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Summary: For disease screening, group (pooled) testing can be a cost-saving alternative to one-at-a-time testing,

with savings realized through assaying pooled biospecimen (e.g. urine, blood, saliva). In many group testing settings,

practitioners are faced with the task of conducting disease surveillance. That is, it is often of interest to relate

individuals’ true disease statuses to covariate information via binary regression. Several authors have developed

regression methods for group testing data, which is challenging due to the effects of imperfect testing. That is, all

testing outcomes (on pools and individuals) are subject to misclassification, and individuals’ true statuses are never

observed. To further complicate matters, individuals may be involved in several testing outcomes. For analyzing

such data, we provide a novel regression methodology which generalizes and extends the aforementioned regression

techniques and which incorporates regularization. Specifically, for model fitting and variable selection, we propose

an adaptive elastic net estimator under the logistic regression model which can be used to analyze data from any

group testing strategy. We provide an efficient algorithm for computing the estimator along with guidance on tuning

parameter selection. Moreover, we establish the asymptotic properties of the proposed estimator and show that

it possesses “oracle” properties. We evaluate the performance of the estimator through Monte Carlo studies and

illustrate the methodology on a chlamydia data set from the State Hygienic Laboratory in Iowa City.
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1. Introduction

Group testing is becoming a popular cost-saving alternative to individual-level testing in

applications from infectious disease testing (Lewis et al., 2012; Krajden et al., 2014) to envi-

ronmental monitoring (Heffernan et al., 2014). For example, the State Hygienic Laboratory

(SHL) in Iowa City saved approximately $3.1 million during 2009–2014 after adopting group

testing to screen female subjects for chlamydia (Jeffrey Benfer, SHL, personal communica-

tion). In general, group testing involves combining specimen collected from individuals into

non-overlapping groups (master pools) for testing. Individuals belonging to pools which test

negatively are diagnosed as negative at the expense of a single assay, while positive pools

are resolved through further testing. For example, Dorfman (1943) suggested that positive

pools be resolved through individual-level testing. If the binary characteristic of interest,

e.g. infection status, is rare, group testing can result in substantial cost savings.

Statistics research in group testing has generally focused on developing either classification

or estimation methods, with the latter being our interest (for a review of classification

algorithms see Kim et al., 2007). Estimation based on group testing data traces back to

Thompson (1962), who focused on estimating a population-level proportion. This particular

problem has gained considerable interest, both historically and recently; see Liu et al. (2011).

Extending earlier works, several authors have proposed various parametric (Farrington,

1992; Vansteelandt et al., 2000; Huang, 2009; Chen et al., 2009; McMahan et al., 2012)

and nonparametric (Delaigle and Meister, 2011; Delaigle et al., 2014; Wang et al., 2014;

Delaigle and Hall, 2015) regression methodologies for group testing data. A drawback to

the aforementioned methodologies is that they were designed only for analyzing test results

obtained from assaying non-overlapping master pools; i.e., they cannot incorporate data

from resolving positive master pools, testing procedures with overlapping pools, or data
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from quality control testing (Gastwirth and Johnson, 1994; Kim et al., 2007; Krajden et al.,

2014).

Developing general regression methods for group testing data is challenging, since individu-

als’ true disease statuses are never observed; and the observed data consists of assay outcomes

which are liable to error. Moreover, the complexity of the problem increases when individuals

are involved in multiple testing outcomes, which occurs during retesting, quality control steps,

and through implementing certain group testing protocols. Several authors have proposed

regression methods which can incorporate these more complex data structures; e.g., see Xie

(2001), Zhang et al. (2013), and McMahan et al. (2017). These authors demonstrate that by

incorporating additional information, if available, one can obtain more efficient estimators

and more precise inference. All of the aforementioned procedures are tailored to analyze data

arising from specific group testing algorithms, with the work of McMahan et al. (2017) being

the only methodology that offers a completely general framework.

The regression methodology we propose offers two main advantages over currently available

methods. First, our framework can incorporate data arising from any group testing protocol,

making it the most general frequentist-based procedure to date, with only McMahan et al.

(2017) offering the same generality, but from a Bayesian perspective. Second, the proposed

methodology makes use of a regularization technique of which the ridge (Hoerl and Kennard,

1970), lasso (Tibshirani, 1996), adaptive lasso (Zou, 2006), elastic net (Zou and Hastie,

2005), and adaptive elastic net (Zou and Zhang, 2009) are special cases. To our knowledge,

regularized regression techniques have not yet been applied to group testing data.

In this paper we present an EM algorithm for computing a regularized logistic regression

estimator for group testing data. The algorithm enables computation of the adaptive elastic

net estimator, of which we establish theoretical properties in the group testing context. In

particular, we show that it has an oracle property; i.e. as the sample size grows, the adaptive
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elastic net estimator will identify the true set of active covariates with probability tending

to one, and it has the same asymptotic distribution as the estimator for which the true set

of active covariates is known (by “active”, we refer to covariates for which the regression

coefficient is nonzero, and by “inactive”, we refer to covariates for which the regression

coefficient is equal to zero). Such properties are desirable to practitioners who employ group

testing for diagnostic screening and disease surveillance.

2. Group testing and the log-likelihood

Let Y1, . . . , YN ∈ {0, 1} denote the true disease statuses of N individuals on which the

covariates X1, . . . , XN ∈ R
p are observed and suppose that the conditional probability

distribution of Yi given Xi is

Pα,β(Yi | Xi) = η(α +XT
i β)

Yi{1− η(α +XT
i β)}1−Yi

for (α, β) equal to some (α0, β0) ∈ R × R
p, where η is a known link function (For ease of

illustration we use the logit link η(·) = exp(·)/{1 + exp(·)}, though our methodology can

be easily generalized to other links, such as probit, as well). Moreover, suppose that the

individual disease statuses Y1, . . . , YN are independent after conditioning on the covariates

X1, . . . , XN . Our goal is to estimate (α0, β0) when instead of observing Y1, . . . , YN we observe

data from a group testing procedure.

Generally, group testing data consists of collections of outcomes A1, . . . ,AJ of assays taken

on groups of individuals, where the groups are formed according to a partition P1, . . . ,PJ

of {1, . . . , N}. Each collection Aj contains outcomes of assays taken on pooled specimen of

subsets of the individuals in Pj. Assays may be taken on various subsets of the individuals

in Pj, including for subsets of size 1, and the collection of resulting outcomes comprises Aj.

Defining Xj = {Xi, i ∈ Pj} and Yj = {Yi, i ∈ Pj}, we assume that the outcomes in Aj are

liable to error with known sensitivities and specificities such that the conditional probability
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P (Aj | Yj) of the assay outcomes from the individuals in group j given their true disease

statuses is known and is free of the covariates Xj for all j = 1, . . . , J ; that is, the assay

outcomes in Aj collected on the individuals in Pj are independent of Xj when conditioned

on Yj.

In greater detail, for each j = 1, . . . , J , define Pj1, . . . ,PjLj
⊆ Pj to be the subsets of

individuals in Pj on which assays were conducted, where Lj is the total number of assays

performed on subsets of the individuals in Pj. Define the true disease statuses of the pools

as Zjl = maxi∈Pjl
Yi, for l = 1, . . . , Lj, and let Z̃j1, . . . , Z̃jLj

∈ {0, 1} be the assay results so

that Aj = {Z̃j1, . . . , Z̃jLj
}. Since Y1, . . . , YN are conditionally independent given X1, . . . , XN

and Zj1, . . . , ZjLj
are conditionally independent given Yj, the assay results Z̃j1, . . . , Z̃jLj

are conditionally independent given the true pool statuses Zj1, . . . , ZjLj
and have Bernoulli

distributions with success probabilities Se
Zjl

jl (1− Spjl)
1−Zjl , for l = 1, . . . , Lj , where Sejl and

Spjl represent, respectively, the sensitivity and specificity of the test on the individuals in

Pjl. From here we have the expression

P (Aj | Yj) =

Lj∏

l=1

{SeZjl

jl (1− Spjl)
1−Zjl}Z̃jl{(1− Sejl)

ZjlSp
1−Zjl

jl }1−Z̃jl . (1)

From now on let DN denote the observed group testing data, which is the set of independent

collections of assay outcomes A1, . . . ,AJ and the covariate values X1, . . . , XN .

Assuming a common density f(·) for X1, . . . , XN , the log-likelihood based on DN is

ℓ(α, β;DN ) =
J∑

j=1



logPα,β(Aj | Xj) +

∑

i∈Pj

log f(Xi)



 ,

where

Pα,β(Aj | Xj) =
∑

supp{Yj}

P (Aj | Yj)Pα,β(Yj | Xj), (2)

where the summation is taken over the entire support supp{Yj} of the unobserved true

disease statuses Yj, and where

Pα,β(Yj | Xj) =
∏

i∈Pj

η(α +XT
i β)

Yi{1− η(α +XT
i β)}1−Yi .
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Figure 1 depicts three examples of group testing schemes.

[Figure 1 about here.]

Explicit expressions for P (Aj|Yj) under each of the group testing procedures depicted in

Figure 1 are provided in Web Appendix A in the Supplementary Material. We restrict our

remarks here to saying that master pool testing induces a likelihood in which the summation

over supp{Yj} in (2) admits a convenient simplification, but this is not the case for Dorfman

or array testing. We note that for Dorfman testing |supp{Yj}| = 2|Pj |, so that if individuals

are pooled into groups of size 10, 210 = 1,024 values must be summed to compute the

contribution to the log-likelihood of one pool, which is not very burdensome. For array

testing, however, |supp{Yj}| = 2dj×dj , where dj is the array dimension, so that computing

the contribution to the log-likelihood of a single 4 × 4 array would require summing over

216 = 65,536 values, and that of a single 5 × 5 array would require summing over 225 =

33,554,432 values.

In spite of the complicated form of the likelihoods induced by pooled testing procedures,

the maximum likelihood estimator may be found with an EM algorithm in which the true

unobserved disease statuses Y1, . . . , YN are treated as missing data.

3. Penalized estimation under group testing

We consider penalized maximum likelihood estimators of the form

(α̂, β̂) = argmin
(α,β)∈R×Rp

− ℓ(α, β;DN ) + λP ω
θ (β), (3)

where ℓ(·, ·;DN) is the log-likelihood induced by the group testing procedure, and

P ω
θ (β) = (1− θ)

1

2

p∑

j=1

β2
j + θ

p∑

j=1

ωj|βj|

with θ ∈ [0, 1] is a generalized version of the elastic net penalty (Zou, 2006; Zou and Zhang,

2009) with the weights ω1, . . . , ωp ∈ [0,∞] applied to the ℓ1 norm.

The form of the penalty is motivated by a sparsity assumption, i.e., the belief that not
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all the covariates are active in the true model. In particular, we assume that the set S0 =

{j : β0j 6= 0} of truly active covariates has cardinality |S0| < p, so that the number of truly

active covariates is less than the number p of covariates considered.

Writing P ω
θ (β) as Pθ(β) when ω is a p-length vector of ones, we define the maximum

likelihood, elastic net, and adaptive elastic net estimators of (α0, β0) as

(α̂mle, β̂mle) = argmin
(α,β)∈R×Rp

− ℓ(α, β;DN )

(α̂enet, β̂enet) = argmin
(α,β)∈R×Rp

− ℓ(α, β;DN ) + λPθ(β)

(α̂aenet, β̂aenet) = argmin
(α,β)∈R×Rp

− ℓ(α, β;DN ) + λP ω̂
θ (β),

respectively, where we consider choosing ω̂ as

ω̂enet = (|β̂enet
1 |−γ, . . . , |β̂enet

p |−γ) or ω̂mle = (|β̂mle
1 |−γ, . . . , |β̂mle

p |−γ),

for some γ > 0. Each of these estimators are instances of the general estimator given in (3).

Under the weights ω̂enet the elastic net estimator passes its sparsity to the adaptive elastic net

estimator, as each covariate eliminated by the elastic net receives in the adaptive step a weight

of +∞. The weights ω̂mle encourage sparsity according to the magnitudes of the maximum

likelihood coefficients. The elastic net and the adaptive elastic net estimators become the

lasso and adaptive lasso estimators, respectively, when θ = 1, and θ = 0 corresponds to

ridge regression. It is common to choose γ = 1 (Huang et al., 2008; van de Geer et al., 2011;

Bühlmann and van de Geer, 2011), and we do so in our simulations and data analysis.

We remark that group testing data is intrinsically “large-N”. Indeed, group testing pro-

cedures are used because the number of individuals N is large. The dimension p of the

covariates X1, . . . , XN is typically very small in comparison to N , so we are not concerned

with a high-dimensional regime in which p exceeds (or grows with, in some sense) the number

of individuals N . These penalized estimators, though they are in recent literature more and

more associated with high-dimensional applications, are still of interest in low-dimensional
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settings for the sake of variable selection. But they offer another advantage: It may happen

in binary regression that the unpenalized maximum likelihood estimator is undefined, due,

for example, to complete separation or quasi-complete separation, under which the fitted

coefficients diverge to ±∞ in order to achieve fitted probabilities of 0 or 1 (Albert and

Anderson, 1984). When this is the case, penalization of the form in (3) can prevent the

parameter estimates from diverging (Friedman et al., 2010).

4. EM algorithm for the penalized estimator

For any group testing procedure, we may express the log of the joint probability of the

observed data DN and the set of unobserved true individual statuses Y = {Y1, . . . , YN} as

ℓ̃(α, β;DN ,Y) =
N∑

i=1

logPα,β(Yi | Xi) + C(DN ,Y),

where C(DN ,Y) depends on the testing procedure but not on (α, β), and where

logPα,β(Yi | Xi) = Yi log η(α +XT
i β) + (1− Yi) log{1− η(α +XT

i β)}.

Assuming that we may compute the conditional expections Eα,β(Yi | DN) for i = 1, . . . , N ,

where Eα,β denotes expectation under (α0, β0) = (α, β), the maximum likelihood estimator

(α̂mle, β̂mle) can be found via the EM algorithm through the updates

(α, β)(k+1) := argmax
(α,β)∈R×Rp

E(α,β)(k)

{
N∑

i=1

logPα,β(Yi | Xi) | DN

}
, (4)

starting from some initial value (α, β)(0) ∈ R× R
p, where computing the conditional expec-

tation in (4) involves only computing the E(α,β)(k)(Yi|DN) for i = 1, . . . , N .

Moreover, we can compute the penalized maximum likelihood estimator from (3) by

applying the elastic net penalty to each update in (4). This gives the EM algorithm updates

(α, β)(k+1) := argmax
(α,β)∈R×Rp

E(α,β)(k)

{
N∑

i=1

logPα,β(Yi | Xi) | DN

}
− λP ω

θ (β),

starting from some initial value (α, β)(0) ∈ R× R
p.

Each update of the penalized EM-algorithm may be computed via the coordinate descent

algorithm of Friedman et al. (2010); in each update, we simply compute an elastic-net

Page 8 of 27Biometrics



8 Biometrics, 000 0000

penalized logistic regression estimator where the responses are the conditional expectations

of Y1, . . . , YN at the current parameter values. This is summarized in Algorithm 1, in which

we describe the EM algorithm for maximizing (3) for any choice of θ, λ, and ω. Algorithm

S.1 in Web Appendix B of the Supplementary Material gives the complete details of the

coordinate descent algorithm. Web Appendix C of the Supplementary Material discusses

computing the elastic net and adaptive elastic net estimators over many values of the tuning

parameter λ ∈ [0,∞] with “warm starts” to speed up computation.

Data: pooled testing data DN , initial value (α, β)(0) ∈ R× R
p, stopping criterion δ,

tuning parameters λ, θ, and ω1, . . . , ωp.

Result: argmin
(α,β)∈R×Rp

− ℓ(α, β;DN ) + λP ω
θ (β)

∆† ←− δ + 1

(α, β)† ←− (α, β)(0)

while ∆† > δ do

(α, β)‡ ←− (α, β)†

Y ∗
i ←− E(α,β)‡(Yi | DN), i = 1, . . . , N

(α, β)† ←− argmax
(α,β)∈R×Rp

∑N
i=1 Y

∗
i log η(α+XT

i β)+(1−Y ∗
i ) log{1−η(α+XT

i β)}−λP ω
θ (β)

∆† ←− max{|α† − α‡|, |β†
1 − β‡

1|, , . . . , |β†
p − β‡

p|}
(α̂, β̂)←− (α, β)†

Algorithm 1: EM-algorithm to compute the penalized estimator of (3).

We note that the group testing procedure itself enters the EM-algorithm only in the

computation of the conditional expectations Eα,β(Yi | DN), for i = 1, . . . , N .

For any group testing procedure, we have

Eα,β(Yi | DN) =
Pα,β(Aj | Yi,Xj)Pα,β(Yi | Xi)

∣∣
Yi=1∑1

yi=0 Pα,β(Aj | Yi,Xj)Pα,β(Yi | Xi)
∣∣
Yi=yi

,
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for i ∈ Pj, and in general

Pα,β(Aj | Yi,Xj) =
∑

supp{Y
(−i)
j }

P (Aj | Yi,Y(−i)
j )Pα,β(Y(−i)

j | X (−i)
j ),

where Y(−i)
j = {Yi′ , i 6= i′ ∈ Pj} and X (−i)

j = {Xi′ , i 6= i′ ∈ Pj}.

We may compute Eα,β(Yi | DN) exactly under master pool or Dorfman testing at no great

computational cost. Under array testing, however, we recommend an MCMC approximation

to Eα,β(Yi|DN) which we describe in Web Appendix D of the Supplementary Material.

5. Technical results

In this section we give results concerning the behavior of the adaptive elastic net estimator

under mild assumptions. We have placed our assumptions, (A.1), (A.2), and (A.3), as well

as the complete proofs of the results that follow in Web Appendix E of the Supplementary

Material, and we discuss them here only briefly. Assumption (A.1) ensures that as N

increases, so does the number of groups of individuals and thus the number of independent

contributions to the likelihood. This allows us to frame our asymptotics in terms of the

number of individuals N . Assumption (A.2) guarantees that the asymptotic covariance

matrix of our estimator is positive definite. It generally holds if the assay has a nontrivial

diagnostic ability; i.e. the sum of the assay sensitivity and specificity is not equal to 1.

Assumption (A.3) guarantees bounded third partial derivatives of the log-likelihood function.

Both Assumptions (A.2) and (A.3) are standard in deriving the asymptotic normality of a

maximum likelihood estimator; e.g., see Lehmann and Casella (2006).

We begin with the following preliminary result concerning the behavior of the non-adaptive

elastic net and the maximum likelihood estimator. The result tells us that both of these

estimators are suitable for defining the weights for the adaptive estimator.

Lemma 1: Under Assumptions (A.1), (A.2), and (A.3) and for any θ ∈ [0, 1], if λN−1/2 →

0 as N → ∞, then there exists a local minimizer of −ℓ(α, β;DN ) + λPθ(β), denoted by
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(α̃, β̃T )T , such that

|α̃− α0| = Op(N
−1/2) and ‖β̃ − β0‖ = Op(N

−1/2). (5)

Remark 1: When λ = 0, α̃ = α̂mle and β̃ = β̂mle; when λ > 0, α̃ = α̂enet and β̃ = β̂enet.

To state our main result concerning the adaptive elastic net estimator, the proof of which

makes use of Lemma 1, we require the following notation: For any set S ⊂ {1, . . . , p}, denote

by βS the vector formed by keeping the entries in β with indices in S. Moreover, let I(α0, β0)

be the information matrix corresponding the log-likelihood ℓ(α, β;DN ) evaluated at the true

parameter values (α0, β0), and let IS0,S0(α0, β0) be the submatrix of I(α0, β0) formed by

keeping the rows and columns with indices in S0.

Theorem 1: Under Assumptions (A.1), (A.2), and (A.3) and for any θ ∈ (0, 1], if

λN−1/2 → 0 and λN (γ−1)/2 →∞ as N →∞, then

(1) P (β̂aenet
Sc
0

= 0)→ 1

(2)
√
N







α̂aenet

β̂aenet
S0


−




α0

β0S0





→ N{0, IS0,S0(α0, β0)

−1} in distribution.

Remark 2: Theorem 1 holds for either choice of weights ω̂mle and ω̂enet in the construction

of the adaptive elastic net estimator. Note that Lemma 1 shows ‖β̂enet−β0‖ = Op(N
−1/2) or

‖β̂mle−β0‖ = Op(N
−1/2), which is the key in Theorem 1. For inactive covariates, the weights

approach infinity, whereas the weights for active covariates converge to finite constants. Thus,

with a good choice of tuning parameters (θ, λ), where θ > 0, the estimator β̂aenet would

(asymptotically) identify the set of inactive covariates and estimate the nonzero coefficients

without bias. On the other hand, if θ = 0, then selection consistency; i.e., P (β̂aenet
Sc
0

= 0)→ 1,

cannot be achieved because the lasso-type penalty vanishes. However, if we keep λN−1/2 →
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0 as N → ∞, we still have a root-N consistent estimator; i.e.,
√
N{(α̂aenet, β̂aenetT )T −

(α0, β
T
0 )

T} → N{0, I(α0, β0)
−1} in distribution.

Remark 3: Even though the adaptive elastic net estimators of the nonzero coefficients

are asymptotically Normal, there is empirical work which suggests that the convergence is

quite slow, and that Wald-type confidence intervals for the coefficients in β0S0 will have

poor coverage. For example, it was demonstrated in Das et al. (2017) that the values

of λ which ensure good variable selection properties (larger values of λ) tend to result

in subnominal coverage of Wald-type intervals; smaller values of λ, under which variable

selection performance is poor, result in closer-to-nominal coverage of Wald-type intervals.

We emphasize that it is the variable selection result, statement (1) of Theorem 1, which

is of primary interest in regularized regression modeling, while the asymptotic Normality

result, statement (2) of Theorem 1, comes as a theoretical byproduct and is seldom used by

practitioners to conduct Wald-type inference.

6. Selection of tuning parameters

For testing procedures under which the log-likelihood can be computed, many standard

model comparison criteria are available for choosing λ and θ, such as the BIC or the ERIC

criterion from Hui et al. (2015). It is not guaranteed that these criteria will select a sequence

of λ values which satisfies the conditions of Theorem 1 as N → ∞, but they offer, for a

fixed sample size N , a reasonable way to compare model fits at different values of λ and θ,

allowing these to be chosen from the data.

For the estimator (α̂, β̂) minimizing (3), we define the BIC and ERIC criteria as

BIC(α̂, β̂) = −2ℓ(α̂, β̂;DN) + d̂f(α̂, β̂) log(N)

ERIC(α̂, β̂) = −2ℓ(α̂, β̂;DN) + d̂f(α̂, β̂) log(N/λ),
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where the degrees of freedom df(α̂, β̂) of the estimator (α̂, β̂) is estimated by

d̂f(α̂, β̂) = 1 + tr

[
ΞŜ

{
ΞT
Ŝ
ŴΞŜ + λ(1− θ)I|Ŝ|

}−1

ΞT
Ŝ
Ŵ

]
,

where Ŝ = {j ∈ {1, . . . , p} : β̂j 6= 0}, ΞŜ is the matrix containing the columns Ŝ of the

N × p design matrix Ξ = (XT
1 , . . . , X

T
N )

T , and Ŵ is a diagonal matrix with diagonals entries

ŵii = η(α̂ +XT
i β̂){1− η(α̂ +XT

i β̂)}, i = 1, . . . , N (Tibshirani and Taylor, 2012).

We remark that under master pool and Dorfman testing the log-likelihood ℓ(α̂, β̂;DN)

can be computed rather easily, provided that the pool size under Dorfman testing is not

too large. Under array testing, however, since supp{Yj} is typically too large to allow exact

computation of the log-likelihood, we choose to approximate the log-likelihood contribution

Pα,β(Aj | Xj) of the jth array by the Monte Carlo approximation B−1
∑B

b=1 P (Aj | {Y (b)
i , i ∈

Pj}), where Y
(b)
i ∼ Bernoulli{η(α + XT

i β)}, independent, for i ∈ Pj, b = 1, . . . , B, with B

large, by way of importance sampling.

An alternative to using the BIC or ERIC criteria is to choose the tuning parameters via

a likelihood-based crossvalidation procedure in which pools of individuals are removed in

order to obtain training and testing folds. We describe a crossvalidation procedure for group

testing in detail in Web Appendix F of the Supplementary Material.

For the adaptive elastic net estimator under the weights ω̂mle, the tuning parameter needs

only to be chosen once, in the adaptive step. However, under the weights ω̂enet, a pair

of tuning parameters (λ, θ) must also be selected for the initial estimator. Each of the

methods discussed above, BIC, ERIC, and crossvalidation, can be used in selecting the

tuning parameters for the initial estimator and then used a second time for selecting the

tuning parameters for the adaptive estimator.
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7. Analysis of Iowa Chlamydia Data

In this section, the proposed methodology is used to analyze chlamydia data collected by the

State Hygienic Laboratory (SHL) in Iowa City during the 2014 calendar year. The current

screening protocols implemented by the SHL require that all male specimen and female

urine specimen be tested individually. In contrast, female swab specimen are tested in pools

(usually of size 4), with positive pools being resolved through individual level testing; for

further discussion of the screening protocol implemented by the SHL see McMahan et al.

(2017) and the references therein. Thus, this analysis focuses solely on the test results that

were collected on the N =13,862 female subjects screened during the 2014 calendar year.

The available data consists of test results taken on 2,273 swab master pools of size 4, 12

swab master pools of size 3, 1 swab master pool of size 2, 416 individual swab specimen, and

4,316 individual urine specimen, as well as the test results required to resolve positive master

pools. There are 10 covariates: age in years, race indicators (Caucasian, African American,

and other), sexual practice indicators (a new sexual partner was reported in the last 90

days, multiple partners were reported in the last 90 days), a risk indicator (the individual

had contact with a partner having any sexually transmitted disease reported in the previous

year), clinical symptom indicators (the individual presented with common symptoms of

infection, cervicitis, pelvic inflammatory disease), and a specimen type indicator.

[Figure 2 about here.]

Figure 2 displays the solution paths for the elastic net and adaptive elastic net under the

weights ω̂mle across 30 values of the tuning parameter λ for the θ values 0, 1/8, 1/4, 1/2 and

1, where θ = 0 corresponds to ridge regression and θ = 1 corresponds to the lasso. The open

symbols in Figure 2 trace the solution path of the elastic net estimator and the filled symbols

that of the adaptive elastic net estimator. Note that when θ = 0, the adaptive part of the

penalty in (3) is removed, as it affects only the ℓ1 norm, so there is no adaptive estimator.
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Also indicated in Figure 2 are the tuning parameter choices made from the 30 × 5 grid

of candidate (λ, θ) pairs for the elastic net and adaptive elastic net under the weights ω̂mle

by 5-fold crossvalidation and by the BIC and ERIC criteria. Table 1 displays the values

of the adaptive elastic net estimator under the weights ω̂mle as well as the values of the

non-adaptive elastic net estimator and the unpenalized maximum likelihood estimator. The

tuning parameter selections for each estimator are also shown; when the weights ω̂enet are

used, the tuning parameters are selected twice, once for the initial estimator and once for the

adaptive estimator. When the weights ω̂mle are used, fewer variables are eliminated. Table

1 also shows for which coefficients the maximum likelihood estimator had a p-value less

than 0.01 (indicated by asterisks) for the equal-to-zero null hypothesis. The p-values of the

maximum likelihood coefficients are computed with respect to a Normal distribution with

mean 0 and covariance matrix given by the inverse of the observed information as computed

via Louis’ method (see Web Appendix G of the Supplementary Material). If variables were

identified as active on this basis, the selections would agree with those of the adaptive elastic

net under the crossvalidation, BIC, and ERIC tuning parameter selection methods when the

elastic net weights ω̂enet are used. In Web Appendix H of the Supplementary Material we

provide a plot of the solution paths computed on each of the 5 crossvalidation training sets.

Reassuringly, the results from this analysis are in agreement with previous epidemiological

knowledge of chlamydia infection in females (e.g., see Navarro et al., 2003). In particular,

all of the considered regression methodologies identified an increase risk of chlamydia in-

fection being attributable to having a new sexual partner within the last 90 days, having

multiple partners during the last 90 days, having had contact with a partner having any

sexually transmitted disease reported in the previous year, and having common symptoms

of infection. Interestingly, evidence of cervicitis and pelvic inflammatory disease do not seem

to be important in the presence of the other variables, likely because these risk factors are
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accounted for through the symptom indicator. When compared to other ethnic backgrounds,

Caucasian (African American) females appear to be at lower (higher) risk of chlamydia

infection. Lastly, risk seems to diminish with age, while the specimen type does not appear

to be related. In conclusion, in this analysis the proposed regression methodologies generally

provided for the same conclusions that would be obtained under the maximum likelihood

approach. This is not always the case as is demonstrated through numerical simulation in

the following section.

[Table 1 about here.]

8. Simulation studies

We study via simulation the variable selection, prediction, and estimation performance of

the adaptive elastic net estimator. We compare its predictive and estimation performance to

those of the unpenalized maximum likelihood estimator and of the oracle estimator, which

is the unpenalized maximum likelihood estimator computed only considering the set of truly

active covariates, that is, only the covariates in S0 = {j : β0j 6= 0}.

To simulate group testing data we generate individual covariate observationsX1, . . . , XN as

independent realizations of a random variableX from a multivariate normal distribution with

some covariance matrix Σ. Then we generate true disease statuses Y1, . . . , YN as independent

Bernoulli random variables with success probabilities η(α0 + XT
i β0), i = 1, . . . , N . We

generate assay results A1, . . . ,AJ from Y1, . . . , YN according to a group testing procedure,

and we compute our estimators based on the observed data X1, . . . , XN and A1, . . . ,AJ . In

all simulations, pools were formed at random, i.e. without regard to covariate values.

We consider the following models for generating the covariate values and disease statuses:

Model 1: α0 = −4, β0 = (2/3, 1/3, 1, 0 · 1T7 )T , with Σ = 0.5 · 1101T10 + 0.5 · I10, where Id is the

d× d identity matrix and 1d is a d× 1 vector of ones, under which the disease prevalence is
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Eη(α0+XTβ0) ≈ 0.051. This model has 3 active covariates of 10 and the correlation between

all pairs of covariates is 0.5.

Model 2: α0 = −4, β0 = {(−3/4,−1/2,−1/4, 1/4, 1/2, 3/4)T , 0·1T12}T , with Σ = {2−|l−l′|}16l,l′618

under which the disease prevalence is Eη(α0 +XTβ0) ≈ 0.082. There are 6 active covariates

of 18 and all pairs of covariates have correlations of various strengths.

Model 3: α0 = −3, β0 = {1T8 ⊗ (1/2, 0, 0)T}T , with Σ = I8 ⊗ {(9/10)|l−l′|}16l,l′63, under

which the disease prevalence is Eη(α0 +XTβ0) ≈ 0.092. There are 6 active covariates of 24,

and active covariates are independent from each other but each active covariate is highly

correlated with two inactive covariates.

We consider estimating (α0, β0) from each of the above models under master pool, Dorfman,

and array testing, where individuals are grouped into pools of size 5 under master pool and

Dorfman testing and into 5 × 5 arrays under array testing. We also consider estimating

(α0, β0) when individual testing instead of group testing is used. We consider sample sizes of

N = 1,000 and N = 5,000 individuals. To assays on pools of more than one individual under

any group testing procedure, we assign the sensitivity 0.92 and specificity 0.96 and to assays

on single individuals we assign the sensitivity 0.95 and the specificity 0.98. We consider both

choices of the weights ω̂enet and ω̂mle which may be used to construct the adaptive elastic

net estimator. When the weights ω̂enet are used, λ and θ are chosen separately for the initial

estimator and for the adaptive estimator. We consider selecting θ and λ by crossvalidation,

BIC, and ERIC as described in Section 6, considering a 30× 3 grid of 30 candidate λ values

for each θ, with candidate θ values of 1/4, 1/2, and 1.

Table 2 gives Monte Carlo estimates under N = 10,000 of the quantity

E[E{η(α0 +XTβ0)− η(α̂ +XT β̂)|α̂, β̂}2]1/2 × 100, (6)

which represents the expected error when predicting the probability of disease for a randomly

selected individual, scaled by 100 to render it in percentage points. The inner expectation
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is approximated via 10,000 Monte Carlo draws of X and the outer expectation is estimated

from 500 simulated data sets (standard errors are given in parentheses). For each model

and each testing procedure we present in bold face the highest and the two lowest expected

prediction errors across all estimators (apart from the oracle, which always achieves the lowest

expected prediction error); the maximum likelihood estimator is the worst performer under

every model and assay scheme. Results are similar when we consider the mean estimation

error E‖(α̂, β̂T )T − (α0, β
T
0 )

T‖. These results as well as all N = 1,000 results are provided in

Tables S.1–S.4 and Figures S.2–S.13 in Web Appendix I of the Supplementary Material.

We provide also in the “procedure” column of Table 2 the average number of assays

performed on the sets of N = 5,000 individuals under each group testing scheme. This is

fixed at 1,000 under master pool testing with master pools of size 5 and fixed at 5,000 under

individual testing. Under Dorfman and array testing, however, the total number of assays is

random. The expected prediction errors achieved under Dorfman and array testing are very

close to, and in some cases better than those achieved under individual testing, even though

they require many fewer assays; this highlights the potential of group testing to reduce costs

without compromising estimation performance.

[Table 2 about here.]

To give a sense of the variable selection performance of the adaptive elastic net estimator

we depict in Figure 3 the frequencies with which each covariate was selected under Model

1 when Dorfman testing was being utilized and the tuning parameters were being selected

via crossvalidation, BIC, and ERIC. The bottom rows of the figure display the proportion

of times the selected set of covariates contained and was equal to the true set of active

covariates. For the larger sample size N = 5,000, each relevant covariate is selected with

greater frequency and the true set of active covariates is more often selected, heuristically

demonstrating the selection consistency of the adaptive elastic net estimator under these
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data-based choices of the tuning parameters. Further, we see that the estimator is effective

under both weight choices ω̂enet and ω̂mle.

[Figure 3 about here.]

In addition to these studies, we also conducted a robustness study to assess the adaptive

elastic net estimator when it is fit using incorrect values of sensitivity and specificity. Our

results, summarized in Table S.5 in Web Appendix J of the Supplementary Material, show

that the adaptive elastic net is still a reliable estimator under moderate misspecification of

these quantities. We also conducted a simulation study comparing the performance of the

non-adaptive elastic net and the adaptive elastic net for variable selection as the sample size

is increased; Figure S.14 in Web Appendix K of the Supplementary Material shows that the

adaptive estimator achieved much better results, as the theory suggests.
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Figure 1. Illustration of three group testing procedures: (a) Master pool testing, the pooled
specimen (formed by combining the specimen collected from the individuals identified by
Pj = {1, 2, 3, 4}) is assayed yielding Z̃j1 so that Aj = {Z̃j1}. (b) Dorfman testing, first stage
proceeds identically to master pool testing. If the master pool tests negative, then Z̃j1 = 0
and Aj = {Z̃j1 = 0}; if it tests positive, each of the individuals is retested individually
and Aj = {Z̃j1 = 1, Z̃j2, Z̃j3, Z̃j4, Z̃j5}, where Z̃j2, Z̃j3, Z̃j4, Z̃j5 are the individual level testing
outcomes. (c) Array testing, the individuals in Pj = {1, 2, . . . , 16} are assigned to a 4×4 array.
Row and column pools are formed and assayed yielding four column outcomes Z̃j1, . . . , Z̃j4

and four row outcomes Z̃j5, . . . , Z̃j8. If an individual’s row and column pools are both positive
then he/she is retested individually; if there are no such individuals in an array, all individuals
in the array belonging to a single positive pool are retested; see Kim et al. (2007). In this
example, the first two rows and the first two columns test positive, so that individuals 1, 2,
5, and 6 are retested, producing the individual level testing outcomes Z̃j9, Z̃j10, Z̃j11, Z̃j12. In
this case Aj = {Z̃j8 = Z̃j7 = Z̃j1 = Z̃j2 = 1, Z̃j3 = Z̃j4 = Z̃j5 = Z̃j6 = 0, Z̃j9, Z̃j10, Z̃j11, Z̃j12}.
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Figure 2. Elastic net and adaptive elastic net (with weights ω̂mle) solution paths for the
Iowa Chlamydia data over 25 values of the tuning parameter λ for θ ∈ {0, 1/8, 1/4, 1/2, 1}.
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Figure 3. Variable selection results under Model 1 under Dorfman testing from 500
simulations by the adaptive elastic net estimator under both choices of weights ω̂enet and
ω̂mle under crossvalidation (CV), BIC, and ERIC choices of the tuning parameters λ and θ.
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aenet (ω̂mle) aenet (ω̂enet)
mle CV BIC ERIC CV BIC ERIC

Intercept *-0.93 -1.02 -0.88 -0.93 -0.89 -0.92 -1.00
Age *-0.07 -0.06 -0.07 -0.07 -0.07 -0.07 -0.06

White *-0.32 -0.18 -0.32 -0.27 -0.33 -0.32 -0.27
Black 0.05 . 0.02 0.05 . . .
NewP *0.28 0.13 0.26 0.22 0.27 0.27 0.24
MultP *0.33 0.14 0.31 0.28 0.33 0.33 0.29

RskCon *1.40 1.34 1.37 1.12 1.40 1.38 1.26
Symp *0.26 0.13 0.26 0.26 0.29 0.30 0.28
Swab 0.07 . 0.06 0.06 . . .
Cerv 0.18 . 0.15 0.15 . . .
PID 0.23 . . . . . .

λ . 8.89 2.49 20.77 14.54 2.16 10.83
θ . 1 1 1/4 1/2 1/8 1/8

Table 1

The maximum likelihood estimator (α̂mle, β̂mle) and the adaptive elastic net estimator (α̂aenet, β̂aenet), with the

weights ω̂mle and ω̂enet, respectively, under the tuning parameter selections made by crossvalidation (CV), BIC, and
ERIC. For the maximum likelihood estimator, ‘*’ denotes a p-value less than 0.01 when testing whether the

coefficient is equal to zero. Tuning parameter selections are shown in the bottom two rows.
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aenet (ω̂enet) aenet (ω̂mle)
model procedure oracle mle CV BIC ERIC CV BIC ERIC

1 masterpool 1.47 2.74 2.28 2.30 2.39 2.20 2.30 2.38
# assays: 1000 (0.03) (0.03) (0.03) (0.04) (0.04) (0.03) (0.04) (0.04)

Dorfman 0.96 1.73 1.34 1.27 1.38 1.32 1.28 1.38
avg. # assays: 2212 (0.02) (0.02) (0.02) (0.03) (0.03) (0.02) (0.03) (0.02)

array 0.98 1.67 1.38 1.31 1.46 1.42 1.42 1.49
avg. # assays: 2578 (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03) (0.03)

individual 1.02 1.80 1.41 1.39 1.53 1.40 1.43 1.54
# assays: 5000 (0.02) (0.02) (0.02) (0.03) (0.03) (0.02) (0.03) (0.03)

2 masterpool 2.41 4.15 3.33 3.44 3.74 3.30 3.57 3.77
# assays: 1000 (0.03) (0.03) (0.04) (0.05) (0.05) (0.03) (0.05) (0.05)

Dorfman 1.52 2.59 1.99 1.72 1.97 1.97 1.90 2.07
avg. # assays: 2735 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

array 1.51 2.59 2.09 1.81 1.95 2.08 1.97 2.11
avg. # assays: 2846 (0.02) (0.02) (0.03) (0.02) (0.03) (0.03) (0.03) (0.03)

individual 1.56 2.65 2.04 1.77 2.01 2.02 1.98 2.13
# assays: 5000 (0.02) (0.02) (0.02) (0.03) (0.03) (0.02) (0.03) (0.03)

3 masterpool 2.98 5.32 4.43 6.07 5.10 4.40 4.95 5.05
# assays: 1000 (0.03) (0.03) (0.04) (0.16) (0.08) (0.04) (0.08) (0.07)

Dorfman 1.69 2.85 2.17 1.91 2.19 2.13 2.12 2.33
avg. # assays: 2877 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

array 1.68 2.85 2.33 2.04 2.24 2.31 2.24 2.40
avg. # assays: 2938 (0.02) (0.02) (0.03) (0.02) (0.03) (0.03) (0.03) (0.03)

individual 1.70 2.91 2.20 1.91 2.22 2.16 2.14 2.35
# assays: 5000 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Table 2

Monte Carlo estimates over 500 simulation runs of E[E{η(α0 +XTβ0)− η(α̂+XT β̂)|α̂, β̂}2]1/2 × 100 at N = 5000

when the estimator (α̂, β̂T )T is the oracle estimator, the maximum likelihood estimator, and the adaptive elastic net
estimators under crossvalidation (CV), BIC, and ERIC tuning parameter selection. Standard errors are given in

parentheses.
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