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Group testing, as a cost-effective strategy, has been widely used to perform
large-scale screening for rare infections. Recently, the use of multiplex assays has
transformed the goal of group testing from detecting a single disease to diagnos-
ing multiple infections simultaneously. Existing research on multiple-infection
group testing data either exclude individual covariate information or ignore pos-
sible retests on suspicious individuals. To incorporate both, we propose a new
regression model. This new model allows us to perform a regression analysis
for each infection using multiple-infection group testing data. Furthermore, we
introduce an efficient variable selection method to reveal truly relevant risk fac-
tors for each disease. Our methodology also allows for the estimation of the
assay sensitivity and specificity when they are unknown. We examine the finite
sample performance of our method through extensive simulation studies and
apply it to a chlamydia and gonorrhea screening data set to illustrate its practical
usefulness.
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1 INTRODUCTION

1.1 Motivation
This article is motivated by the annual Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) screening practice
conducted by the State Hygienic Laboratory (SHL) in Iowa. The CT and NG are two of the most common notifiable
sexually transmitted diseases (STDs) in the United States. Over two million cases were reported to the Centers for Disease
Control and Prevention (CDC) in 2016.1 Both infections are commonly asymptomatic in women. If left untreated, they
could cause pelvic inflammatory disease and further lead to tubal infertility, ectopic pregnancy, or chronic pelvic pain.2
In addition, both diseases could facilitate the transmission of human immunodeficiency virus and human papillomavirus
infection.3 Concerned by these severe sequelae, CDC continually supports nationwide CT/NG screening and recommends
annual CT/NG screening for all sexually active women under 25 years old.4

In this nationwide screening practice, specimens (swab or urine) are collected across each state and shipped to major
state laboratories to be tested. Due to different budgets, laboratories conduct the screening differently. For example, the
Nebraska Public Health Laboratory (NPHL) uses a traditional individual testing protocol that tests individual specimens
one by one. The SHL tests male specimens and female urine specimens individually, but it tests female swab specimens
according to a two-stage pooling protocol:

The SHL pooling protocol

• Individual swab specimens are randomly assigned to nonoverlapping groups of size four. A pool is constructed by
mixing individual specimens in the same group.
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FIGURE 1 A possible set of the State Hygienic Laboratory (SHL)
pooled testing outcomes from a group of four individuals: The
rectangle with rounded corners represents the pooled specimen that
is constructed by mixing the four individual specimens (in circles)
together. The pool tested negative for Chlamydia trachomatis (CT)
(ie, CT = 0) but positive for Neisseria gonorrhoeae (NG) (ie, NG = 1).
As per the SHL pooling protocol, the positivity of NG triggered the
second stage of screening for both infections. Due to testing errors,
we see a discrepancy between the two stages, ie, the fourth
individual retested positive for CT but the pool tested negative for CT

• Stage 1. Each pool is tested for CT and NG simultaneously using a multiplex assay. If a pool tests negative for both
infections, all the involved individuals are diagnosed as negative for each infection with no additional tests; otherwise,
the protocol proceeds to the next stage.

• Stage 2. Swabs of individuals in pools that test positive for either infection are retested separately using the same
multiplex assay for final diagnosis.

The most practical reason of using pooling is cost reduction. When a pool tests negative for both infections, four individ-
uals are diagnosed at the expense of one assay. Since switching from individual testing to pooling in 1999, Iowa has saved
over $2.2 million in the CT/NG screening.5

As per the screening guidelines, many risk factors are collected as well, such as age, number of partners, any symp-
toms of the infections, etc. A motivating question is how to incorporate this covariate information so that one can identify
truly relevant risk factors for each infection and understand their effects. Challenges to this question arise from the use
of the multiplex Aptima Combo 2 Assay (Gen-Prob Inc, San Diego, CA), an imperfect discriminatory test that produces
diagnoses for both diseases simultaneously. Due to the imperfectness of the assay, it is possible to observe some discrep-
ancies between testing outcomes of the two stages, as shown in Figure 1. Whenever a discrepancy occurs, the SHL ignores
pooled-level results from Stage 1 and makes the diagnosis solely based on individual testing from Stage 2. However, when
the objective is probing the impact of risk factors rather than case identification, disregarding testing outcomes from any
stage could impair the estimation. It is important to seamlessly incorporate outcomes from both stages. Towards this goal,
we need to account for how likely the retests were triggered by either infection.

1.2 Literature review
Pooled testing (also known as group testing) was initially proposed to screen for syphilis among War World II American
army recruits.6 Since this seminal work, pooling techniques have been successfully implemented to screen for many other
infectious diseases, including HIV, hepatitis B virus (HBV), hepatitis C virus (HCV),7 influenza,8 and herpes.9 Besides
disease screening, many other areas, including genetics,10 veterinary science,11 medical entomology,12 blood safety,13 and
drug discovery,14 have also used the method of pooling. Statistical research in group testing primarily focused on improv-
ing the diagnostic accuracy and cost-saving ability of a pooling protocol15 or estimating individual-level characteristics
from pooled testing data. This article falls into the latter category. When group testing data only involves a single infection,
the research focusing on estimation started with estimating a disease prevalence.16,17 This research avenue was expanded
to incorporate individual covariate information through the use of parametric regression models, such as generalized
linear models,18,19 mixed models,20 and Bayesian regression models.21 Semiparametric and nonparametric regression
methods have also been developed.22,23 However, all these works are limited to one infection.

The use of multiplex assays makes pooled testing data with multiple infections widely available. For example, in addi-
tion to CT/NG, HIV/Syphilis, HIV/HCV, or HIV/HBV/HCV can be detected simultaneously.24 In statistical literature,
the research focusing on estimation with multiple-infection group testing data is scarce. A few works have studied the
estimation of disease prevalence.25-28 Regression analysis for this type of data remains mostly untapped. To the best of
our knowledge, the only work is an approach based on generalized estimating equations.29 However, it did not consider
retesting outcomes arising from the second stage of screening and thus does not apply to the SHL screening practice.
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When using an imperfect assay, the values of assay sensitivity and specificity are crucial to estimation in pooled testing.
Most of the aforementioned literature assumed that there were some preliminary studies to provide those misclassification
parameters. However, this assumption could be impractical because the preliminary study might have used unrepresen-
tative samples.17 If inaccurate values of assay sensitivity and specificity were used for estimation, it could compromise
inference. In this article, we keep the testing error rates as unknown and estimate them from the data along with the
regression.

Existing literature has not considered the combination of incorporating retesting results into regression and estimat-
ing misclassification parameters in the context of multiple-infection group testing. Only one Bayesian work has provided
inference for disease prevalence and estimates of assay sensitivity and specificity without consideration of individual
covariates.27 In this article, we propose a copula-based multivariate binary regression model to incorporate the covari-
ates. We introduce a generalized expectation-maximization (GEM) algorithm to facilitate the numerical computation of
the maximum likelihood estimates (MLEs) of the regression coefficients and misclassification parameters. When com-
pared with the traditional expectation-maximization algorithm, the GEM only requires the maximization step to search
for an increase in the objective function rather than achieving the maximum.30,31 This feature greatly accelerates the
computation of the MLE.

In addition, we provide a variable selection technique that can identify truly relevant risk factors for each infection. A
recent work has introduced a regularized regression technique for group testing.32 However, it is for a single infection.
Our work is designed to allow for multiple infections. We believe a package of regression, estimation of misclassification
parameters, and variable selection can provide a useful toolbox for the epidemiology study of CT and NG based on group
testing data.

The rest of the article is organized as follows. In Section 2, we propose a new copula-based regression model for
multiple-infection group testing data. In Section 3, we introduce the GEM algorithm that accelerates the computation
of the MLE. Section 4 presents a variable selection method that can identify important risk factors for each infection. In
Section 5.1, we use simulation to illustrate that, with the use of a fewer number of tests, the SHL pooling protocol can
lead to more efficient regression estimates, better prediction of infection probabilities, and more accurate variable selec-
tion than traditional individual testing. These advantages are further demonstrated by analyzing a CT/NG screening data
set in Section 5.2. Section 6 presents a discussion of this work. All technical details and additional numerical results are
relegated to the supplementary materials.

2 MODEL

Suppose N individuals are to be tested. We randomly assign each individual to one of J groups, each of size cj, ie, N =∑J
𝑗=1 c𝑗 . For generality, we allow group size cj to vary across groups. Motivated by the CT/NG screening practice, we mainly

consider two infections. Section 6 discusses an extension of more than two diseases. The true infection statuses of the ith
individual in the jth group are denoted by a binary vector Ỹ i𝑗 = (Ỹi𝑗1, Ỹi𝑗2)T, where Ỹi𝑗k = 1 if the individual is positive for
the kth infection and Ỹi𝑗k = 0 if otherwise, for i = 1, … , cj, j = 1, … , J, and k = 1, 2. Denote the covariates (risk factors
and an intercept term) of the ith individual in the jth group by a (p + 1)-dimensional vector xi j = (1, xi j1, … , xijp)T. We
assume that Ỹ i𝑗|xi𝑗 is independent across i j, and Ỹi𝑗k is related to a linear predictor xT

i𝑗𝜷k via

pr
(

Ỹi𝑗k = 1|xi𝑗

)
= gk

(
xT

i𝑗𝜷k

)
, for k = 1, 2, (1)

where 𝜷k = (𝛽k0, 𝛽k1, … , 𝛽kp)T is a vector of ( p + 1) regression coefficients that will be estimated and gk is a user-chosen
known link function (eg, the inverse of the logit or probit link). One could use different links for different infections.
Equation (1) builds marginal probability models of the random vector Ỹ i𝑗|xi𝑗 .

In pooled testing, the true infection statuses are often latent due to pooling and potential misclassification. In each
group, individual specimens are mixed together to form a pool. We denote the true status of the jth pool by Z̃𝑗 = (Z̃𝑗1, Z̃𝑗2)T,
where Z̃𝑗k = max{Ỹi𝑗k ∶ i = 1, … , c𝑗}, ie, Z̃𝑗k = 1 if the pool involves at least one individual who is positive for the kth
infection and Z̃𝑗k = 0 if otherwise. With the use of an imperfect assay, both Ỹ i𝑗 and Z̃𝑗 are latent. Observed data are the
testing outcomes from the imperfect multiplex assay. Pools are tested in Stage 1. We denote the testing outcomes of the
jth pool by Zj = (Zj1,Zj2)T, where Zjk = 1(0) if the pool tests positive (negative) for the kth infection. If Zj = (0, 0)T, then
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Zj is the only observed test response for the jth group of individuals. Otherwise, those individuals are tested separately
in Stage 2. We denote by Yi j = (Yi j1,Yi j2)T the retesting outcome of the ith individual in the jth group, ie, Yijk = 1(0) if
the individual is retested as positive (negative) for the kth infection. Note that Yi j can only be observed if Zj ≠ (0, 0)T. In
summary, observed testing outcomes from the jth group, denoted by  𝑗 , take one of the two forms, either Zj = (0, 0)T or
Zj ∈ {(1, 0)T, (0, 1)T, (1, 1)T} and Y 1𝑗 , … ,Y c𝑗 𝑗 .

The discrepancy between true statuses and testing outcomes is often measured by assay sensitivity and specificity.
Denote by Se : k and Sp : k the assay sensitivity and specificity, respectively, for the kth infection. In practice, an assay used
for large-scale screening is often imperfect. We let Se : k and Sp : k be in (0, 1). Our methodology posits three assumptions
on these misclassification parameters. Assumption 1 is that Se : k and Sp : k do not depend on the group size, eg, Se∶k =
pr(Z𝑗k = 1|Z̃𝑗k = 1) = pr(Yi𝑗k = 1|Ỹi𝑗k = 1) and Sp∶k = pr(Z𝑗k = 0|Z̃𝑗k = 0) = pr(Yi𝑗k = 0|Ỹi𝑗k = 0) hold for all i, j,
and k. Assumption 2 assumes that conditioning on the true statuses of the specimens being tested, testing responses are
independent across each other and across infections. Assumption 3 further assumes that given the true statuses, testing
responses are independent of the covariates, eg, pr(Z𝑗1 = 0,Z𝑗2 = 1,Yi𝑗1 = 1,Yi𝑗2 = 0|Z̃𝑗1 = 0, Z̃𝑗1 = 0, Ỹi𝑗1 = 1, Ỹi𝑗2 =
1, xi𝑗) = pr(Z𝑗1 = 0|Z̃𝑗1 = 0)pr(Z𝑗2 = 1|Z̃𝑗2 = 0)pr(Yi𝑗1 = 1|Ỹi𝑗1 = 1)pr(Yi𝑗2 = 0|Ỹi𝑗2 = 1) = Sp∶1(1 − Sp∶2)Se∶1(1 − Se∶2). All
these assumptions are standard in group testing literature (see most references in Section 1.2). In practice, one may need
to conduct proper assay calibration to ensure the applicability of these assumptions.

Our primary goal is to estimate 𝜷k, Se : k, and Sp : k. Towards this goal, we want to incorporate the retesting outcomes for
two main reasons: (1) Ignoring the retesting outcomes could severely inflate the variance of the estimators of 𝛽k (see the
supplementary materials for a numerical illustration), and (2) including the retesting outcomes gives us repeated mea-
surements (ie, many specimens are tested in pools and also individually), which provide valuable information to estimate
misclassification parameters. To seamlessly incorporate all retesting outcomes, we propose a copula-based multivariate
binary regression model. We assume that there exists a vector of standard uniform random variables, Ui j = (Ui j1,Ui j2)T,
such that the event {Ỹi𝑗k = 1|xi𝑗} is equivalent to {Ui𝑗k ≤ gk(xT

i𝑗𝜷k)}, where Ui j is independent and follows a bivariate
copula.33 Denote the chosen copula by {u1,u2|𝛿}, where u1,u2 ∈ (0, 1) and  is known up to a parameter 𝛿 (which could
be a vector). Then, the marginal regression models in (1) naturally hold, and the coinfection probability is

pr
(

Ỹi𝑗1 = 1, Ỹi𝑗2 = 1|xi𝑗

)
= 

{
g1

(
xT

i𝑗𝜷1

)
, g2

(
xT

i𝑗𝜷2

) |𝛿} . (2)

Combining (1) and (2) together defines our joint probability model of Ỹ i𝑗|xi𝑗 .

3 ESTIMATION

We maximize the likelihood function to obtain our estimators of 𝜷k, Se : k, Sp : k, and 𝛿. For notation simplicity, we write
𝜽1 = (𝜷T

1 , 𝜷
T
2 , 𝛿)T, 𝜽2 = (Se:1, Se:2, Sp:1, Sp:2)T, and 𝜽 = (𝜽T

1 ,𝜽
T
2 )T. Furthermore, we denote by pi𝑗𝑦1𝑦2 (𝜽1) the cell probability

pr(Ỹi𝑗1 = 𝑦1, Ỹi𝑗2 = 𝑦2|xi𝑗) defined by (1) and (2) under 𝜽1 for y1, y2 ∈ {0, 1}, i = 1, … , cj and j = 1, … , J. Then,
pi𝑗11(𝜽1) = {g1(xT

i𝑗𝜷1), g2(xT
i𝑗𝜷2)|𝛿}, pi𝑗10(𝜽1) = g1(xT

i𝑗𝜷1) − pi𝑗11(𝜽1), pi𝑗01(𝜽1) = g2(xT
i𝑗𝜷2) − pi𝑗11(𝜽1), and pi j00(𝜽1) =

1− pi j11(𝜽1) − pi j10(𝜽1) − pi j01(𝜽1). In the supplementary materials, we derive an expression of the log-likelihood function
𝓁(𝜽| ,X), where  and X denote the collections of  𝑗 and xi j, respectively. However, due to the complexity of 𝓁(𝜽| ,X),
a direct maximization could be time-consuming. The supplementary materials include a numerical illustration of this
disadvantage.

We propose a GEM algorithm to accelerate the computation. The algorithm incorporates Ỹ = {Ỹ 11, … , Ỹ cJ J} as latent
variables. The complete log-likelihood function of 𝜽, derived from the conditional distribution of  and Ỹ given X, can
be written by 𝓁c(𝜽| , Ỹ ,X) = 𝓁c1(𝜽1|Ỹ ,X) + 𝓁c2(𝜽2| , Ỹ ), where

𝓁c1(𝜽1|Ỹ ,X) =
J∑

𝑗=1

c𝑗∑
i=1

[
(1 − Ỹi𝑗1)(1 − Ỹi𝑗2) log pi𝑗00(𝜽1) + Ỹi𝑗1(1 − Ỹi𝑗2) log pi𝑗10(𝜽1)

+ (1 − Ỹi𝑗1)Ỹi𝑗2 log pi𝑗01(𝜽1) + Ỹi𝑗1Ỹi𝑗2 log pi𝑗11(𝜽1)
]

(3)
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and

𝓁c2(𝜽2| , Ỹ ) =
J∑

𝑗=1

2∑
k=1

[{
Z̃𝑗kZ𝑗k + I(Z𝑗 ≠ (0, 0)T)

c𝑗∑
i=1

Ỹi𝑗kYi𝑗k

}
log Se∶k

+

{
Z̃𝑗k(1 − Z𝑗k) + I(Z𝑗 ≠ (0, 0)T)

c𝑗∑
i=1

Ỹi𝑗k(1 − Yi𝑗k)

}
log(1 − Se∶k)

+

{
(1 − Z̃𝑗k)(1 − Z𝑗k) + I(Z𝑗 ≠ (0, 0)T)

c𝑗∑
i=1

(1 − Ỹi𝑗k)(1 − Yi𝑗k)

}
log Sp∶k

+

{
(1 − Z̃𝑗k)Z𝑗k + I(Z𝑗 ≠ (0, 0)T)

c𝑗∑
i=1

(1 − Ỹi𝑗k)Yi𝑗k

}
log(1 − Sp∶k)

]
, (4)

in which Z̃𝑗k = max{Ỹi𝑗k ∶ i = 1, … , c𝑗} and I(·) is the indicator function.
Our GEM algorithm starts at an initial value and then iterates between an E-step and an M-step to update the value

until reaching a numerical convergence. At a current value 𝜽(d), the E-step calculates (𝜽|𝜽(d)) = 1(𝜽1|𝜽(d))+2(𝜽2|𝜽(d)),
where 1(𝜽1|𝜽(d)) = E{𝓁c1(𝜽1|Ỹ ,X)| ,X,𝜽(d)} and 2(𝜽2|𝜽(d)) = E{𝓁c2(𝜽2| , Ỹ )| ,X,𝜽(d)}. After an inspection of (3)
and (4), it suffices to calculate 𝜂

(d)
i𝑗00, 𝜂(d)i𝑗10, 𝜂(d)i𝑗01, 𝜂(d)i𝑗11 (for 1), and 𝜂

(d)
 ,𝑗k (for 2), where

𝜂
(d)
i𝑗𝑦1𝑦2

= pr
(

Ỹi𝑗1 = 𝑦1, Ỹi𝑗2 = 𝑦2| ,X,𝜽(d)
)

and 𝜂
(d)
 ,𝑗k = pr

(
Z̃𝑗k = 1| ,X,𝜽(d)

)
, (5)

for i = 1, … , cj, j = 1, … , J, y1, y2 ∈ {0, 1}, and k = 1, 2. Although 𝜂
(d)
i𝑗𝑦1𝑦2

values have been studied without the considera-
tion of X26, they were not updated in closed forms; thus, a Gibbs sampler was employed to approximate these quantities.
However, in the regression context, using such approximations requires enlarging the tolerance of the numerical con-
vergence and hence might induce bias. To improve the computational accuracy, we calculate all the probabilities in (5)
exactly (see the supplementary materials for details).

With the probabilities in (5) calculated, we rewrite 1(𝜽1|𝜽(d)) by

1
(
𝜷1,𝜷2, 𝛿|𝜽(d)) = J∑

𝑗=1

c𝑗∑
i=1

1∑
𝑦1=0

1∑
𝑦2=0

𝜂
(d)
i𝑗𝑦1𝑦2

log pi𝑗𝑦1𝑦2 (𝜽1),

and 2(𝜽2|𝜽(d)) by

2∑
k=1

{
W (d)

1k log Se∶k + W (d)
2k log(1 − Se∶k) + W (d)

3k log Sp∶k + W (d)
4k log(1 − Sp∶k)

}
, (6)

where

W (d)
1k =

J∑
𝑗=1

{
𝜂
(d)
 ,𝑗kZ𝑗k + I

(
Z𝑗 ≠ (0, 0)T) c𝑗∑

i=1
𝜂
(d)
i𝑗,kYi𝑗k

}
,

W (d)
2k =

J∑
𝑗=1

{
𝜂
(d)
 ,𝑗k(1 − Z𝑗k) + I

(
Z𝑗 ≠ (0, 0)T) c𝑗∑

i=1
𝜂
(d)
i𝑗,k(1 − Yi𝑗k)

}
,

W (d)
3k =

J∑
𝑗=1

{(
1 − 𝜂

(d)
 ,𝑗k

)
(1 − Z𝑗k) + I

(
Z𝑗 ≠ (0, 0)T) c𝑗∑

i=1

(
1 − 𝜂

(d)
i𝑗,k

)
(1 − Yi𝑗k)

}
,

W (d)
4k =

J∑
𝑗=1

{(
1 − 𝜂

(d)
 ,𝑗k

)
Z𝑗k + I

(
Z𝑗 ≠ (0, 0)T) c𝑗∑

i=1

(
1 − 𝜂

(d)
i𝑗,k

)
Yi𝑗k

}
,
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in which, 𝜂(d)i𝑗,1 = 𝜂
(d)
i𝑗11 + 𝜂

(d)
i𝑗10 and 𝜂

(d)
i𝑗,2 = 𝜂

(d)
i𝑗11 + 𝜂

(d)
i𝑗01. The M-step in our GEM algorithm updates 𝜽

(d)
1 by 𝜽

(d+1)
1 =

(𝜷 (d+1)T
1 (𝜷 (d+1)T

2 𝛿(d+1))T where 𝜷
(d+1)
1 = argmax𝜷1

1(𝜷1, 𝜷
(d)
2 , 𝛿(d)|𝜽(d)), 𝜷(d+1)

2 = argmax𝜷2
1(𝜷 (d+1)

1 ,𝜷2, 𝛿
(d)|𝜽(d)), and

𝛿(d+1) = argmax𝛿 1(𝜷 (d+1)
1 , 𝜷

(d+1)
2 , 𝛿|𝜽(d)). The value of 𝜽(d+1)

2 is obtained by maximizing (6) and can be written as

𝜽
(d+1)
2 =

(
S(d+1)

e∶1 , S(d+1)
e∶2 , S(d+1)

p∶1 , S(d+1)
p∶2

)T
,

where S(d+1)
e∶k = W (d)

1k ∕(W
(d)
1k + W (d)

2k ) and S(d+1)
p∶k = W (d)

3k ∕(W
(d)
3k + W (d)

4k ), for k = 1, 2. Combining 𝜽
(d+1)
1 and 𝜽

(d+1)
2 provides

𝜽(d+1). Because (𝜽(d+1)|𝜽(d)) ≥ (𝜽(d)|𝜽(d)), the convergence of {𝜽(d)}∞d=1 is guaranteed.30 We denote by �̂� the limit of 𝜽(d).
Denote by (𝜽) the observed data information matrix. Following the standard arguments of the MLE,34 we have

(�̂�)1∕2(�̂� − 𝜽) converges in distribution to  (0, I2p+7) as N → ∞, where Im denotes the m-dimensional identity matrix.
Applying Louis' method35 provides

(𝜽) = −E

{
𝜕2𝓁c(𝜽| , Ỹ ,X)

𝜕𝜽𝜕𝜽T

||||| ,X,𝜽

}
− cov

{
𝜕𝓁c(𝜽| , Ỹ ,X)

𝜕𝜽

||||| ,X,𝜽

}
.

Again, instead of approximating (𝜽) via the Gibbs sampling approach,26 we are able to calculate it exactly. The calcu-
lations are included in the supplementary materials. With (�̂�), one can make large sample Wald-type inferences. For
example, let 𝜃l, 𝜃l, and 𝜎2

ll be the lth component of 𝜽, the lth component of �̂�, and the lth diagonal entry of (�̂�)−1, respec-
tively, for l = 1, … , 2p + 7. The estimated standard error (SE) of 𝜃l is 𝜎ll and an approximated 100(1 − 𝛼)% confidence
interval of 𝜃l is 𝜃l ± z𝛼∕2𝜎ll, where z𝛼 is the 𝛼th upper quantile of  (0, 1).

4 VARIABLE SELECTION FOR EACH INFECTION

With �̂� and (�̂�) computed, we further identify which risk factors are truly relevant for each infection. Denote by 𝜷∗
1 and

𝜷∗
2 the values of 𝜷1 and 𝜷2 that generate the true individual statuses Ỹ , respectively, where 𝜷∗

k = (𝛽∗k0, 𝛽
∗
k1, … , 𝛽∗kp)

T for
k = 1, 2. One can index the significant risk factors to the kth infection by k = {𝑗 ∈  ∶ 𝛽∗k𝑗 ≠ 0}, where we take
 = {1, 2, … , p} by defaulting that an intercept term is always included in the model. One must note that 1 and 2
might be different.

We apply a shrinkage method to simultaneously select k and estimate nonzero 𝛽∗k𝑗 . To unify notation, we write 𝜽

and �̂�  as the subvector and the submatrix of 𝜽 and �̂� according to an index set  ⊂ {1, … , 2p + 7}, respectively. Let
 = {2, … , p + 1, p + 3, … , 2p + 2}. Our shrinkage estimator of 𝜽 is defined by

�̃�,𝜆 = argmin
𝜽

{
1
2
(�̂� − 𝜽)T�̂�(�̂� − 𝜽) +

2∑
k=1

𝜆k

p∑
𝑗=1

𝜔k𝑗|𝛽k𝑗|
}

, (7)

where 𝜆k
∑p

𝑗=1 𝜔k𝑗|𝛽k𝑗| is an adaptive LASSO penalty,36 𝜆k ≥ 0 is a tuning parameter that controls the shrinkage
level, and 𝜔k𝑗 = |𝛽k𝑗|−1 is an adaptive weight. When 𝜆k is 0, �̃�,𝜆 = �̂�. When 𝜆k increase, due to the singular-
ity of the absolute value function at the origin, components of �̃�,𝜆 are penalized to zero one by one. Writing �̃�,𝜆 =
(𝛽11,𝜆, … , 𝛽1p,𝜆, 𝛽21,𝜆, … , 𝛽2p,𝜆)T, we estimate 1 and 2 by ̃1,𝜆 = {𝑗 ∈  ∶ 𝛽1𝑗,𝜆 ≠ 0} and ̃2,𝜆 = {𝑗 ∈  ∶ 𝛽2𝑗,𝜆 ≠

0}, respectively.
Computing �̃�,𝜆 is fast. The objective function in (7) is simply a summation of a quadratic function and a weighted

l1-norm of 𝜽 and therefore can be quickly minimized by slightly modifying the seminal least angle regression.37 Let
c = {1, 2, … , 2p + 7} ⧵  and 𝓁(𝜽| ,X, �̂�c ) be the log-likelihood function 𝓁(𝜽| ,X) with 𝜽c fixed to be �̂�c . One
could also construct a shrinkage estimator by the traditional penalized MLE,38 which minimizes −𝓁(𝜽| ,X, �̂�c ) +∑2

k=1 𝜆k
∑p

𝑗=1 𝜔k𝑗|𝛽k𝑗|. As the quadratic term in (7) is the leading component of the Taylor's expansion of−𝓁(𝜽| ,X, �̂�c)
at 𝜽 = �̂�, it can be easily shown that �̃� and the penalized MLE are asymptotically equivalent. However, the
computation cost of obtaining penalized MLE will be a lot higher due to the complexity of the log-likelihood function.



LIN ET AL. 7

The use of adaptive weights 𝜔kj is critical to achieve the oracle properties.36 It assigns sufficiently large penalties to
insignificant covariates so that they would be excluded from the model; on the other hand, it imposes mild penalties to
significant ones in order that they would be retained in the model. The oracle properties are stated as follows. As N → ∞,
if max(𝜆1, 𝜆2)∕

√
N → 0 and min(𝜆1, 𝜆2) → ∞, we have both the selection consistency pr(̃1,𝜆 = 1,̃2,𝜆 = 2) → 1

and the estimation consistency supk,𝑗||𝛽k𝑗,𝜆 − 𝛽∗k𝑗|| = Op(N−1∕2). The proof follows similar arguments in the proofs of
Theorems 1 and 2 in Wang and Leng39 and thus is omitted.

To select 𝜆1 and 𝜆2, we propose to minimize a type of Bayesian information criterion (BIC),40 ie,

BIC(𝜆1, 𝜆2) = (�̂� − �̃�,𝜆)T�̂�(�̂� − �̃�,𝜆) + {d𝑓1,𝜆 + d𝑓2,𝜆} log N, (8)

where d𝑓k,𝜆 = |̃k,𝜆| for k = 1, 2. Following the proof of theorem 3 in the work of Wang et al,41 one can show that, with
the optimal (𝜆1, 𝜆2) from (8), pr(̃1,𝜆 = 1,̃2,𝜆 = 2) → 1 as N → ∞. In other words, any (𝜆1, 𝜆2) that does not lead
to the correct variable selection cannot be selected by (8) when the number of individuals is large.

The purpose of this subsection is to provide a shrinkage estimator of the regression coefficients, of which the sparsity
pattern can help us identify the truly relevant risk factor for each infection. Inference procedures, such as constructing a
confidence interval or conducting hypothesis testing, based on this shrinkage estimator are beyond the scope of this work.
There are numerous studies demonstrating that even in classical linear regression, finite-sample inference procedures
based on asymptotic properties of the adaptive LASSO estimator perform poorly.42 Developing valid inferential methods
for shrinkage estimators in group testing, even with a single infection, could be an interesting but challenging future
research topic. In this article, it is the variable selection of primary interest.

5 NUMERICAL STUDIES

5.1 Simulation
We consider three different settings for the joint distribution of Ỹ i𝑗|xi𝑗 . In all of them, we keep both g1 and g2 in the
marginal regression model (1) being the inverse of the logit link function, and use a Gumbel copula,43 as shown in the
following: (u1,u2|𝛿) = exp{−[(− log u1)1∕𝛿 + (− log u2)1∕𝛿]𝛿} with 𝛿 = 0.3, to generate the coinfection probability (2).
The difference across the three settings comes from the choices of (𝜷1,𝜷2, x), where x is a generic notation of xi j:

• (S1) 𝜷1 = (−5,−3, 2, 0, 0, 0)T,𝜷2 = (−5,−3, 0, 3, 0, 0)T, and x = (1, x1, … , x5)T, where we independently simulate x1
from  (0, 1), x2, and x3 from Bernoulli(0.4), x4 from Uniform(−0.5, 0.5), and x5 from  (0, 0.752).

• (S2) 𝜷1 = (−4,−2, 2, 0, 0, 0)T,𝜷2 = (−5,−2, 0,−2, 0, 0)T, and x = (1, x1, … , x5)T, where x is simulated from  (𝟎,𝛀)
with [𝛀]st = 1 if s = t and [𝛀]st = 0.5 if s ≠ t.

• (S3) 𝜷1 = (−5, (−2,−2,−2, 2, 2)⊗ (1, 0))T, 𝜷2 = (−6, (−3,−3, 2, 3, 0)⊗ (1, 0))T, and x = (1, x1, … , x10)T, where ⊗ is the
Kronecker product, x is simulated from  (𝟎,𝛀) with [𝛀]st = 1 if s = t and [𝛀]st = 0.5 if s ≠ t.

Note that 𝜷1 and 𝜷2 have different sparsity patterns (eg, in S1, x2 is significant to the first infection but not to the second
infection). This is to emulate the situation where two infections have different sets of significant risk factors. The values
of 𝜷1 and 𝜷2 are chosen in a way such that the prevalence of each infection is about 7%-10%.

Under each setting, we simulate two types of data: individual testing data and the SHL-pooled testing data. To do so,
we first generate N = 3000 individual covariates. Given a set of covariates, we calculate the individual's cell probabilities
( pi𝑗𝑦1𝑦2 ) using the specified copula-based multivariate binary regression model and then generate the true infection sta-
tuses for both infections from a multinomial distribution with those cell probabilities. We denote the covariates and the
true infection statuses of the nth individual by xn and Ỹ n = (Ỹn1, Ỹn2)T, respectively, for n = 1, … , 3000. Herein, because
groups have not been created yet, we use the subscript n instead of the i j (in Ỹ i𝑗 and xi j). Given (Ỹ n, xn), we simulate
individual testing data and the SHL-pooled testing data. We let Se : k = Sp : k = 0.95 for k = 1, 2. Values other than 0.95 are
considered in the supplementary materials.

Based on Ỹ n, we generate individual testing outcomes of the nth specimen by Tn = (Tn1,Tn2)T, where Tnk ∼
Bernoulli{Se∶kỸnk + (1− Sp∶k)(1− Ỹnk)}. Then, we estimate (𝜷1, 𝜷2, 𝛿)T from (Tn, xn). This estimation procedure is similar
to the one outlined in Section 3. We also use a GEM algorithm to compute the MLEs and Louis' method to calculate the
observed data information matrix for making large-sample Wald-type inferences. Furthermore, we slightly modify our
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variable selection method (in Section 4) to accommodate individual testing data. All the details are provided in the sup-
plementary materials. It is worthwhile to note that Se : k and Sp : k could not be estimated in individual testing data. Hence,
with individual testing data (Tn, xn), we have to assume the true values of Se : k and Sp : k as known to estimate (𝜷1, 𝜷2, 𝛿).

We generate the SHL-pooled testing data from Ỹ n. A common group size is used in our simulations, ie, cj = c and
c ∈ {2, 5, 10}. For a fixed c, we randomly assign the 3000 individuals to one of J = 3000∕c groups. With the group
membership identified, we relabel (Ỹ n, xn) by (Ỹ i𝑗 , xi𝑗), where i = 1, … , c and j = 1, … , J. The true statuses of the jth
pool are calculated as Z̃𝑗k = maxiỸi𝑗k where k = 1, 2. Then, we generate the pooled testing outcomes by Zj = (Zj1,Zj2)T,
where Z𝑗k ∼ Bernoulli{Se∶kZ̃𝑗k + (1 − Sp∶k)(1 − Z̃𝑗k)}. As per the SHL pooling protocol, only if max(Z𝑗1,Z𝑗2) = 1, we
generate retesting outcomes of the ith individual in this group by Yi j = (Yi j1,Yi j2)T, where Yi𝑗k ∼ Bernoulli{Se∶kỸi𝑗k +(1−
Sp∶k)(1 − Ỹi𝑗k)}. Collecting all Zj and Yi j yields the SHL-pooled testing data  . Note that the number of tests that were
used to obtain  is the summation of J and the number of Yi j. From  and xi j, we estimate (𝜷1, 𝜷2, 𝛿, Se:1, Se:2, Sp:1, Sp:2).

We repeat 500 times the process of generating Tn and  for each c ∈ {2, 5, 10}. For each set of individual testing
data or the SHL-pooled testing data, we first treat the diagnosis results for each infection as the true statues and fit
them using our copula-based multivariate binary regression model. The resulting MLE of 𝜽1 is used as the initial value
of 𝜽1. The initial values of the assay sensitivity and specificity are chosen to be 0.9. Then, we run our GEM algorithm
to compute the MLE and use Louis' method to construct a 95% confidence interval for each unknown parameter (see
the last paragraph of Section 3). In addition to the BIC-type shrinkage estimator, we also compute an Akaike informa-
tion criterion (AIC)–type44 and an extended regularized information criterion (ERIC)–type45 estimator using the tuning
parameters selected by minimizing AIC(𝜆1, 𝜆2) = (�̂� − �̃�,𝜆)T�̂�(�̂� − �̃�,𝜆) + 2{d𝑓1,𝜆 + d𝑓2,𝜆} and ERIC(𝜆1, 𝜆2) =
(�̂� − �̃�,𝜆)T�̂�(�̂�−�̃�,𝜆)+d𝑓1,𝜆 log(N∕𝜆1)+d𝑓2,𝜆 log(N∕𝜆2),Respectively. For individual testing data, slightly modified
versions are available in the supplementary materials.

To compare the overall performance of the MLE and three shrinkage estimators, we consider the prediction error PE =
N−1 ∑J

𝑗=1
∑c𝑗

i=1 {
∑1

𝑦1=0
∑1

𝑦2=0 (p̂i𝑗𝑦1𝑦2 − p∗
i𝑗𝑦1𝑦2

)2}1∕2, where p∗
i𝑗𝑦1𝑦2

are the true cell probabilities and p̂i𝑗𝑦1𝑦2 are the predicted
cell probabilities using an estimator of (𝜷1, 𝜷2, 𝛿). To evaluate the variable selection performance of shrinkage estimators,
we define by the selection rate (SR) the proportion of the true model being exactly selected by a shrinkage estimator.
Results from the 500 replications under S1–S3 are summarized in Tables 1–4.

Tables 1 to 3 provide summary statistics of the MLEs for S1-S3, respectively. Under both individual testing and the SHL
pooling protocol, the MLEs of the unknown parameters obtained by our GEM algorithm exhibit little, if any, evidence of

TABLE 1 Summary statistics of the 500 maximum likelihood estimates obtained under S1, including the sample mean
(Mean), the sample standard deviation (SD), the average of the estimated standard errors (SE), and the empirical coverage
(EC) of 95% confidence intervals under either individual testing (IT) or the State Hygienic Laboratory pooling with c = 2, 5, 10.
The average number of tests (# of tests) under each protocol is also provided. The prevalence (averaged over 500 repetitions) of
the first and second infections are 7.64% and 8.22%, respectively

IT c = 2 c = 5 c = 10
# tests 3000 2351 2078 2445

Truth Mean(SD) EC(SE) Mean(SD) EC(SE) Mean(SD) EC(SE) Mean(SD) EC(SE)
𝛽10 -5 -5.08(0.36) 0.94(0.37) -5.06(0.29) 0.94(0.29) -5.06(0.31) 0.94(0.29) -5.07(0.34) 0.95(0.32)
𝛽11 -3 -3.05(0.25) 0.96(0.26) -3.03(0.21) 0.94(0.21) -3.04(0.22) 0.94(0.21) -3.04(0.24) 0.95(0.23)
𝛽12 2 2.03(0.27) 0.94(0.27) 2.02(0.24) 0.94(0.24) 2.02(0.25) 0.94(0.24) 2.03(0.26) 0.95(0.25)
𝛽13 0 -0.01(0.24) 0.95(0.23) -0.01(0.22) 0.95(0.21) -0.01(0.22) 0.95(0.21) -0.01(0.22) 0.94(0.21)
𝛽14 0 0.01(0.38) 0.95(0.39) 0.01(0.34) 0.96(0.35) -0.01(0.35) 0.96(0.35) 0.00(0.37) 0.96(0.36)
𝛽15 0 0.00(0.19) 0.96(0.20) 0.00(0.17) 0.97(0.18) 0.00(0.17) 0.97(0.18) 0.00(0.19) 0.94(0.19)
𝛽20 -5 -5.08(0.37) 0.95(0.37) -5.05(0.28) 0.94(0.30) -5.05(0.30) 0.94(0.30) -5.04(0.33) 0.96(0.32)
𝛽21 -3 -3.04(0.26) 0.95(0.26) -3.03(0.21) 0.94(0.22) -3.03(0.22) 0.94(0.21) -3.02(0.24) 0.95(0.23)
𝛽22 0 -0.01(0.24) 0.94(0.23) -0.01(0.21) 0.93(0.21) 0.00(0.22) 0.93(0.21) -0.01(0.23) 0.94(0.21)
𝛽23 3 3.04(0.33) 0.94(0.32) 3.03(0.27) 0.94(0.27) 3.03(0.29) 0.94(0.27) 3.03(0.30) 0.94(0.29)
𝛽24 0 0.00(0.40) 0.95(0.38) 0.02(0.34) 0.95(0.35) 0.01(0.35) 0.95(0.35) 0.00(0.36) 0.96(0.36)
𝛽25 0 0.01(0.20) 0.95(0.20) 0.00(0.18) 0.94(0.18) 0.00(0.18) 0.94(0.18) 0.00(0.19) 0.95(0.19)
𝛿 0.3 0.28(0.09) 0.97(0.10) 0.29(0.06) 0.95(0.06) 0.29(0.06) 0.95(0.06) 0.29(0.07) 0.95(0.07)
Se:1 0.95 – – 0.95(0.02) 0.93(0.02) 0.95(0.02) 0.93(0.02) 0.95(0.02) 0.90(0.02)
Se:2 0.95 – – 0.95(0.01) 0.95(0.01) 0.95(0.02) 0.91(0.01) 0.95(0.02) 0.92(0.02)
Sp:1 0.95 – – 0.95(0.01) 0.94(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.01) 0.93(0.01)
Sp:2 0.95 – – 0.95(0.01) 0.94(0.01) 0.95(0.01) 0.93(0.01) 0.95(0.01) 0.93(0.01)
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TABLE 2 Summary statistics of the 500 maximum likelihood estimates obtained under S2, including the sample mean
(Mean), the sample standard deviation (SD), the average of the estimated standard errors (SE), and the empirical coverage
(EC) of 95% confidence intervals under either individual testing (IT) or the State Hygienic Laboratory pooling with
c = 2, 5, 10. The average number of tests (# of tests) under each protocol is also provided. The prevalence (averaged over 500
repetitions) of the first and the second infections are 6.77% and 9.98%, respectively

IT c = 2 c = 5 c = 10
# tests 3000 2493 2312 2678

Truth Mean(SD) EC(SE) Mean(SD) EC(SE) Mean(SD) EC(SE) Mean(SD) EC(SE)
𝛽10 -4 -4.05(0.25) 0.95(0.26) -4.02(0.20) 0.95(0.19) -4.03(0.19) 0.97(0.20) -4.03(0.21) 0.96(0.21)
𝛽11 -2 -2.03(0.19) 0.96(0.20) -2.02(0.15) 0.96(0.15) -2.03(0.16) 0.96(0.16) -2.02(0.17) 0.95(0.17)
𝛽12 2 2.03(0.19) 0.94(0.20) 2.02(0.16) 0.95(0.16) 2.02(0.16) 0.96(0.16) 2.02(0.17) 0.95(0.17)
𝛽13 0 0.00(0.13) 0.95(0.14) 0.00(0.12) 0.95(0.12) 0.00(0.12) 0.96(0.12) 0.00(0.12) 0.95(0.13)
𝛽14 0 0.00(0.13) 0.96(0.14) 0.00(0.12) 0.95(0.12) 0.00(0.12) 0.96(0.12) -0.01(0.13) 0.95(0.13)
𝛽15 0 0.00(0.14) 0.95(0.14) 0.00(0.11) 0.96(0.12) 0.00(0.12) 0.95(0.12) 0.00(0.13) 0.95(0.13)
𝛽20 -5 -5.06(0.36) 0.94(0.35) -5.04(0.26) 0.96(0.27) -5.03(0.28) 0.97(0.29) -5.04(0.32) 0.94(0.33)
𝛽21 -2 -2.04(0.20) 0.95(0.20) -2.03(0.16) 0.97(0.17) -2.02(0.17) 0.97(0.17) -2.03(0.19) 0.95(0.19)
𝛽22 0 0.01(0.13) 0.97(0.13) 0.00(0.12) 0.95(0.12) 0.01(0.12) 0.96(0.12) 0.01(0.13) 0.95(0.13)
𝛽23 -2 -2.04(0.20) 0.95(0.20) -2.03(0.17) 0.96(0.17) -2.02(0.17) 0.95(0.17) -2.02(0.19) 0.94(0.18)
𝛽24 0 0.01(0.14) 0.93(0.13) 0.01(0.12) 0.93(0.12) 0.00(0.12) 0.94(0.12) 0.00(0.13) 0.95(0.13)
𝛽25 0 0.01(0.13) 0.95(0.13) 0.01(0.12) 0.95(0.12) 0.00(0.12) 0.95(0.12) 0.01(0.12) 0.96(0.13)
𝛿 0.3 0.30(0.08) 0.99(0.11) 0.30(0.06) 0.97(0.07) 0.30(0.07) 0.97(0.07) 0.30(0.08) 0.97(0.08)
Se:1 0.95 – – 0.95(0.02) 0.93(0.02) 0.95(0.02) 0.93(0.02) 0.95(0.02) 0.92(0.02)
Se:2 0.95 – – 0.95(0.02) 0.95(0.01) 0.95(0.02) 0.92(0.01) 0.95(0.02) 0.91(0.02)
Sp:1 0.95 – – 0.95(0.01) 0.97(0.01) 0.95(0.01) 0.95(0.01) 0.95(0.01) 0.92(0.01)
Sp:2 0.95 – – 0.95(0.01) 0.92(0.01) 0.95(0.01) 0.93(0.01) 0.95(0.01) 0.92(0.01)

bias, across all considered settings. Regarding the use of Louis' method, we notice that the average SEs are in agreement
with the sample standard deviations of the estimates. In addition, the empirical coverage probabilities for 95% confidence
intervals are predominantly at the nominal level. These results indicate that the observed data information matrix is
estimated correctly via Louis' method.

To examine the performance of the variable selection, Table 4 provides the SR (in parenthesis) of each shrinkage esti-
mator across all considered settings. One can see that our BIC-type estimator performs the best in identifying the true
model in each scenario. For example, in S3 when c = 2, the SR using the BIC criterion is 0.820, which is significantly
larger than the ones using the AIC (0.294) and the ERIC (0.448). These results demonstrate the advantage of using the
BIC in identifying risk factors that are truly relevant for each infection.

Table 4 also provides the average PE×100 values of the MLE and the three shrinkage estimators across all settings.
It is clear that all the shrinkage estimators produce smaller prediction errors than the MLE. For example, the BIC-type
estimator can reduce almost 50% of the prediction error of the MLE. This is because the adaptive LASSO penalty in (7)
could eliminate unnecessary risk factors. Furthermore, because our BIC-type estimator outperforms the other two in term
of variable selection, its prediction errors are the smallest under all settings. In conclusion, using the BIC-type shrink-
age estimator not only provides a large chance of identifying truly relevant covariates but also yields a high prediction
accuracy.

Finally, we want to see whether the SHL pooling protocol causes a loss of information and thus compromises regres-
sion inference, when compared to individual testing. To find the answer, we revisit Tables 1–4. This time, we focus on
the comparison between individual testing and the SHL pooling. Tables 1 to 3 provide the average number of tests under
each setting. Obviously, the SHL pooling protocol uses fewer tests than individual testing (saves about 16% costs). This
is an expected appealing feature of the SHL pooling.26 Also, we observe more: (1) In Tables 1 to 3, the standard devia-
tions obtained using pooling data are uniformly less than the ones obtained using individual testing, suggesting that the
SHL pooling could provide a less variational MLE; (2) all the averaged SEs under the SHL pooling are smaller than the
ones under individual testing, meaning that one could use the SHL-pooled testing data to construct narrower confidence
intervals while maintaining the same nominal level; (3) the advantage of pooling also holds when comparing the average
PE×100 values in Table 4, indicating that the SHL pooling enables one to make a better prediction of an individual's infec-
tion probabilities; and (4) in terms of variable selection, the highest SR value (in Table 4) always occurs at c > 1 under
each setting, that is, using the SHL-pooled testing data has a larger chance to identify the true model. Hence, instead of
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TABLE 3 Summary statistics of the 500 maximum likelihood estimates obtained under S3, including the sample mean
(Mean), the sample standard deviation (SD), the average of the estimated standard errors (SE), and the empirical coverage
(EC) of 95% confidence intervals under either individual testing (IT) or the State Hygienic Laboratory pooling with
c = 2, 5, 10. The average number of tests (# of tests) under each protocol is also provided. The prevalence (averaged over 500
repetitions) of the first and the second infections are 9.97% and 8.54%, respectively

IT c = 2 c = 5 c = 10
# tests 3000 2508 2337 2701

Truth Mean(SD) EC(SE) Mean(SD) EC(SE) Mean(SD) EC(SE) Mean(SD) EC(SE)
𝛽10 -5 -5.10(0.39) 0.94(0.36) -5.07(0.30) 0.93(0.27) -5.10(0.33) 0.92(0.30) -5.09(0.36) 0.95(0.34)
𝛽11 -2 -2.04(0.22) 0.94(0.21) -2.03(0.18) 0.95(0.17) -2.05(0.20) 0.93(0.18) -2.04(0.20) 0.94(0.20)
𝛽12 0 0.00(0.13) 0.97(0.14) 0.00(0.12) 0.98(0.13) 0.00(0.13) 0.96(0.13) 0.00(0.13) 0.97(0.14)
𝛽13 -2 -2.04(0.22) 0.93(0.21) -2.03(0.18) 0.94(0.17) -2.04(0.19) 0.94(0.18) -2.04(0.21) 0.93(0.20)
𝛽14 0 0.01(0.14) 0.96(0.14) 0.00(0.12) 0.95(0.13) 0.00(0.13) 0.94(0.13) 0.00(0.13) 0.97(0.14)
𝛽15 -2 -2.05(0.22) 0.94(0.21) -2.04(0.18) 0.94(0.17) -2.05(0.19) 0.93(0.18) -2.05(0.21) 0.92(0.19)
𝛽16 0 0.01(0.14) 0.96(0.14) 0.00(0.13) 0.95(0.13) 0.01(0.13) 0.96(0.13) 0.01(0.14) 0.95(0.14)
𝛽17 2 2.04(0.22) 0.95(0.21) 2.03(0.18) 0.93(0.17) 2.05(0.19) 0.93(0.18) 2.04(0.21) 0.94(0.20)
𝛽18 0 0.00(0.14) 0.96(0.14) 0.00(0.12) 0.96(0.13) 0.00(0.13) 0.95(0.13) 0.01(0.14) 0.96(0.14)
𝛽19 2 2.04(0.21) 0.94(0.21) 2.03(0.18) 0.93(0.17) 2.04(0.19) 0.94(0.18) 2.04(0.20) 0.96(0.20)
𝛽110 0 0.00(0.15) 0.94(0.14) 0.00(0.13) 0.96(0.13) 0.01(0.13) 0.95(0.13) 0.00(0.14) 0.95(0.14)
𝛽20 -6 -6.13(0.49) 0.95(0.48) -6.10(0.36) 0.96(0.36) -6.10(0.41) 0.95(0.39) -6.12(0.43) 0.95(0.43)
𝛽21 -3 -3.07(0.30) 0.95(0.29) -3.05(0.24) 0.94(0.24) -3.05(0.26) 0.94(0.25) -3.06(0.27) 0.94(0.27)
𝛽22 0 0.00(0.16) 0.95(0.16) 0.01(0.14) 0.95(0.14) 0.00(0.15) 0.95(0.15) 0.00(0.15) 0.95(0.15)
𝛽23 -3 -3.07(0.30) 0.96(0.29) -3.05(0.24) 0.94(0.24) -3.05(0.26) 0.94(0.25) -3.06(0.27) 0.94(0.27)
𝛽24 0 0.00(0.16) 0.96(0.16) 0.00(0.13) 0.94(0.14) 0.00(0.14) 0.95(0.15) 0.01(0.15) 0.95(0.16)
𝛽25 2 2.04(0.21) 0.97(0.23) 2.04(0.19) 0.96(0.19) 2.04(0.20) 0.95(0.20) 2.04(0.20) 0.95(0.20)
𝛽26 0 0.01(0.17) 0.94(0.16) 0.01(0.15) 0.93(0.14) 0.01(0.15) 0.95(0.15) 0.00(0.16) 0.94(0.16)
𝛽27 3 3.06(0.29) 0.95(0.29) 3.04(0.24) 0.95(0.24) 3.04(0.26) 0.94(0.25) 3.05(0.27) 0.95(0.27)
𝛽28 0 0.01(0.16) 0.96(0.16) 0.00(0.14) 0.96(0.14) 0.00(0.15) 0.95(0.15) 0.01(0.15) 0.96(0.16)
𝛽29 0 0.00(0.16) 0.95(0.16) -0.01(0.14) 0.94(0.14) -0.01(0.15) 0.95(0.15) -0.01(0.16) 0.96(0.15)
𝛽210 0 0.01(0.16) 0.95(0.16) 0.01(0.14) 0.94(0.14) 0.01(0.15) 0.95(0.15) 0.01(0.15) 0.94(0.16)
𝛿 0.3 0.29(0.09) 0.98(0.13) 0.28(0.07) 0.99(0.08) 0.29(0.07) 0.98(0.09) 0.29(0.07) 0.99(0.11)
Se:1 0.95 – – 0.95(0.01) 0.93(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.02) 0.94(0.01)
Se:2 0.95 – – 0.95(0.01) 0.95(0.01) 0.95(0.02) 0.93(0.01) 0.95(0.02) 0.91(0.02)
Sp:1 0.95 – – 0.95(0.01) 0.96(0.01) 0.95(0.01) 0.93(0.01) 0.95(0.01) 0.92(0.01)
Sp:2 0.95 – – 0.95(0.01) 0.96(0.01) 0.95(0.01) 0.94(0.01) 0.95(0.01) 0.93(0.01)

TABLE 4 The average prediction error PE×100
and the selection rate (SR) value (provided in
parenthesis) of the maximum likelihood estimate
and the shrinkage estimates under the tuning
parameter criterion of Akaike information
criterion (AIC), Bayesian information criterion
(BIC), and extended regularized information
criterion (ERIC) over 500 replications under
S1;-S3 across individual testing (IT) and the State
Hygienic Laboratory pooling with c = 2, 5, and
10. Recall that the SR is defined to be the
proportion of the true model being exactly
selected by a shrinkage estimator. The highest SR
value under each setting is underlined

IT c = 2 c = 5 c = 10
Setting Estimate PE×100(SR) PE×100(SR) PE×100(SR) PE×100(SR)
S1 MLE 0.148(0.000) 0.126(0.000) 0.130(0.000) 0.142(0.000)

AIC 0.106(0.414) 0.092(0.430) 0.092(0.442) 0.102(0.462)
BIC 0.079(0.910) 0.071(0.908) 0.073(0.926) 0.083(0.898)

ERIC 0.085(0.724) 0.075(0.736) 0.076(0.744) 0.085(0.734)
S2 MLE 0.133(0.000) 0.106(0.000) 0.117(0.000) 0.121(0.000)

AIC 0.095(0.414) 0.074(0.414) 0.084(0.436) 0.087(0.418)
BIC 0.074(0.908) 0.059(0.910) 0.067(0.892) 0.069(0.876)

ERIC 0.084(0.702) 0.064(0.696) 0.074(0.702) 0.074(0.702)
S3 MLE 0.284(0.000) 0.231(0.000) 0.250(0.000) 0.266(0.000)

AIC 0.193(0.266) 0.160(0.294) 0.175(0.274) 0.184(0.298)
BIC 0.158(0.818) 0.130(0.820) 0.145(0.786) 0.153(0.808)

ERIC 0.183(0.428) 0.150(0.448) 0.163(0.420) 0.170(0.448)

compromising regression inference, the SHL pooling produces more precise inference. In addition, one must note that
these advantages are achieved with a less amount of costs and a larger number of parameters to be estimated. This finding
could be very encouraging to laboratories that are not using pooling (such as the NPHL).



LIN ET AL. 11

5.2 A CT/NG screening data set
To further encourage the use of pooling, we analyze a data set collected from the NPHL which currently uses individual
testing for the CT/NG screening. We will illustrate, if switching from individual testing to the two-stage hierarchical
pooling used by the SHL, what benefits could be achieved for regression. To do so, we first reiterate how the SHL is using
the pooling protocol.26 Only female swab specimens are screened using the SHL pooling protocol. The testing is carried
out by the TECAN DTS platform with the Aptima Combo 2 assay. The platform is calibrated for a group size c = 4.
The sensitivity and specificity of the assay are Se:1 = 0.942 (Se:2 = 0.992) and Sp:1 = 0.976 (Sp:2 = 0.987) for CT (NG),
respectively (Gen-Probe Inc, San Diego, CA).

In 2009, 14 530 female swab specimens were tested individually in the NPHL. The employed assay was also the Aptima
Combo 2 Assay. We are provided with the diagnosed results of each specimen for CT and NG. Based on these diagnoses,
the approximated prevalence of CT and NG are 0.069 and 0.013, respectively. To reveal the benefits of pooling, we mimic
the SHL screening practice in the most realistic way. We use a group size c = 4, which is used by the SHL. Then, we
construct pools by assigning specimens according to their arrival time at the NPHL. Because the arrival time of specimens
at the NPHL are random, our way of pooling is also random. We treat the diagnoses as “true” statuses and simulate a
two-stage group testing data set using the above testing error rates. For comparison, we also simulate an individual testing
data set using the same testing error rates. The considered covariates include age, prenatal, symptoms, cervical friability,
pelvic inflammatory disease, cervicitis, multiple partners, and new partner in the last 90 days, and contact with someone
who has an STD. All covariates, except age, are binary. With these covariates on each individual, we first fit the individual
diagnoses results by viewing them as the truth. The resulting estimates are used as the “reference” estimates. We then
fit the individual testing data and the two-stage group testing data using the regression and variable selection methods
previously described. In our analysis, we standardize age and code dichotomous covariates as either −0.5 or 0.5.

Table 5 summarizes the parameter estimates and variable selection results. The estimates from both testing protocols
are close to the “reference” estimates, but the SEs under c = 4 are uniformly less than the ones under individual testing.
The testing error rates are estimated accurately from the group testing data. In terms of variable selection, the reference
shrinkage estimates identified different sets of significant risk factors for the two infections, where prenatal is significant
to CT but not to NG. The same results are identified by the three shrinkage estimates based on the group testing data.
However, based on the individual testing data, none of the three shrinkage estimates can select prenatal for CT. These
comparisons reinforce our conclusion that, in addition to a significant cost reduction (ie, it saves 14 530 − 7737 = 6793
tests), the two-stage pooling protocol leads to more precise inference than individual testing while estimating the testing
error rates simultaneously. In addition, we have considered randomly assigning individuals into groups as in Section 5.1
and used group sizes varying from 2 to 10. The supplementary materials include these results, which reinforce the afore-
mentioned conclusion on the advantages of the two-stage pooling protocol when compared with individual testing. We
believe these numerical findings could encourage more laboratories to consider the two-stage pooling protocol.

6 DISCUSSION

Motivated by the SHL CT/NG screening practice, we have developed a regression method for the two-stage hierarchical
pooling data. Our proposed technique jointly models the unobserved individual disease statuses and produces inter-
pretable marginal inference for each infection. The assay sensitivity and specificity for each infection can be estimated
as well. In addition, we further developed a shrinkage estimator to consistently select truly relevant risk factors for each
infection. To disseminate this work, code, written in R, that implements our new methodology, is available upon request.

From the simulation studies and the CT/NG screening data analysis, it is exciting to observe that, as compared with
individual testing, the SHL pooling protocol can significantly reduce cost and yet produce more efficient regression
estimators. An interesting future project would be to theoretically investigate how to construct groups to obtain the
most efficient regression estimators for each infection within a budget limit. Intuitively, individuals with high probabil-
ities of being infected should be tested individually and those with low probabilities could be tested in pools. However,
what is the criterion to differentiate between high and low probabilities? How to know these probabilities before the
screening? For those tested in pools, what is the optimal pool size that should be used for inference? These are inter-
esting but challenging questions to be answered in future works. Possible guidance could be found in aforementioned
studies.17,46

In our simulation studies, we used a Gumbel copula. We chose it for two reasons: (1) When compared to Gaussian
copulas, it has an analytic expression that facilitates the computation, and (2) it is able to deliver robust estimates of
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the regression coefficients and misclassification parameters even when the true copula is not Gumbel. To reveal this
robustness, we have included a simulation study in the supplementary materials. In practice, users are welcome to choose
other copulas, such as Gaussian, Clayton, or Frank.33 Besides, the logistic function for gk could also be changed to the
inverse of the link in probit or complementary log-log models. Our GEM algorithm has the generality to incorporate those
choices.

Although this work mainly focuses on two infections, the model can be extended to incorporate more infections. For
example, suppose there are three infections. We have Ỹ i𝑗 = (Ỹi𝑗1, Ỹi𝑗2, Ỹi𝑗3)T. A joint model for Ỹ i𝑗|xi𝑗 is built by assuming
that there exists a random vector Ui j = (Ui j1,Ui j2,Ui j3)T, of which the distribution function is a three-dimensional copula
(u1,u2,u3|𝛿), such that the event {Ỹi𝑗k = 1|xi𝑗} is equivalent to {Ui𝑗k ≤ gk(xT

i𝑗𝜷k)} for k = 1, 2, 3. Consequently, the
marginal regression model (1) naturally holds for each disease, and the cell probabilities of Ỹ i𝑗|xi𝑗 can be calculated in
terms of , eg, pr(Ỹi𝑗1 = 1, Ỹi𝑗2 = 1, Ỹi𝑗3 = 0|xi𝑗) = {g1(xT

i𝑗𝜷1), g2(xT
i𝑗𝜷2), 1|𝛿} − {g1(xT

i𝑗𝜷1), g2(xT
i𝑗𝜷2), g3(xT

i𝑗𝜷3)|𝛿}. Our
GEM algorithm can be generalized to incorporate more than two infections as well. We omit details but include some
simulation results in the supplementary materials to demonstrate this generalizability.

Lastly, we discuss the three assumptions (Assumptions 1–3) on the assay sensitivity and specificity and possible ways to
relax them. For Assumption 1, when the assay utilizes the concentration level of a specific biological marker (biomarker)
to make a diagnosis, mixing a positive specimen with negative ones could dilute the concentration level and affect the
assay sensitivity and specificity significantly when group size changes. This “dilution effect” can be taken into consid-
eration if the distribution of the biomarker concentration is provided in advance.47,48 To relax Assumption 2, one could
use a multinomial distribution to account for the cross-disease dependency of the testing outcomes when the true sta-
tuses are given. Then, the number of misclassification parameters increases from 4 to 12 when the number of diseases
is two. One could modify the GEM algorithm to estimate the 12 parameters along with the regression. However, some
of these parameters may require an impractical large sample size to be accurately estimated. The last assumption can
be relaxed by assuming a covariate-adjusted model for misclassification parameters.49 However, caution must be taken
for model identifiability when the covariate-adjusted misclassification parameters are to be estimated along with the
regression.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.
Supplementary materials are available along with the submission. These materials contain a numerical comparison

showing that ignoring the retesting outcomes could inflate the variance of estimators of the regression coefficients in
Section 2, the observed log-likelihood function, a numerical study showing the computational advantages of the GEM
algorithm, detailed derivations of the E-step and the observed data information matrix introduced in Section 3, additional
numerical results for other values of Se : k and Sp : k (Section 5.1), extensions of our method to fit individual testing data
as discussed in Section 5.1, additional results of the real data analysis in Section 5.2, and simulation studies that reveal
the robustness of the Gumbel copula and demonstrate the generalizability of our method to more than two infections in
Section 6.
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