4.942 1.30 29 13.4 5.802 6.685 1.08
15 54.9 6.151 6.752 1.52 30 5.5 6.176 4.787 1.25

Table 6.5: Cheese data. ACETIC, H2S, and LACTIC are independent variables. The response variable
is TASTE.
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MODEL: Researchers postulate that each of the three chemical composition variables x1, x2, and

x3 is important in describing the taste and consider the multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi,

for i = 1, 2, ..., 30. We now use R to fit this model using the method of least squares:

> fit = lm(taste~acetic+h2s+lactic)

> summary(fit)

Call:

lm(formula = taste ~ acetic + h2s + lactic)

Residuals:

Min 1Q Median 3Q Max

-17.390 -6.612 -1.009 4.908 25.449

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.8768 19.7354 -1.463 0.15540

acetic 0.3277 4.4598 0.073 0.94198

h2s 3.9118 1.2484 3.133 0.00425 **

lactic 19.6705 8.6291 2.280 0.03108 *

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 10.13 on 26 degrees of freedom

Multiple R-squared: 0.6518,Adjusted R-squared: 0.6116

F-statistic: 16.22 on 3 and 26 DF, p-value: 3.81e-06

This output gives the values of the least squares estimates
β̂0

β̂1

β̂2

β̂3

 =


−28.877

0.328

3.912

19.670

 .

Therefore, the fitted least squares regression model is

Ŷ = −28.877 + 0.328x1 + 3.912x2 + 19.670x3,

or, in other words,

T̂ASTE = −28.877 + 0.328 ACETIC + 3.912 H2S + 19.670 LACTIC.
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6.3.3 Estimating the error variance

Terminology: Define the residual sum of squares by

SSres =
n∑
i=1

(Yi − Ŷi)2 =
n∑
i=1

e2
i .

In the multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi,

where εi ∼ N(0, σ2),

MSres =
SSres
n− p

is an unbiased estimator of σ2, that is,

E(MSres) = σ2.

The quantity

σ̂ =
√
MSres =

√
SSres
n− p

estimates σ and is called the residual standard error.

Example 6.3.2. For the cheese data in Example 6.3.1, we use R to calculate MSres:

> fit = lm(taste~acetic+h2s+lactic)

> summary(fit)

Call:

lm(formula = taste ~ acetic + h2s + lactic)

Residuals:

Min 1Q Median 3Q Max

-17.390 -6.612 -1.009 4.908 25.449

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.8768 19.7354 -1.463 0.15540

acetic 0.3277 4.4598 0.073 0.94198

h2s 3.9118 1.2484 3.133 0.00425 **

lactic 19.6705 8.6291 2.280 0.03108 *

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 10.13 on 26 degrees of freedom

Multiple R-squared: 0.6518,Adjusted R-squared: 0.6116

F-statistic: 16.22 on 3 and 26 DF, p-value: 3.81e-06
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Table 6.6: Analysis of variance table for linear regression.

Source df SS MS F

Regression k SSreg MSreg =
SSreg
k F =

MSreg
MSres

Residual n− p SSres MSres = SSres
n−p

Total n− 1 SStotal

6.3.4 Analysis of variance for linear regression

IDENTITY : Algebraically, it can be shown that

n∑
i=1

(Yi − Y )2

︸ ︷︷ ︸
SStotal

=

n∑
i=1

(Ŷi − Y )2

︸ ︷︷ ︸
SSreg

+

n∑
i=1

(Yi − Ŷi)2

︸ ︷︷ ︸
SSres

.

• SStotal is the total sum of squares. SStotal is the numerator of the sample variance of

Y1, Y2, ..., Yn. It measures the total variation in the response data.

• SSreg is the regression sum of squares. SSreg measures the variation in the response data

explained by the linear regression model.

• SSres is the residual sum of squares. SSres measures the variation in the response data not

explained by the linear regression model.

ANOVA TABLE : We can combine all of this information to produce an analysis of variance

(ANOVA) table. Such tables are standard in regression analysis.

• The degrees of freedom (df) add down.

– SStotal can be viewed as a statistic that has “lost” a degree of freedom for having to

estimate the overall mean of Y with the sample mean Y . Recall that n− 1 is our divisor

in the sample variance S2.

– There are k degrees of freedom associated with SSreg because there are k independent

variables.

– The degrees of freedom for SSres can be thought of as the divisor needed to create an

unbiased estimator of σ2. Recall that

MSres =
SSres
n− p

=
SSres

n− k − 1

is an unbiased estimator of σ2

• The sum of squares (SS) also add down. This follows from the algebraic identity noted

earlier.
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• Mean squares (MS) are the sums of squares divided by their degrees of freedom.

• The F statistic is formed by taking the ratio of MSreg and MSres. More on this in a moment.

Coefficient of determination: Since

SStotal = SSreg + SSres,

the proportion of the total variation in the data explained by the linear regression model is

R2 =
SSreg
SStotal

= 1− SSres
SStotal

..

This statistic is called the coefficient of determination. Clearly,

0 ≤ R2 ≤ 1.

The larger the R2, the better the regression model explains the variability in the data.

IMPORTANT : It is critical to understand what R2 does and does not measure. Its value is

computed under the assumption that the multiple linear regression model is correct and assesses

how much of the variation in the data may be attributed to that relationship rather than to inherent

variation.

• If R2 is small, it may be that there is a lot of random inherent variation in the data, so that,

although the multiple linear regression model is reasonable, it can explain only so much of the

observed overall variation.

• Alternatively, R2 may be close to 1; e.g., in a simple linear regression model fit, but this may

not be the best model. In fact, R2 could be very “high,” but ultimately not relevant because

it assumes the simple linear regression model is correct. In reality, a better model may exist

(e.g., a quadratic model, etc.).

• One draw back of R2 is that, it can never decrease when a new x is added. Thus, it can be

difficult to judge whether the increase is telling us anything useful about the new x. Instead,

many regression users prefer to use an adjusted R2 statistic:

R2
adj = 1− SSres/(n− p)

SStotal/(n− 1)
.
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F statistics: The F statistic in the ANOVA table is used to test

H0 : β1 = β2 = · · · = βk = 0

versus

Ha : at least one of the βj is nonzero.

In other words, F tests whether or not at least one of the independent variables x1, x2, ..., xk is

important in describing the response Y . If H0 is rejected, we do not know which one or how many

of the βj ’s are nonzero; only that at least one is.

Sampling distribution: When H0 : β1 = β2 = · · · = βk = 0 is true,

F =
MSreg
MSres

∼ F (k, n− p).

Therefore, we can gauge the evidence against H0 by comparing F to this distribution. Values of F

far out in the (right) upper tail are evidence against H0. R automatically produces the value of F

and produces the corresponding p-value. Recall that small p-values are evidence against H0 (the

smaller the p-value, the more evidence).

Example 6.3.3. Example 6.3.1 (continued). For the cheese data, we fit the multiple linear regression

model

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi,

for i = 1, 2, ..., 30. The ANOVA table, obtained using R, is shown below.

> fit = lm(taste~acetic+h2s+lactic)

> summary(fit)

Call:

lm(formula = taste ~ acetic + h2s + lactic)

Residuals:

Min 1Q Median 3Q Max

-17.390 -6.612 -1.009 4.908 25.449

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.8768 19.7354 -1.463 0.15540

acetic 0.3277 4.4598 0.073 0.94198

h2s 3.9118 1.2484 3.133 0.00425 **

lactic 19.6705 8.6291 2.280 0.03108 *

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 10.13 on 26 degrees of freedom

Multiple R-squared: 0.6518,Adjusted R-squared: 0.6116

F-statistic: 16.22 on 3 and 26 DF, p-value: 3.81e-06
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The F statistic is used to test

H0 : β1 = β2 = β3 = 0

versus

Ha : at least one of the βj is nonzero.

Based on the F statistic (F = 16.22), and the corresponding probability value (p-value < 0.0001), we

have strong evidence to reject H0. Interpretation: We conclude that at least one of the independent

variables (ACETIC, H2S, LACTIC) is important in describing taste.

The coefficient of determination R2 is 0.6518; i.e., about 65.2 percent of the variability in the

taste data is explained by the linear regression model that includes ACETIC, H2S, and LACTIC. The

remaining 34.8 percent of the variability in the taste data is explained by other sources.

6.3.5 Inference for individual regression parameters

IMPORTANCE : Consider our multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi,

for i = 1, 2, ..., n, where εi ∼ N(0, σ2). Confidence intervals and hypothesis tests for βj can help us

assess the importance of using the independent variable xj in a model with the other independent

variables. That is, inference regarding βj is always conditional on the other variables being included

in the model.

A 100(1− α) percent confidence interval for βj , for j = 0, 1, 2, ..., k,

[β̂j ± tn−p,α/2ŝe(β̂j)]

and hypothesis tests for

H0 : βj = 0

versus

Ha : βj 6= 0,

can be performed by examining the p-value output provided in R.

• If H0 : βj = 0 is not rejected, then xj is not important in describing Y in the presence of the

other independent variables.

• If H0 : βj = 0 is rejected, this means that xj is important in describing Y even after including

the effects of the other independent variables.
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Hypothesis test for β1: If our interest was to test, where j = 0, 1, . . . , k

H0 : βj = 0

versus one of the following

Ha : βj 6= 0

Ha : βj > 0

Ha : βj < 0

where β10 is a fixed value (often, β10 = 0), we would focus our attention on

t0 =
β̂j

ŝe(β̂j)
.

Critical value approach

Alternative hypothesis Rejection Criterion

Ha : βj 6= 0 t0 > tn−p,α/2 or t0 < −tn−p,α/2
Ha : βj > 0 t0 > tn−p,α

Ha : βj < 0 t0 < −tn−p,α

P-value approach

Alternative hypothesis Rejection Criterion

Ha : βj 6= 0 P-value < α

Ha : βj > 0 P-value < α

Ha : βj < 0 P-value < α

Confidence interval approach

Alternative hypothesis Reject Criterion

Ha : βj 6= 0 0 /∈
[
β̂j ± tn−p,α/2ŝe(β̂j)

]
Ha : βj > 0 0 < β̂j − tn−p,αŝe(β̂j)

Ha : βj < 0 0 > β̂j + tn−p,αŝe(β̂j)
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Example 6.3.4. For the cheese data, Example 6.3.1 continued,

> fit = lm(taste~acetic+h2s+lactic)

> summary(fit)

Call:

lm(formula = taste ~ acetic + h2s + lactic)

Residuals:

Min 1Q Median 3Q Max

-17.390 -6.612 -1.009 4.908 25.449

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.8768 19.7354 -1.463 0.15540

acetic 0.3277 4.4598 0.073 0.94198

h2s 3.9118 1.2484 3.133 0.00425 **

lactic 19.6705 8.6291 2.280 0.03108 *

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 10.13 on 26 degrees of freedom

Multiple R-squared: 0.6518,Adjusted R-squared: 0.6116

F-statistic: 16.22 on 3 and 26 DF, p-value: 3.81e-06

OUTPUT : The Estimate output gives the values of the least squares estimates:

β̂0 ≈ −28.877, β̂1 ≈ 0.328, β̂2 ≈ 3.912, β̂3 ≈ 19.670.

The Std.Error output gives

ŝe(β̂0) = 19.735

ŝe(β̂0) = 4.460

ŝe(β̂0) = 1.248

ŝe(β̂0) = 8.629

To test

H0 : βj = 0 versus H0 : βj 6= 0,

for j = 0, 1, 2, 3, via the confidence interval approach, we have 95% confidence intervals for the
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regression parameters β0, β1, β2, and β3, respectively, are, (since tn−p,α/2 = t26,.025 = 2.056),

β̂0 ± t26,0.025ŝe(β̂0) =⇒ −28.877± 2.056(19.735) =⇒ (−69.45, 11.70)

β̂1 ± t26,0.025ŝe(β̂1) =⇒ 0.328± 2.056(4.460) =⇒ (−8.84, 9.50)

β̂2 ± t26,0.025ŝe(β̂2) =⇒ 3.912± 2.056(1.248) =⇒ (1.35, 6.48)

β̂3 ± t26,0.025ŝe(β̂3) =⇒ 19.670± 2.056(8.629) =⇒ (1.93, 37.41).

The conclusions reached from interpreting these intervals are the same as those reached using the

hypothesis test p-values. Note that the β2 and β3 intervals do not include zero. Those for β0 and β1

do.

The t value output gives the t statistics

t0 = −1.463

t0 = 0.074

t0 = 3.133

t0 = 2.279

To test H0 : βi = 0 versus H0 : βi 6= 0, for i = 0, 1, 2, 3, critical value approach provides the rejection

region as

t > tn−p,α/2 = t26,.025 = 2.056 or t < −tn−p,α/2 = t26,.025 = −2.056

These tests can also be done use the P-values in Pr(>|t|) output. At the α = 0.05 level,

• we do not reject H0 : β0 = 0 (p-value = 0.155). Interpretation: In the model which includes

all three independent variables, the intercept term β0 is not statistically different from zero.

• we do not reject H0 : β1 = 0 (p-value = 0.942). Interpretation: ACETIC does not significantly

add to a model that includes H2S and LACTIC.

• we reject H0 : β2 = 0 (p-value = 0.004). Interpretation: H2S does significantly add to a

model that includes ACETIC and LACTIC.

• we reject H0 : β3 = 0 (p-value = 0.031). Interpretation: LACTIC does significantly add to a

model that includes ACETIC and H2S.
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6.3.6 Confidence and prediction intervals for a given x = x0

GOALS : We would like to create 100(1−α) percent intervals for the mean E(Y |x0) and for the new

value Y ∗(x0). As in the simple linear regression case, the former is called a confidence interval

(since it is for a mean response) and the latter is called a prediction interval (since it is for a new

random variable).

CHEESE DATA: Suppose that we are interested estimating E(Y |x0) and predicting a new Y ∗(x0)

when ACETIC = 5.5, H2S = 6.0, and LACTIC = 1.4, so that x0 = (5.5, 6.0, 1.4). We use R to compute

the following:

> predict(fit,data.frame(acetic=5.5,h2s=6.0,lactic=1.4),level=0.95,interval="confidence")

fit lwr upr

23.93552 20.04506 27.82597

> predict(fit,data.frame(acetic=5.5,h2s=6.0,lactic=1.4),level=0.95,interval="prediction")

fit lwr upr

23.93552 2.751379 45.11966

• Note that the point estimate/prediction is

Ŷ (x0) = β̂0 + β̂1x10 + β̂2x20 + β̂3x30

= −28.877 + 0.328(5.5) + 3.912(6.0) + 19.670(1.4) ≈ 23.936.

• A 95 percent confidence interval for E(Y |x0) is (20.05, 27.83). When ACETIC = 5.5, H2S =

6.0, and LACTIC = 1.4, we are 95 percent confident that the mean taste rating is between 20.05

and 27.83.

• A 95 percent prediction interval for Y ∗(x0), when x = x0, is (2.75, 45.12). When ACETIC =

5.5, H2S = 6.0, and LACTIC = 1.4, we are 95 percent confident that the taste rating for a new

cheese specimen will be between 2.75 and 45.12.
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6.4 Model diagnostics (residual analysis)

IMPORTANCE : We now discuss certain diagnostic techniques for linear regression. The term “di-

agnostics” refers to the process of “checking the model assumptions.” This is an important exercise

because if the model assumptions are violated, then our analysis (and all subsequent interpretations)

could be compromised.

MODEL ASSUMPTIONS : We first recall the model assumptions on the error terms in the linear

regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi,

for i = 1, 2, ..., n. Specifically, we have made the following assumptions:

• E(εi) = 0, for i = 1, 2, ..., n

• var(εi) = σ2, for i = 1, 2, ..., n, that is, the variance is constant

• the random variables εi are independent

• the random variables εi are normally distributed.

RESIDUALS : In checking our model assumptions, we first have to deal with the obvious problem;

namely, the error terms εi in the model are never observed. However, from the fit of the model, we

can calculate the residuals

ei = Yi − Ŷi,

where the ith fitted value

Ŷi = β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂kxik.

We can think of the residuals e1, e2, ..., en as “proxies” for the error terms ε1, ε2, ..., εn, and, therefore,

we can use the residuals to check our model assumptions instead.
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Figure 6.4.4: Cheese data. Normal qq-plot of the least squares residuals.

QQ PLOT FOR NORMALITY : To check the normality assumption (for the errors) in linear

regression, it is common to display the qq-plot of the residuals.

• Recall that if the plotted points follow a straight line (approximately), this supports the nor-

mality assumption.

• Substantial deviation from linearity is not consistent with the normality assumption.

• The plot in Figure 6.4.4 supports the normality assumption for the errors in the multiple linear

regression model for the cheese data.
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RESIDUAL PLOT : By the phrase “residual plot,” I mean the plot of the residuals (on the

vertical axis) versus the predicted values (on the horizontal axis). This plot is simply the scatterplot

of the residuals and the predicted values.

• Advanced linear model arguments show that if the model does a good job at describing the

data, then the residuals and fitted values are independent.

• This means that a plot of the residuals versus the fitted values should reveal no noticeable

patterns; that is, the plot should appear to be random in nature (e.g., “a random scatter of

points”).

• On the other hand, if there are definite (non-random) patterns in the residual plot, this sug-

gests that the model is inadequate in some way or it could point to a violation in the model

assumptions.

• The plot in Figure 6.4.5 does not suggest any obvious model inadequacies! It looks completely

random in appearance.
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Figure 6.4.5: Cheese data. Residual plot for the multiple linear regression model fit. A horizontal
line at zero has been added.

COMMON VIOLATIONS : Although there are many ways to violate the statistical assumptions

associated with linear regression, the most common violations are

• non-constant variance (heteroscedasticity)
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• misspecifying the true regression function

• correlated observations over time.

500 1000 1500 2000 2500 3000 3500

0
5

1
0

1
5

Monthly Usage (kWh)

P
e

a
k
 D

e
m

a
n

d
 (

k
W

h
)

0 2 4 6 8 10 12

−
4

−
2

0
2

Fitted values

R
e

s
id

u
a

ls

Figure 6.4.6: Electricity data. Left: Scatterplot of peak demand (Y , measured in kWh) versus
monthly usage (x, measured in kWh) with least squares simple linear regression line superimposed.
Right: Residual plot for the simple linear regression model fit.

Example 6.3. An electric company is interested in modeling peak hour electricity demand (Y )

as a function of total monthly energy usage (x). This is important for planning purposes because

the generating system must be large enough to meet the maximum demand imposed by customers.

Data for n = 53 residential customers for a given month are shown in Figure 6.4.6.

Problem: There is a clear problem with non-constant variance here. Note how the residual plot

“fans out” like the bell of a trumpet. This violation may have been missed by looking at the

scatterplot alone, but the residual plot highlights it.

Remedy: A common course of action to handle non-constant variance is to apply a transformation

to the response variable Y . Common transformations are logarithmic (lnY ), square-root (
√
Y ), and

inverse (1/Y ).

ELECTRICITY DATA: A square root transformation is commonly applied to address non-

constant variance. Consider the simple linear regression model

Wi = β0 + β1xi + εi,

for i = 1, 2, ..., 53, where Wi =
√
Yi. It is straightforward to fit this transformed model in R as before.

We simply regress W on x (instead of regressing Y on x).
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Figure 6.4.7: Electricity data. Left: Scatterplot of the square root of peak demand (
√
Y ) versus

monthly usage (x, measured in kWh) with the least squares simple linear regression line superim-
posed. Right: Residual plot for the simple linear regression model fit with transformed response.

> fit.2 = lm(sqrt(peak.demand) ~ monthly.usage)

> fit.2

Coefficients:

(Intercept) monthly.usage

0.580831 0.000953

ANALYSIS : Figure 6.4.7 above shows the scatterplot (left) and the residual plot (right) from

fitting the transformed model. The “fanning out” shape that we saw previously (in the untransformed

model) is now largely absent. The fitted transformed model is

Ŵ = 0.580831 + 0.000953x,

or, in other words,

√
Peak demand = 0.580831 + 0.000953 Monthly usage.

Further analyses can be carried out with the transformed model; e.g., testing whether peak demand

(on the square root scale) is linearly related to monthly usage, etc.
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Figure 6.4.8: Windmill data. Left: Scatterplot of DC output Y versus wind velocity (x, measured
in mph) with least squares simple linear regression line superimposed. Right: Residual plot for the
simple linear regression model fit.

Example 6.4. A research engineer is investigating the use of a windmill to generate electricity.

He has collected data on the direct current (DC) output Y from his windmill and the corresponding

wind velocity (x, measured in mph). Data for n = 25 observation pairs are shown in Figure 6.4.8.

Problem: There is a clear quadratic relationship between DC output and wind velocity, so a simple

linear regression model fit (as shown above) is inappropriate. The residual plot shows a pronounced

quadratic pattern; this pattern is not accounted for in fitting a straight line model.

Remedy: Fit a multiple linear regression model with two independent variables: wind velocity x

and its square x2, that is, consider the quadratic regression model

Yi = β0 + β1xi + β2x
2
i + εi,

for i = 1, 2, ..., 25. It is straightforward to fit a quadratic model in R. We simply regress Y on x and

x2.

> wind.velocity.sq = wind.velocity^2

> fit.2 = lm(DC.output ~ wind.velocity + wind.velocity.sq)

> fit.2

Coefficients:

(Intercept) wind.velocity wind.velocity.sq

-1.15590 0.72294 -0.03812

166



4 6 8 10

0
.5

1
.0

1
.5

2
.0

Wind Velocity (mph)

D
C

 O
u

tp
u

t

0.5 1.0 1.5 2.0

−
0

.2
−

0
.1

0
.0

0
.1

0
.2

Fitted values

R
e

s
id

u
a

ls

Figure 6.4.9: Windmill data. Scatterplot of DC output Y versus wind velocity (x, measured in mph)
with least squares quadratic regression curve superimposed. Right: Residual plot for the quadratic
regression model fit.

The fitted quadratic regression model is

Ŷ = −1.15590 + 0.72294x− 0.03812x2

or, in other words,

̂DC output = −1.15590 + 0.72294 Wind.velocity− 0.03812 (Wind.velocity)2.

Note that the residual plot from the quadratic model fit, shown above, now looks quite good. The

quadratic trend has disappeared (because the model now incorporates it).
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Example 6.5. The data in Figure 6.4.10 (left) are temperature readings (in deg C) on land-air

average temperature anomalies, collected once per year from 1900-1997. To emphasize that the data

are collected over time, I have used straight lines to connect the observations; this is called a time

series plot.

• Unfortunately, it is all too common that people fit linear regression models to time series data

and then blindly use them for prediction purposes.

• It takes neither a meteorologist nor an engineering degree to know that temperature obser-

vations collected over time are probably correlated. Not surprisingly, residuals from a simple

linear regression display clear correlation over time.

• Regression techniques (as we have learned in this chapter) are generally not appropriate when

analyzing time series data for this reason. More advanced modeling techniques are needed.
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Figure 6.4.10: Global temperature data. Left: Time series plot of the temperature Y measured one
time per year. The independent variable x is year, measured as 1900, 1901, ..., 1997. A simple linear
regression model fit has been superimposed. Right: Residual plot from the simple linear regression
model fit.
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