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ABSTRACT
Laboratory assays used to evaluate biomarkers (biological mark-
ers) are often prohibitively expensive. As an efficient data collection
mechanism to save on testing costs, pooling has becomemore com-
monly used in epidemiological research. Useful statistical methods
have been proposed to relate pooled biomarker measurements to
individual covariate information. However, most of these regression
techniques have proceeded under parametric linear assumptions.
To relax such assumptions, we propose a semiparametric approach
that originates from the context of the single-index model. Unlike
with traditional single-index methodologies, we face a challenge in
that the observed data are biomarkermeasurements on pools rather
than individual specimens. In this article, we propose a method that
addresses this challenge. The asymptotic properties of our estima-
tors are derived. We illustrate the finite sample performance of our
estimators through simulation and by applying it to a diabetes data
set and a chemokine data set.
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1. Introduction

Pooled testing was originally proposed by Dorfman (1943) to detect syphilis among U.S.
army recruits during World War II. The general idea is to test pooled specimens formed
from combining individual specimens (e.g. blood, urine, plasma, etc.) rather than to
test each specimen separately. Since Dorfman’s seminal work, pooled testing has been
recognised as a cost-effective strategy to perform large-scale screening for rare infectious
diseases. In addition to reducing testing costs, pooling specimens can also preserve irre-
placeable specimens, tackle the hindrance of detection limits and reduce the impact of
potential outliers (Schisterman, Vexler, Yi, and Perkins 2011). Because of these bene-
fits, pooled testing has been employed in a variety of areas, including infectious disease
screening (Van et al. 2012), genetics (Gastwirth 2000), blood safety (Dodd, Notari, and
Stramer 2002), drug discovery (Remlinger, Hughes-Oliver, Young, and Lam 2006) and
animal ecology (Dhand, Johnson, and Toribio 2010).

In addition to being used for case identification, pooling has also been implemented
for the purposes of estimation. Thompson (1962) considered estimating the proportion
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of a certain characteristic using binary responses measured on pools. Farrington (1992),
Vansteelandt, Goetghebeur, and Verstraeten (2000), Xie (2001) and Wang, McMahan,
and Gallagher (2015) used generalised linear models to relate binary pooled responses
to individual covariate information. Recently, nonparametric (Delaigle and Meister 2011;
Delaigle and Hall 2012; Wang, Zhou, and Kulasekera 2013) and semiparametric (Wang,
McMahan, Gallagher, and Kulasekera 2014; Delaigle, Hall, and Wishart 2014) regression
methodologies have been proposed for pooled testing data. It is important to note that the
articles in this paragraph specifically addressed modelling binary outcomes.

More generally, pooling has also been expanded to assess biomarkers, where contin-
uous assessments (such as biomarker concentration levels) are produced (Weinberg and
Umbach 1999; Vexler, Liu, and Schisterman 2006; Whitcomb, Perkins, Zhang, Ye, and
Lyles 2012). Early statistical research in this area mainly focused on the evaluation of
diagnostic tools by estimating the receiver-operating characteristic curve and the cor-
responding area under it (see Schisterman, Faraggi, Reiser, and Trevisan 2001; Faraggi,
Reiser, and Schisterman 2003; Liu and Schisterman 2003; Mumford, Schisterman, Vexler,
and Liu 2006; Bondell, Liu, and Schisterman 2007; Vexler, Schisterman, and Liu 2008).
More recently, regression problems that relate continuous biomarker responses measured
on pools to individual level covariates have been considered. Ma, Vexler, Schisterman,
and Tian (2011) and McMahan, McLain, Gallagher, and Schisterman (2016) used a lin-
ear regression model for pooled biomarker responses under the assumption that the
individual biomarker levels are conditionally Gaussian given the individual covariates.
Under this same assumption, Malinovsky, Albert, and Schisterman (2012) proposed a
model that incorporates random effects. Because many biomarkers tend to have right-
skewed distributions, Mitchell et al. (2014) explored linear regression analysis under
the assumption that individual biomarker levels follow a log-normal distribution. All of
these regression techniques were constructed under a parametric linear model and an
assumption that the type of the biomarker distribution is known. If the linear model does
not hold or the distribution is misspecified, these methods would lead to biased esti-
mates.

In this paper, we propose a semiparametric method to model pooled data with con-
tinuous responses and individual covariate information, which overcomes the curse
of dimensionality and maintains the important advantage of nonparametric flexibility.
Furthermore, our estimation procedure does not require any prior knowledge on the
biomarker distribution. The new methodology is proposed in the context of the single-
index model. Instead of assuming a linear model, the single-index model assumes the
mean of an individual response is related to a linear combination of the covariates through
an unknown smooth function. It is a popular semiparametric model to accommodate
multi-dimensional covariates while retaining the interpretability of the regression coef-
ficients, see, for example, Ichimura (1993), Härdle, Hall, and Ichimura (1993), Klein and
Spady (1993), Xia, Tong, Li, and Zhu (2002), Xia (2006), Zhu and Xue (2006) and Cui, Här-
dle, and Zhu (2011), who consider responses available on the individual level. In pooled
testing, of course, the data aremeasured on pools. Existing single-indexmethods in pooled
testing were proposed byWang et al. (2014) and Delaigle et al. (2014) for binary responses.
This article presents a new single-index technique to analyse continuous pooled outcomes.
We illustrate that when the population size is fixed, pooling could significantly reduce test-
ing costs with only aminor loss in accuracy. On the other hand, when the number of assays
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is limited, testing pooled specimens does not compromise the estimation when compared
to testing individual specimens.

The rest of this article is organised as follows. In Section 2, we present our semipara-
metric regression model to analyse biomarkers measured on pooled specimens, and in
Section 3, we establish the asymptotic properties of the proposed estimators. We assess
the performance of our methods using simulation in Section 4 and apply them to a dia-
betes data set from the National Health and Nutrition Examination Survey (NHANES) in
Section 5.1 and a chemokine data set obtained from the Collaborative Perinatal Project
(CPP) in Section 5.2. A discussion is given in Section 6, and regularity conditions are
provided in the Appendix. Proofs and additional simulation results are provided in the
Web-based Supplementary Materials.

2. Model andmethodology

2.1. Assumptions

We consider the situation in which J laboratory assays are taken on pools to measure a
continuous biomarker of interest. The jth pool is formed by mixing cj specimens, each
of which is obtained from an individual. The total number of individuals is denoted by
N = ∑J

j=1 cj. We let Yij and Xij = (Xij1, . . . ,Xijp)
� denote the continuous biomarker level

and the p-dimensional covariate of the ith individual in the jth pool, respectively, where
i = 1, . . . , cj and j = 1, . . . , J. Assume throughout that the (Yij,Xij)’s are independent and
identical distributed (iid) versions of (Y ,X), where the mean and variance of Y given
X = x are

E(Y | X = x) = η(x�β) and V(Y | X = x) = σ 2,

respectively, where η(·) is an unknown smooth curve, β = (β1, . . . ,βp)
� is an unknown

p-dimensional regression parameter, and σ 2 > 0. Note that we do not assume the type
of the distribution of Y | X = x to be known in advance. To ensure identifiability of a
single-index model (Lin and Kulasekera 2007), we assume that the support of the covari-
ates, denoted by X, is a bounded convex set that contains at least one interior point and
the parameter space of β is B = {β = (β1, . . . ,βp)

� : β1 > 0, ‖β‖ = 1}, where ‖β‖ =
(
∑p

j=1 β2
j )

1/2. If the (Yij,Xij)’s are observed, then traditional single-index modelling tech-
niques can be applied to estimate η(·) and β ; e.g. see Ichimura (1993), Xia (2006), Wang,
Xue, Zhu, and Chong (2010) and Cui et al. (2011). However, in pooled testing, because
assays are not taken on each individual, the Yij’s are all latent and the responses available
to us are on the pooled level.

Denote the biomarker level of the jth pooled specimen by Zj. In this article, we assume
that Zj = c−1

j
∑cj

i=1 Yij; i.e. the observed biomarker response is the arithmetic average of
the individual biomarker levels. This is a common assumption in the statistical literature
on biomarker pooling (Weinberg and Umbach 1999; Faraggi et al. 2003; Vexler et al. 2008;
Malinovsky et al. 2012; Lyles, Van Domelen, Mitchell and Schisterman 2015; McMahan
et al. 2016). We view this to be reasonable as long as each individual contributes the same
amount to the pool and there is no neutralisation while pooling. The observed data are



816 J. LIN AND D. WANG

{(Zj,X1j, . . . ,Xcjj) : j = 1, . . . , J}, where

E(Zj | X1j = x1, . . . ,Xcjj = xcj) = 1
cj

cj∑
i=1

η(x�
i β)

andV(Zj | X1j = x1, . . . ,Xcjj = xcj) = c−1
j σ 2. The goal of this work is to estimate η(·) and

β based on the observed data {(Zj,X1j, . . . ,Xcjj) : j = 1, . . . , J}.

2.2. Estimation

In what follows, we propose a method to consistently estimate η(·) and β . If η(·) was
known, then one could immediately obtain an estimate of β by minimising the weighted
least squares objective function,

S{β , η(·)} =
J∑

j=1
cj

{
Zj − 1

cj

cj∑
i=1

η(X�
ij β)

}2

,

with respect toβ . A primary challenge herein is to account for the dependence between the
infinite-dimensional parameter η(·) and the finite-dimensional parameter β . To acknowl-
edge this dependence in our notation, we write η(·) as ηβ(·); i.e. ηβ(t) = E(Yij | X�

ij β = t)
for a given β . If one can find a consistent estimator η̂β(·) of ηβ(·), then our estimator of
β can be obtained as β̂ = argmin

β∈B
S{β , η̂β(·)}. When each X�

ij β has its own response Yij

available, η̂β(·) could be obtained as the Nadaraya–Watson or the local–polynomial esti-
mator between the Yij’s and the Xijβ ’s (see, e.g. Ichimura 1993; Cui et al. 2011). However,
in our context, all the Yij’s are latent and {Xij}cji=1 share the same pooled response Zj for
each j. Constructing η̂β(·) is not straightforward.

To circumvent this, we simply treat Zj to be the response for each Xij and find out what
is E(Zj | X�

ij β = t). Noting that Zj = c−1
j
∑cj

i=1 Yij.

E(cjZj | X�
ij β = t) = E

( cj∑
i=1

Yij|X�
ij β = t

)
=
∑
l �=i

E(Ylj) + E(Yij | X�
ij β = t).

Because Yij’s are iid, we denote by μ the marginal expectation of Yij, i.e. μ = E(Yij).
Consequently, we have

E(cjZj | X�
ij β = t) = (cj − 1)μ + ηβ(t). (1)

Comparing to the case where Yij’s are available, viewing Zj as the response of Xij adds
one extra intercept term in the form of (cj − 1)μ. Equation (1) inspires the construction
of η̂β(·).

We first estimate μ. Marginally, one could easily recognise that the Zj’s are independent
variables with meanμ, so a natural estimator ofμ is μ̂ = N−1∑J

j=1 cjZj. Then, for a given
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β and t, we obtain the local linear kernel estimator η̂β(t) through minimising the local
least squares objective function,

J∑
j=1

cj∑
i=1

{cjZj − (cj − 1)μ̂ − ηβ(t) − η′
β(t)(X�

ij β − t)}2Kh(X�
ij β − t), (2)

with respect to ηβ(t) and η′
β(t), where η′

β(t) denotes the derivative of ηβ(t),K(·) is a kernel
function, h is a user-selected bandwidth and Kh(·) = h−1K(·/h). The objective function
in (2) utilises a local linear approximation that approximates η(X�

ij β) by η(t) + (X�
ij β −

t)η′(t) at a given t. Because the accuracy of such an approximation depends on the distance
betweenX�

ij β and t, the kernel termKh(X�
ij β − t)weightsX�

ij β more (less) ifX�
ij β is close

to (far away from) t. The local linear approximation became awell-accepted nonparametric
regression technique due to the seminal work (Fan 1993) where the optimality of local
linear smoothers was demonstrated for the nonparametric regression. One could easily
extend our method to incorporate a local polynomial (with a higher order) approximation
(Fan and Gijbels 1996) if ηβ(·) is smooth enough.

It is worthwhile to point out that the minimiser η̂β(t) can be expressed explicitly as

η̂β(t) = SN2(t,β)T̂N0(t,β) − SN1(t,β)T̂N1(t,β)

SN0(t,β)SN2(t,β) − S2N1(t,β)
, (3)

where

SNl(t,β) = N−1h−l
J∑

j=1

cj∑
i=1

Kh(X�
ij β − t)

(
X�
ij β − t

)l

and

T̂Nl(t,β) = N−1h−l
J∑

j=1

cj∑
i=1

{cjZj − (cj − 1)μ̂}Kh(X�
ij β − t)

(
X�
ij β − t

)l
,

for l ∈ {0, 1, 2}. Our final estimators are

β̂ = argmin
β∈B

S{β , η̂β(·)} and η̂(·) = η̂
β̂
(·). (4)

Directly minimising S{β , η̂β(·)} in B = {β = (β1, . . . ,βp)
� : β1 > 0, ‖β‖ = 1} might be

numerically difficult, because B is a part of the surface of the unit ball. To reduce such

a computational burden, we rewrite β to be β = (

√
1 − ‖β(1)‖2,β(1)�)�, where β(1) =

(β2, . . . ,βp)
�. Consequently, the parameter space is transformed from B to be B(1) =

{β(1) = (β2, . . . ,βp)
� : ‖β(1)‖ < 1}; i.e. the interior of the unit ball inR

(p−1). A numerical
search inside a ball of a lower dimension is easier than on the surface of a ball of a higher
dimension, even though theoretically they are the same.
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3. Asymptotic properties

In this section, we present the asymptotic properties of our proposed estimators. To
derive these properties, we assume that the group sizes remain finite as N → ∞. We
view this assumption to be reasonable because, in practice, the characteristics of the
assay used often bound the pool size, i.e. larger pool sizes, at a point, could adversely
affect an assay’s accuracy and therefore would not be employed. For example, in a
study on the relationship between chemokine levels and miscarriage, the levels of mono-
cyte chemotactic protein-1 (MCP1) were measured using pools of size 2 (Whitcomb
et al. 2007). In a BioCycle study, the F2-isoprostane level (a biomarker that measures
oxidative stress) was measured in pools of size 3 (Malinovsky et al. 2012). To examine
whether the pro-inflammatory cytokine interleukin-6 is a good predictor of myocardial
infarction, pools of sizes 2 and 4 were used (McMahan et al. 2016). Besides practi-
cal concerns, diverging group sizes could also lead to theoretical issues. For instance, if
cj → ∞ asN → ∞, we have E(Zj | X1j, . . . ,Xcjj) = c−1

j
∑cj

i=1 η(X�
ij β) converges in prob-

ability to μ and V(Zj | X1j, . . . ,Xcjj) = c−1
j σ 2 converges to zero. In other words, when

cj’s are large, all the Zj’s become nearly the same which makes the estimation of η(·)
and β very challenging. Hence, in this article, we focus on the scenario where cj’s are
all finite.

Because Yij’s are latent as long as cj > 1, using the method of pooling increases the
theoretical complexity when comparing to traditional single-index models. Equation (1)
provides an idea to consistently estimate the dependence between η(·) and β using
pooled responses. It treats Zj as the response for each covariate Xij in the jth group.
As a result, (Zj,Xij)’s are not iid observations as (Yij,Xij)’s. Furthermore, one needs to
estimate the extra intercept term (cj − 1)μ in advance. Despite these theoretical compli-
cations caused by pooling, we obtained the asymptotic properties of our estimators η̂(·)
and β̂ . Before presenting the results, we need to introduce some notation. Because the
group sizes (all positive integers) do not change with N, we denote the collection of the
values of cj by {c(m) : m = 1, . . . ,M}, where M is also a fixed value. More explicitly, for
each j, there exists an m such that cj = c(m). For each m, we let Jm denote the number
of pools having size c(m). The ratio Jmc(m)/N represents the proportion of individuals
that were involved in pools of size c(m). When N → ∞, we assume that this proportion
converges to γm ∈ [0, 1], where

∑M
m=1 γm = 1. Furthermore, we denote the true parame-

ters by η0(·) and β0 = (β01,β
(1)�
0 )�, where β

(1)
0 = (β02, . . . ,β0p)

�. Let J0 be the value

of ∂B(β(1))/∂β(1) evaluated at β(1) = β
(1)
0 , where B(β(1)) = (

√
1 − ‖β(1)‖2,β(1)�)�.

Moreover, denote by �0(X) = E[XX�|X�β0] − E[X|X�β0]E[X�|X�β0] and � =
E[η′2

0(X�β0)�0(X)].
Theorem 3.1 provides the asymptotic properties of β̂ and η̂(·). To obtain these results,

we proceed under a few mild regularity conditions, which are provided in the Appendix.
The proofs are provided in the Web-based Supplementary Materials.

Theorem 3.1: Under conditions C1–C6 stated in the Appendix, as N → ∞,

√
N(β̂ − β0)

d−→ N(0,�),
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where � = σ 2(
∑M

m=1 γm/c(m))−1J0(J �
0 �J0)

−1J �
0 and d−→ means convergence in

distribution. Furthermore,

sup
x∈X

|η̂(x�β̂) − η0(x�β0)| = Op{(Nh/ logN)−1/2}.

Theorem 3.1 reveals the asymptotic normality of β̂ and the consistency of η̂(·). We
would like to point out that, when cj’s are all 1, our pooled biomarker data Zj’s are exactly
the individual-level responses Yij’s. Thus the proposed estimator is the same as the classi-
cal single-index estimator based on all individual-level data, i.e. the asymptotic normality
includes cj = 1 as a special case. From the asymptotic variance, we could see some pat-
terns that might help us understand the theoretical impact of pooling. For simplicity, let us
consider all the pools to be of the same size, i.e. c(m) = c, γm = 1 and N= cJ. We see that
the asymptotic variance of β̂ is cσ 2J0(J �

0 �J0)
−1J �

0 /N. Consequently, if the number
of individuals (N) is fixed in applications, pooling more individuals in a group would lead
to a loss of information and yield a larger variability in the resulting estimates of β . If the
number of individuals is not limited but the budge is limited up to J assays, we could rewrite
the asymptotic variance to beσ 2J0(J �

0 �J0)
−1J �

0 /J which does not depend on the pool
sizes. Thus, in this case, pooling does not compromise the asymptotic efficiency of β̂ .

One must note that Theorem 3.1 holds when Condition C4 (see Appendix) is satisfied,
i.e. as N → ∞, h → 0, Nh4 → ∞ and Nh/ logN → ∞. Thus it is important to select a
suitable value for the bandwidth h. One could use the traditional cross-validation method.
That is leaving one group of data out and fitting themodel using the remaining data to pre-
dict the response that was left out. After predicting all responses, the bandwidth is chosen
to be the one that minimises the sum of the squares of all the prediction errors. In other
words, this traditional approach has to numerically search for an estimator of β when leav-
ing each group out. When the number of groups J is large, the traditional cross-validation
could cause a huge computational burden. In order to make our method more applicable
in real applications, we suggest using a revised version of the traditional cross-validation
method. This method was originally proposed by Härdle et al. (1993). Denote by η̂

(−j)
β (u)

the leave-one-out estimator of ηβ(u) obtained via the explicit formula (3) without using
the data pertaining to the jth pool. Our proposed bandwidth h̃ is chosen so that (β̃ , h̃)
minimises

Scv(β , h) =
J∑

j=1
cj

{
Zj − 1

cj

cj∑
i=1

η̂
(−j)
β (X�

ij β)

}2

.

Furthermore, we use the value of β̃ as a sensible starting point to compute β̂ .

4. Simulation studies

In this section,we illustrate the finite sample performance of our proposedmethod through
simulation. Before presenting our results, we note that, to the best of our knowledge, the
literature does not contain any competing methods for simultaneously estimating both
β and η(·) based on continuous pooled assessments. McMahan et al. (2016) proposed
a parametric approach to estimate β by assuming η(·) is linear. Therefore, besides the
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main goal of illustrating of the performance of our proposed procedures under a variety of
different settings, we have also compared our method with the one proposed byMcMahan
et al. (2016).

To illustrate that our estimation procedure does not rely on the distribution of biomarker
levels, i.e. the distribution of Yij | Xij, we consider the following examples:

(D1) Y | X = x ∼ N{η0(x�β0), σ 2}
(D2) Y | X = x ∼ Gamma{shape = η20(x

�β0)/σ
2, rate = η0(x�β0)/σ

2}
(D3) Y | X = x ∼ Log-Normal{μ0(x�β0), g0(x�β0)}, where μ0(x�β0) = log{η0(x�

β0)} − g0(x�β0)/2, and g0(x�β0) = log{σ 2/η20(x
�β0) + 1}.

The normal distribution is used to simulate symmetric biomarker data, while the other
two cases are used to emulate right skewed distributions. These distributions were used in
simulating biomarker levels but were not used in the part of estimation. Parameters in these
distributions are chosen to satisfy our model assumption that E(Y |X = x) = η0(x�β0)

andV(Y|X = x) = σ 2.We set β0 = (0.5, 0.5,
√
2/2)� and σ = 0.5. For η0(·), we consider

the following four models:

(M1) η0(x�β0) = x�β + 2
(M2) η0(x�β0) = (x�β0)

2

(M3) η0(x�β0) = (x�β0)
2 exp(x�β0)

(M4) η0(x�β0) = sin(aπx�β0) + 1, where a=1 or 2.

One of the most attractive features of a single-index approach is that it does not force
any shapes on the regression curve while being able to consistently estimate the regres-
sion coefficients. Model (M1) is chosen to be linear purposely. Through this setting, we
would like to see the consequences of using our method if ignoring the truly linearity.
The regression curves in (M2)–(M4) are nonlinear. They are similar to those discussed
in Cui et al. (2011). Models (M2) and (M3) offer smooth curves; in contrast, Model (M4)
results in an oscillating curvewith the frequency being controlled by a, i.e. larger values of a
result in a larger degree of oscillatory behaviour of the curve over the range of x�β0. These
nonlinear curves could illustrate the benefits of using our method if the regression curve
is not linear. The vector of covariates X = (X1,X2,X3)

� contains continuous X1 and X2
following Uniform(−1, 1) and N(0, 0.32) distributions, respectively, and discrete X3 with
P(X3 = ±0.5) = 0.5.

To generate pooled observations, we considered two scenarios. In the first, the number
of individual specimens to be tested is fixed. Testing the specimens individually is ideal
providing full information; however, this may be impractical due to the financial limi-
tations and thus pooling is used. We chose N ∈ {2500, 5000} and specified a common
pool size cj = c for all j = 1, . . . , J, where c ∈ {1, 2, 5, 10}. Different values of c indicate
different levels of savings. For example, (N, c) = (2500, 5) means an 80% reduction in
testing cost when compared to (N, c) = (2500, 1) where each individual is tested sepa-
rately. In this scenario, we are able to evaluate how the reduction of the number of tests
would affect the accuracy of estimating β0 and η0(·). For each combination of (D1)–(D3),
(M1)–(M4), andN ∈ {2500, 5000}, we randomly generatedN samples of (Y ,X) according
to the covariate setting, the selected conditional distribution of Y | X, and η0(·). Then for
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each c ∈ {1, 2, 5, 10}, we randomly assigned theN samples into J = N/c pools and labelled
them by (Yij,Xij)where i = 1, . . . , c, j = 1, . . . ,N/c. The testing response of the jth pooled
specimen was determined by Zj = c−1∑c

i=1 Yij.
In the second scenario, the investigator may have only J assays available due to the

limitation of financial resources. The choice is between testing J specimens one-by-one
or testing cJ specimens using pools of size c. We considered J ∈ {250, 500} and cj = c ∈
{1, 2, 5, 10}. For example, (J, c) = (250, 10) implies that even though there are only 250
assays, pooling could involve 10 times the number of specimens than testing individual
specimens, i.e. (J, c) = (250, 1). Through these settings, we are able to see whether the
extra number of individuals could provide more information and thus improve the esti-
mation accuracy. For each combination of (D1)–(D3), (M1)–(M4) and J ∈ {250, 500}, we
randomly generated 10 × J copies of (Y ,X) to form the specimen bank. Then for each
c ∈ {1, 2, 5, 10}, we randomly sampled N= cJ individuals from the specimen bank and
assigned them to J pools. After labelling them by (Yij,Xij), where i = 1, . . . , c, j = 1, . . . , J,
we generated the testing response of the jth pool by Zj = c−1∑c

i=1 Yij.
Within each configuration in both scenarios, we repeated the data generating process

500 times for all considered pool sizes and applied our methodology to estimate β0 and
η0(·). We specified the kernel function K(·) in (2) to be the probability density function
of the standard normal distribution. The bandwidth h was selected via the leave-one-out
cross-validation method described at the end of Section 3. In order to reveal the robust-
ness of our method to the shape of a regression curve, we also fitted each data under
the parametric linear assumption. The applied parametric method was from McMahan
et al. (2016).

Tables 1 and 2 summarise the results for Model (M1) under all the considered distri-
butions (D1)–(D3) when N ∈ {2500, 5000} and when J ∈ {250, 500}, respectively. These
summary statistics include the sample mean and the standard deviation of the 500 esti-
mates of β0. In order to illustrate what role the pool size c plays, we use the average
estimation error (AEE), defined by AEE = ∑p

k=1 |β̂0k − β0k|, as an overall measure of the
estimation accuracy for β0 and the empirical mean squared error (MES), calculated by
MSE = N−1∑J

j=1
∑c

i=1{η̂(X�
ij β̂) − η0(X�

ij β0)}2, to evaluate the accuracy of estimating
the entire regression curve η0(x�β0). The sample mean of the 500 AEE’s and MSE×10’s
are also included in the tables. Tables 3 and 4 summarise the same results for estimat-
ingModel (M2) under all considered distributions (D1)–(D3) whenN ∈ {2500, 5000} and
when J ∈ {250, 500}, respectively. Results for Models (M3) and (M4) are similar. Hence,
we include them in the Web-based Supplementary Materials.

From all the tables, one could see that our estimates of β0 are generally on target across
all models and exhibit little bias. As N or J increases, both the bias and the sample stan-
dard deviation of the estimates of β0 decrease, so do the AEE and MSE. These patterns
reinforce the consistency of β̂ and η̂(·), shown in Theorem 3.1. Furthermore, the overall
measures (AEE and MSE) are seldom affected by (D1)–(D3). By comparing our results
with the ones of McMahan et al. (2016), one could see that from Tables 1 and 2 when the
curve is truly linear, both methods yield reasonable estimates of β0. The variability of their
estimates is smaller than the one of ours. This is expected because our procedure has to
estimate the curve η0 which is given as known to their method. However, when the curve
is not linear (Tables 3 and 4), their estimates suffer from a huge bias while ours are still on
target. For example, in Tables 3 and 4, almost all estimates ofβ from the parametricmethod



822
J.LIN

A
N
D
D
.W

A
N
G

Table 1. Simulation results of the estimators for (M1) using our proposed method and the parametric method proposed in McMahan et al. (2016).

Proposed method Parametric method

N c= 1 c= 2 c= 5 c= 10 c= 1 c= 2 c= 5 c= 10

(D1) 2500 β01 0.498 (0.028) 0.497 (0.039) 0.497 (0.044) 0.497 (0.065) 0.500 (0.018) 0.500 (0.026) 0.500 (0.042) 0.500 (0.056)
β02 0.498 (0.033) 0.494 (0.050) 0.498 (0.061) 0.494 (0.088) 0.499 (0.035) 0.498 (0.047) 0.500 (0.072) 0.499 (0.096)
β03 0.708 (0.025) 0.710 (0.035) 0.705 (0.039) 0.702 (0.058) 0.706 (0.021) 0.707 (0.029) 0.708 (0.045) 0.710 (0.064)

AEE (MSE×10) 0.308 (0.011) 0.324 (0.019) 0.340 (0.009) 0.372 (0.017) 0.058 (0.004) 0.080 (0.007) 0.128 (0.017) 0.172 (0.030)

5000 β01 0.501 (0.012) 0.498 (0.031) 0.502 (0.029) 0.499 (0.050) 0.500 (0.012) 0.500 (0.018) 0.499 (0.027) 0.498 (0.040)
β02 0.501 (0.019) 0.499 (0.036) 0.498 (0.042) 0.497 (0.064) 0.500 (0.025) 0.501 (0.033) 0.503 (0.052) 0.503 (0.077)
β03 0.706 (0.013) 0.707 (0.027) 0.705 (0.026) 0.704 (0.043) 0.707 (0.014) 0.708 (0.020) 0.708 (0.031) 0.707 (0.043)

AEE (MSE×10) 0.294 (0.002) 0.305 (0.007) 0.317 (0.003) 0.336 (0.008) 0.041 (0.002) 0.056 (0.004) 0.089 (0.008) 0.128 (0.016)

(D2) 2500 β01 0.495 (0.040) 0.500 (0.025) 0.496 (0.046) 0.492 (0.069) 0.499 (0.018) 0.497 (0.024) 0.497 (0.039) 0.498 (0.056)
β02 0.498 (0.044) 0.500 (0.038) 0.496 (0.065) 0.485 (0.099) 0.501 (0.034) 0.502 (0.049) 0.498 (0.074) 0.500 (0.111)
β03 0.709 (0.033) 0.706 (0.022) 0.707 (0.043) 0.710 (0.054) 0.708 (0.021) 0.708 (0.028) 0.709 (0.043) 0.711 (0.062)

AEE (MSE×10) 0.309 (0.022) 0.315 (0.005) 0.347 (0.008) 0.386 (0.020) 0.058 (0.004) 0.080 (0.007) 0.125 (0.016) 0.182 (0.032)

5000 β01 0.500 (0.013) 0.497 (0.032) 0.500 (0.029) 0.497 (0.046) 0.501 (0.013) 0.500 (0.017) 0.499 (0.027) 0.498 (0.037)
β02 0.500 (0.020) 0.498 (0.038) 0.499 (0.046) 0.501 (0.066) 0.499 (0.023) 0.499 (0.035) 0.497 (0.052) 0.499 (0.074)
β03 0.707 (0.012) 0.708 (0.027) 0.705 (0.029) 0.703 (0.042) 0.707 (0.015) 0.708 (0.020) 0.705 (0.032) 0.703 (0.044)

AEE (MSE×10) 0.296 (0.002) 0.308 (0.012) 0.320 (0.004) 0.339 (0.006) 0.041 (0.002) 0.057 (0.004) 0.090 (0.008) 0.123 (0.015)

(D3) 2500 β01 0.498 (0.029) 0.500 (0.033) 0.497 (0.048) 0.496 (0.065) 0.499 (0.016) 0.499 (0.024) 0.499 (0.039) 0.501 (0.053)
β02 0.498 (0.034) 0.498 (0.042) 0.496 (0.069) 0.492 (0.099) 0.499 (0.032) 0.499 (0.046) 0.504 (0.074) 0.509 (0.110)
β03 0.708 (0.024) 0.707 (0.027) 0.706 (0.047) 0.702 (0.064) 0.706 (0.020) 0.706 (0.029) 0.706 (0.046) 0.702 (0.065)

AEE (MSE×10) 0.306 (0.009) 0.316 (0.005) 0.344 (0.015) 0.372 (0.019) 0.056 (0.004) 0.079 (0.007) 0.127 (0.016) 0.181 (0.032)

5000 β01 0.500 (0.012) 0.499 (0.023) 0.500 (0.028) 0.496 (0.053) 0.500 (0.012) 0.500 (0.018) 0.500 (0.028) 0.500 (0.040)
β02 0.499 (0.018) 0.500 (0.030) 0.498 (0.045) 0.495 (0.071) 0.499 (0.023) 0.501 (0.034) 0.502 (0.053) 0.502 (0.075)
β03 0.707 (0.012) 0.707 (0.021) 0.706 (0.029) 0.706 (0.047) 0.707 (0.014) 0.706 (0.019) 0.707 (0.031) 0.707 (0.046)

AEE (MSE×10) 0.293 (0.002) 0.303 (0.007) 0.323 (0.004) 0.341 (0.006) 0.039 (0.002) 0.056 (0.004) 0.090 (0.008) 0.129 (0.016)

Presented results include the sample mean and sample standard deviation (provided within the parenthesis) of the 500 estimates of β0 = (β01 = 0.5,β02 = 0.5,β03 = 0.707), as well as the
sample mean of 500 AEE’s and MSE×10’s (provided in parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for N ∈ {2500, 5000}.
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Table 2. Simulation results of the estimators for (M1) using our proposed method and the parametric method proposed in McMahan et al. (2016).

Proposed method Parametric method

J c= 1 c= 2 c= 5 c= 10 c= 1 c= 2 c= 5 c= 10

(D1) 250 β01 0.497 (0.064) 0.497 (0.064) 0.497 (0.062) 0.499 (0.069) 0.499 (0.054) 0.501 (0.056) 0.501 (0.057) 0.501 (0.054)
β02 0.490 (0.091) 0.497 (0.087) 0.498 (0.090) 0.490 (0.099) 0.501 (0.111) 0.504 (0.105) 0.501 (0.110) 0.503 (0.110)
β03 0.705 (0.059) 0.700 (0.058) 0.699 (0.059) 0.701 (0.063) 0.709 (0.065) 0.710 (0.063) 0.711 (0.062) 0.712 (0.063)

AEE (MSE×10) 0.372 (0.085) 0.362 (0.033) 0.366 (0.018) 0.365 (0.017) 0.184 (0.041) 0.179 (0.070) 0.181 (0.166) 0.182 (0.316)

500 β01 0.495 (0.055) 0.495 (0.050) 0.494 (0.049) 0.496 (0.045) 0.501 (0.037) 0.501 (0.037) 0.501 (0.039) 0.501 (0.038)
β02 0.497 (0.069) 0.496 (0.067) 0.497 (0.069) 0.498 (0.068) 0.500 (0.076) 0.498 (0.079) 0.504 (0.073) 0.498 (0.077)
β03 0.706 (0.052) 0.707 (0.046) 0.706 (0.046) 0.705 (0.042) 0.707 (0.044) 0.705 (0.044) 0.705 (0.043) 0.710 (0.044)

AEE (MSE×10) 0.349 (0.039) 0.347 (0.029) 0.345 (0.011) 0.340 (0.005) 0.126 (0.019) 0.128 (0.035) 0.124 (0.077) 0.127 (0.156)

(D2) 250 β01 0.496 (0.066) 0.498 (0.063) 0.496 (0.063) 0.497 (0.065) 0.495 (0.054) 0.504 (0.056) 0.501 (0.056) 0.502 (0.054)
β02 0.492 (0.096) 0.498 (0.089) 0.497 (0.095) 0.491 (0.092) 0.495 (0.106) 0.493 (0.110) 0.492 (0.111) 0.505 (0.113)
β03 0.703 (0.060) 0.699 (0.059) 0.700 (0.060) 0.704 (0.061) 0.710 (0.066) 0.710 (0.064) 0.704 (0.063) 0.708 (0.064)

AEE (MSE×10) 0.367 (0.075) 0.365 (0.028) 0.376 (0.019) 0.370 (0.015) 0.181 (0.040) 0.182 (0.072) 0.183 (0.166) 0.185 (0.325)

500 β01 0.499 (0.048) 0.495 (0.053) 0.497 (0.047) 0.498 (0.048) 0.499 (0.040) 0.502 (0.038) 0.496 (0.039) 0.502 (0.038)
β02 0.491 (0.067) 0.492 (0.067) 0.496 (0.071) 0.494 (0.069) 0.500 (0.075) 0.504 (0.077) 0.503 (0.076) 0.501 (0.075)
β03 0.708 (0.047) 0.710 (0.048) 0.706 (0.046) 0.707 (0.043) 0.706 (0.044) 0.707 (0.047) 0.706 (0.046) 0.706 (0.043)

AEE (MSE×10) 0.347 (0.042) 0.351 (0.041) 0.350 (0.041) 0.347 (0.033) 0.127 (0.020) 0.129 (0.036) 0.127 (0.084) 0.124 (0.150)

(D3) 250 β01 0.502 (0.062) 0.500 (0.061) 0.493 (0.065) 0.492 (0.064) 0.500 (0.054) 0.499 (0.057) 0.500 (0.054) 0.505 (0.054)
β02 0.494 (0.092) 0.491 (0.095) 0.488 (0.095) 0.490 (0.095) 0.500 (0.102) 0.502 (0.111) 0.507 (0.106) 0.498 (0.105)
β03 0.699 (0.056) 0.702 (0.059) 0.709 (0.061) 0.708 (0.061) 0.706 (0.064) 0.706 (0.062) 0.713 (0.059) 0.707 (0.065)

AEE (MSE×10) 0.367 (0.072) 0.374 (0.029) 0.377 (0.020) 0.376 (0.015) 0.174 (0.040) 0.183 (0.074) 0.175 (0.152) 0.181 (0.313)

500 β01 0.497 (0.052) 0.499 (0.042) 0.500 (0.041) 0.498 (0.049) 0.499 (0.040) 0.501 (0.038) 0.498 (0.040) 0.500 (0.038)
β02 0.491 (0.066) 0.501 (0.062) 0.503 (0.062) 0.495 (0.068) 0.499 (0.077) 0.495 (0.076) 0.500 (0.071) 0.501 (0.073)
β03 0.709 (0.047) 0.702 (0.041) 0.699 (0.039) 0.706 (0.044) 0.706 (0.046) 0.707 (0.046) 0.708 (0.045) 0.706 (0.044)

AEE (MSE×10) 0.348 (0.041) 0.335 (0.012) 0.330 (0.005) 0.342 (0.008) 0.131 (0.021) 0.128 (0.035) 0.124 (0.079) 0.123 (0.148)

Presented results include the sample mean and sample standard deviation (provided within the parenthesis) of the 500 estimates of β0 = (β01 = 0.5,β02 = 0.5,β03 = 0.707), as well as the
sample mean of 500 AEE’s and MSE×10’s (provided in parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for J ∈ {250, 500}.
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Table 3. Simulation results of the estimators for (M2) using our proposed method and the parametric method proposed in McMahan et al. (2016).

Proposed method Parametric method

N c= 1 c= 2 c= 5 c= 10 c= 1 c= 2 c= 5 c= 10

(D1) 2500 β01 0.500 (0.041) 0.502 (0.056) 0.523 (0.080) 0.535 (0.107) 0.000 (0.022) 0.000 (0.029) −0.001 (0.046) 0.000 (0.062)
β02 0.496 (0.045) 0.496 (0.063) 0.504 (0.085) 0.502 (0.119) −0.001 (0.041) −0.002 (0.057) 0.001 (0.085) 0.000 (0.115)
β03 0.706 (0.049) 0.701 (0.063) 0.673 (0.079) 0.653 (0.096) 0.001 (0.022) 0.002 (0.030) 0.005 (0.052) 0.007 (0.071)

AEE (MSE×10) 0.331 (0.017) 0.356 (0.021) 0.363 (0.026) 0.386 (0.045) 1.707 (0.672) 1.707 (0.676) 1.702 (0.688) 1.700 (0.705)

5000 β01 0.501 (0.026) 0.503 (0.039) 0.506 (0.059) 0.525 (0.077) 0.001(0.016) 0.000(0.020) −0.001(0.032) −0.002(0.043)
β02 0.501 (0.030) 0.501 (0.043) 0.507 (0.065) 0.506 (0.088) 0.000 (0.029) 0.001 (0.039) 0.001 (0.059) −0.003 (0.085)
β03 0.704 (0.032) 0.700 (0.045) 0.689 (0.066) 0.669 (0.080) 0.000 (0.017) −0.001 (0.023) −0.001 (0.036) −0.001 (0.050)

AEE (MSE×10) 0.310 (0.008) 0.325 (0.010) 0.343 (0.015) 0.366 (0.020) 1.706 (0.671) 1.707 (0.673) 1.709 (0.679) 1.713 (0.688)

(D2) 2500 β01 0.503 (0.031) 0.504 (0.046) 0.512 (0.074) 0.524 (0.097) −0.001(0.021) −0.001(0.028) −0.002(0.044) −0.002(0.063)
β02 0.503 (0.036) 0.506 (0.054) 0.508 (0.083) 0.517 (0.107) −0.003 (0.037) 0.001 (0.050) 0.000 (0.079) 0.003 (0.114)
β03 0.700 (0.035) 0.695 (0.053) 0.679 (0.080) 0.654 (0.097) 0.001 (0.024) 0.000 (0.032) −0.001 (0.046) −0.002 (0.071)

AEE (MSE×10) 0.314 (0.014) 0.332 (0.017) 0.359 (0.023) 0.382 (0.032) 1.703 (0.671) 1.708 (0.674) 1.710 (0.684) 1.709 (0.704)

5000 β01 0.502 (0.025) 0.503 (0.036) 0.511 (0.054) 0.521 (0.075) 0.001(0.019) 0.002(0.033) 0.000(0.052) 0.000(0.054)
β02 0.503 (0.028) 0.502 (0.041) 0.505 (0.060) 0.512 (0.084) 0.001 (0.028) 0.002 (0.041) 0.001 (0.062) 0.004 (0.085)
β03 0.702 (0.029) 0.700 (0.044) 0.689 (0.057) 0.669 (0.076) −0.001 (0.018) −0.002 (0.022) 0.000 (0.048) 0.000 (0.065)

AEE (MSE×10) 0.308 (0.007) 0.322 (0.009) 0.336 (0.013) 0.347 (0.019) 1.706 (0.672) 1.705 (0.676) 1.708 (0.687) 1.705 (0.696)

(D3) 2500 β01 0.501 (0.040) 0.504 (0.054) 0.518 (0.077) 0.542 (0.103) 0.001(0.020) 0.000(0.028) 0.001(0.045) 0.000(0.062)
β02 0.498 (0.046) 0.499 (0.061) 0.506 (0.087) 0.507 (0.121) −0.003 (0.041) −0.007 (0.055) −0.005 (0.085) −0.004 (0.115)
β03 0.703 (0.047) 0.698 (0.061) 0.675 (0.079) 0.645 (0.093) 0.000 (0.022) 0.000 (0.032) 0.000 (0.050) 0.000 (0.070)

AEE (MSE×10) 0.331 (0.016) 0.352 (0.019) 0.360 (0.026) 0.372 (0.036) 1.708 (0.673) 1.713 (0.677) 1.711 (0.689) 1.711 (0.707)

5000 β01 0.501 (0.028) 0.503 (0.041) 0.507 (0.060) 0.522 (0.083) 0.001(0.015) 0.001(0.021) 0.000(0.031) 0.001(0.044)
β02 0.500 (0.032) 0.500 (0.043) 0.498 (0.064) 0.503 (0.089) 0.001 (0.029) 0.001 (0.039) 0.001 (0.059) −0.001 (0.082)
β03 0.704 (0.034) 0.701 (0.047) 0.695 (0.066) 0.673 (0.079) 0.001 (0.016) 0.000 (0.022) 0.002 (0.035) 0.003 (0.051)

AEE (MSE×10) 0.314 (0.008) 0.326 (0.010) 0.347 (0.015) 0.365 (0.024) 1.705 (0.671) 1.705 (0.673) 1.704 (0.678) 1.705 (0.688)

Presented results include the sample mean and sample standard deviation (provided within the parenthesis) of the 500 estimates of β0 = (β01 = 0.5,β02 = 0.5,β03 = 0.707), as well as the
sample mean of 500 AEE’s and MSE×10’s (provided in parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for N ∈ {2500, 5000}.
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Table 4. Simulation results of the estimators for (M2) using our proposed method and the parametric method proposed in McMahan et al. (2016).

Proposed method Parametric method

J c= 1 c= 2 c= 5 c= 10 c= 1 c= 2 c= 5 c= 10

(D1) 250 β01 0.509 (0.069) 0.508 (0.080) 0.517 (0.079) 0.512 (0.077) −0.001 (0.067) −0.001 (0.066) −0.001 (0.065) −0.002 (0.062)
β02 0.500 (0.081) 0.503 (0.083) 0.502 (0.085) 0.510 (0.084) −0.006 (0.127) −0.003 (0.125) 0.007 (0.122) −0.004 (0.121)
β03 0.689 (0.073) 0.685 (0.080) 0.679 (0.081) 0.678 (0.078) −0.002 (0.069) −0.004 (0.070) 0.001 (0.075) −0.001 (0.071)

AEE (MSE×10) 0.456 (0.067) 0.468 (0.045) 0.442 (0.027) 0.441 (0.021) 1.716 (0.695) 1.716 (1.399) 1.701 (3.535) 1.714 (7.057)

500 β01 0.513 (0.058) 0.511 (0.072) 0.511 (0.076) 0.512 (0.069) −0.002 (0.047) 0.000 (0.045) −0.003 (0.043) −0.001 (0.041)
β02 0.505 (0.074) 0.497 (0.077) 0.500 (0.078) 0.509 (0.081) −0.005 (0.087) 0.000 (0.086) −0.008 (0.081) −0.005 (0.088)
β03 0.685 (0.056) 0.690 (0.067) 0.687 (0.074) 0.680 (0.071) 0.002 (0.051) 0.000 (0.052) 0.004 (0.050) −0.002 (0.051)

AEE (MSE×10) 0.401 (0.059) 0.422 (0.037) 0.404 (0.024) 0.402 (0.017) 1.712 (0.688) 1.707 (1.376) 1.713 (3.436) 1.716 (6.887)

(D2) 250 β01 0.517 (0.112) 0.510 (0.122) 0.524 (0.126) 0.518 (0.122) 0.004 (0.058) 0.004 (0.061) 0.000 (0.061) 0.000 (0.060)
β02 0.489 (0.127) 0.482 (0.128) 0.498 (0.128) 0.507 (0.129) −0.002 (0.129) −0.007 (0.114) 0.006 (0.132) −0.015 (0.113)
β03 0.673 (0.109) 0.680 (0.115) 0.657 (0.117) 0.657 (0.111) −0.004 (0.069) 0.003 (0.072) −0.003 (0.071) 0.001 (0.068)

AEE (MSE×10) 0.600 (0.187) 0.490 (0.136) 0.448 (0.103) 0.422 (0.098) 1.719 (0.698) 1.709 (1.414) 1.712 (3.542) 1.704 (7.097)

500 β01 0.505 (0.076) 0.507 (0.084) 0.515 (0.082) 0.528 (0.080) 0.003 (0.041) −0.002 (0.044) 0.000 (0.043) −0.001 (0.041)
β02 0.497 (0.093) 0.499 (0.087) 0.500 (0.092) 0.501 (0.089) 0.000 (0.084) −0.006 (0.093) −0.001 (0.077) 0.000 (0.084)
β03 0.690 (0.085) 0.687 (0.082) 0.680 (0.084) 0.671 (0.079) −0.001 (0.046) 0.001 (0.050) 0.003 (0.052) 0.001 (0.048)

AEE (MSE×10) 0.546 (0.088) 0.548 (0.048) 0.409 (0.040) 0.400 (0.022) 1.705 (0.679) 1.714 (1.372) 1.705 (3.432) 1.707 (6.861)

(D3) 250 β01 0.524 (0.114) 0.512 (0.119) 0.515 (0.118) 0.526 (0.121) 0.000 (0.065) 0.001 (0.063) 0.000 (0.061) 0.004 (0.063)
β02 0.500 (0.120) 0.497 (0.116) 0.488 (0.124) 0.500 (0.130) −0.008 (0.129) −0.005 (0.127) −0.010 (0.122) 0.000 (0.124)
β03 0.660 (0.108) 0.672 (0.106) 0.675 (0.109) 0.656 (0.107) −0.004 (0.070) 0.003 (0.075) 0.005 (0.070) −0.001 (0.072)

AEE (MSE×10) 0.436 (0.160) 0.447 (0.120) 0.455 (0.097) 0.436 (0.095) 1.719 (0.698) 1.709 (1.414) 1.712 (3.542) 1.704 (7.097)

500 β01 0.529 (0.084) 0.508 (0.094) 0.515 (0.101) 0.520 (0.103) 0.000 (0.047) −0.002 (0.046) −0.002 (0.045) 0.000 (0.043)
β02 0.501 (0.099) 0.504 (0.103) 0.494 (0.114) 0.507 (0.114) 0.003 (0.092) 0.005 (0.087) −0.003 (0.091) 0.002 (0.086)
β03 0.669 (0.061) 0.679 (0.084) 0.678 (0.091) 0.664 (0.095) 0.003 (0.051) −0.001 (0.054) −0.002 (0.051) 0.002 (0.051)

AEE (MSE×10) 0.405 (0.134) 0.414 (0.074) 0.406 (0.068) 0.389 (0.065) 1.702 (0.681) 1.705 (1.380) 1.714 (3.448) 1.704 (6.891)

Presented results include the sample mean and sample standard deviation (provided within the parenthesis) of the 500 estimates of β0 = (β01 = 0.5,β02 = 0.5,β03 = 0.707), as well as the
sample mean of 500 AEE’s and MSE×10’s (provided in parenthesis) across all considered pool sizes c ∈ {1, 2, 5, 10} for J ∈ {250, 500}.
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are centred around 0. If inferences were made based on these estimates, one would incor-
rectly conclude that all the covariates are insignificant, i.e. a wrongly assumed curve would
greatly compromise statistical inferences. However, such concerns do not exist if using our
method. To sum up, all the aforementioned observations demonstrate that our estimators
are robust to the biomarker distribution and the shape of the regression curve.

Now we look at the impact of pool sizes. When the number of individual N is fixed
(Tables 1 and 3), as one might expect, all the standard deviations increase with the pool
size c. The loss in estimation efficiency is the price paid for the significant cost reduction
realised by pooling. In terms of estimating the entire mean curve η0(x�β0), one could see
that the MSE’s only increase a little when c increases. For example, in Table 3 for (D1) and
N=2500, the MSE changes from 0.0017 to 0.0021 when cj increases from 1 to 2. Note that
c=2 represents a 50% saving in cost when comparing to c=1. These results suggest that
pooling could provide estimates similar to or not much worse than those obtained from
individual testing while conferring a significant cost reduction.

Tables 2 and 4 correspond to the second scenario where the number of assays J is fixed.
The results reinforce our findings fromTheorem 3.1 which are that the pool size c does not
affect the efficiency of estimating β0 across different pool sizes when J is fixed. For exam-
ple, in Table 4 for (D2) and J=500, when c=1, the standard deviations of estimates of
(β01,β02,β03) are (0.076, 0.094, 0.085) which change to (0.080, 0.089, 0.079) when c=10,
respectively. As an overall measure, AEE actually decreases from 0.600 (when c=1) to
0.422 (when c=10). Furthermore, the MSE strictly decreases with c. These patterns indi-
cate that measuring biomarkers on pools will provide nearly the same or evenmore precise
estimates on both β0 and η0(x�β0) when compared to individual testing.

Lastly, we consider the case where V(Yij | X�
ij β) depends on covariates. We set V(Yij |

X�
ij β) = (0.5X�

ij β)2 and repeated the whole simulation study described above. Because
the patterns of these results are similar, we present them in the Web-based Supplementary
Materials. One conclusion is that our method also performs well if V(Yij | X�

ij β) changes
with covariates.

5. Real data analysis

5.1. NHANES diabetes data

We first illustrate our proposed methodology by applying it to a diabetes data set obtained
fromNHANES available at https://wwwn.cdc.gov/nchs/nhanes/search/nhanes09_10.aspx.
The data consists of a continuous response variable for each individual, Y , which denotes
a patient’s 2-hour plasma glucose level concentration (mg/dL), which has been identified
as a viable biomarker for detecting diabetes mellitus. In addition, a set of explanatory vari-
ables are considered; namely, X1 gender, X2 age in month, X3 the log body mass index
(kg/m2), X4 systolic blood pressure (mm Hg), X5 diastolic blood pressure (mm Hg), X6
the log fasting plasma glucose level (mg/dL), X7 the log triglycerides level (mg/dL) and
X8 the log HDL-cholesterol level (mg/dL), so that the covariate vector X = (X1, . . . ,X8)

�
for each individual. This data set contains N=2574 individual observations with 2318 of
them having all of the explanatory variables listed above. In this section, we analyse the
diabetes data set of N=2318 individuals with full covariate information. It is important
to notice that instead of analysing actual pooled testing data, it is more advantageous to
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artificially construct pooled responses using individual level data, because it allows us to
investigate the effect that pool size and composition (in terms of the covariates) has on
parameter estimation.

The first focus of our analysis is to compare our pool response model to the analogous
model in which the individual level data is fully observed. To accomplish this, we randomly
assigned individuals to pools of size c, where c ∈ {2, . . . , 10}. Note that the sample size
N=2318 cannot be divided by some values of c; in such cases, we pool the remainders
as the last group (e.g. when c=10, the pool response data consists of 231 pools of size
10 and 1 of size 8). Pooling responses for the pools were then determined according to
Zj = c−1∑c

i=1 Yij. We repeated the above procedure 500 times and applied our proposed
model to each of the resulting pooled data sets. We standardised the continuous covariates
so that they had mean 0 and variance 1, while the discrete binary covariates were recoded
to be −0.5 or 0.5, respectively.

Figure 1 presents box plots of the 500 estimates of β obtained from our method across
c ∈ {2, 3, . . . , 10}. Also included in the figure are quantile plots of the estimates of η0(t)
for pool sizes of c=1,2,5,10. For purpose of comparison, we use the c=1 case as a refer-
ence by which our estimates can be compared. Note that the reference estimates suggest
a nonlinear shape of η0(·) which supports the use of our single-index model. From these
results, it is apparent that the estimates of β0 are largely in agreement with the estimates
based on the individual-level data. This can also be said for our estimates of η0(t) across
all considered pool sizes. We again observe that the variability in our parameter esti-
mates tends to increase with the pool size, which is expected due to the significant cost
reduction. Additionally, one will note that our estimates of η0(t) exhibit evidence of insta-
bility toward the upper bound of X�β̂ for larger pool size (e.g. c=10). Again this is
an expected phenomenon, since the number of observations that occur in that region is
relatively small.

The second primary focus is to assess the effect of pooling when the number of assays
J is fixed. For this purpose, we set J=232 and consider c ∈ {1, 2, . . . , 10}. The pool response
data for each c was constructed by randomly sampling cJ specimens from the 2318 indi-
viduals and assigning them to pools of size c. Once the pools have been established, we
determine the testing response for the jth pool by Zj = c−1∑c

i=1 Yij. Again, we repeated
the procedure 500 times and applied our proposed method to those data sets. Figure 2
presents box plots of the 500 estimates of β0’s across c ∈ {1, 2, . . . , 10} and quantile plots
of the estimates of η0(t) for c=1,2,5,10. It can be seen that the estimates of β0 and η0(·)
generally agree with the reference estimates (obtained whenN=2318 and c=1). Further-
more, the box plots are nearly the same across all pool sizes. The variability of estimates
of η0(t) when c>2 is smaller than the one when c=1; e.g. the width of the 95% quantile
bands when c=10 is apparently smaller than the one when c=1. These results reinforce
the main findings of the second scenario in Section 4.

5.2. CPP pooled chemokine data

We now illustrate the proposed methodology using a pooled data. This data was col-
lected from the CPP, a study conducted from 1957 to 1974 to assess various aspects
of maternal and child health (e.g. see Whitcomb et al. 2007). In 2007, stored serum
samples from CPP participants were measured for levels of many chemokines to study
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Figure 1. Left: Box plots of the 500 estimates of β = (β01, . . . ,β08)
� across c ∈ {2, . . . , 10}. Right: The

points in the top figure denote the patient’s 2-hour plasma glucose level. The remaining three figures
depict the estimate curve of η(t) and the quantile plots of the estimates of η(t) for c ∈ {2, 5, 10}. Specif-
ically, at every value of t we plot the 2.5th, 50th and 97.5th percentiles of the 500 estimates of η(t). The
solid lines in the figures denote the estimates of η(t), when N= 2318 and c= 1.

whether these biomarkers are related to miscarriage risk. In this article, we focus on
the biomarker macrophage inhibitory protein (MIP)-1α which was measured in pools of
size c=2. We consider only the pools with participants whose full covariate information
were available. Considered covariates include age (standardised; x1), race (1= African-
American/0=otherwise; x2), and miscarriage status (1= yes/0=no; x3). After removing
missing values, the number of pools is J=330. Our goal is to apply our single-index tech-
nique to the pooledmeasurements so that one can estimate the individual-levelmean trend
of the MIP-1α given the covariate information.

Applying ourmethodology yields a bandwidth h=0.692 and estimates of the regression
coefficients β̂ = (β̂1, β̂2, β̂3)

� = (0.703, 0.700, 0.127)�. The estimated mean curve η̂(t) is
plotted (the black line) in Figure 3. In order to obtain valid inference, we adopted a boot-
strapping method. A general description of this bootstrapping method is presented in the
Web-based Supplementary Materials, where a simulation studied is also included to illus-
trate its performance. We bootstrapped the pooled data for 500 times. On each bootstrap
sample, we applied ourmethodology and obtained 500 bootstrap estimates of (β , η(·)). The
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Figure 2. Left: Box plots of the 500 estimates of β = (β01, . . . ,β08)
� across c ∈ {1, 2, . . . , 10} when

J is fixed to be 232. Right: The fourth figures depict the estimate curve of η(t) and the quantile plots
of the estimates of η(t) for c ∈ {1, 2, 5, 10} when J is fixed to be 232. Specifically, at every value of t we
plot the 2.5th, 50th and 97.5th percentiles of the 500 estimates of η(t). The solid lines in the figures
denote the estimates of η(t), when N= 2318 and c= 1.

standard deviation of these bootstrap estimates of β can be used to estimate the standard
error of our point estimates. The resulting estimated standard errors are SE(β̂1) = 0.178,
SE(β̂2) = 0.480 and SE(β̂1) = 0.368, which suggest that at least age has a significant impact
on the individual’s MIP-1α mean level. Pointwise quantile plots ( 2.5th, 50th and 97.5th
percentiles) of the 500 bootstrap estimates of η(·) are also included in Figure 3. Clearly,
one can see a nonlinear mean relationship between the linear predictor (t = x�β̂) and the
MIP-1α level. This nonlinear relationship further demonstrates the contribution and the
flexibility of our proposed single-index methodology.

6. Discussion

In spite of the wide and lasting interest in pooling strategy under restrictive parametric
assumptions, nonparametric or semiparametric estimation based on continuous pooled
biomarker data received relatively less attention. In this article, we have proposed a gen-
eral semiparametric framework for modelling pooled biomarker data allowing for the
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Figure 3. CPP pooledMIP-1α data: This figure includes the estimate curve ofη(t) and the quantile plots
of the 500 bootstrap estimates of η(t) based on bootstrap samples. Specifically, at every value of t we
plot the 2.5th, 50th and 97.5th percentiles of the 500 bootstrap estimates of η(t).

incorporation of individual covariates. Compared to existing works (Ma et al. 2011;
Malinovsky et al. 2012; McMahan et al. 2016), our approach does not force the regres-
sion function to be linear nor the type of biomarker distribution to be known. We have
shown that our estimates enjoy nice asymptotic properties. To illustrate the performance
of our methodology, we have considered two scenarios. In the first, the population size is
fixed. Our numerical studies suggest that pooling could reduce the cost substantially with
only a minor loss of estimation accuracy. In the second, the number of assays is fixed. We
found out that the pooling strategy could be superior providing more information than
testing specimens separately. Our estimates performed well under either symmetric or
right-skewed biomarker distribution settings.

Because pooling biomarker is now more common in practical applications (see Lyles
et al. 2015; Mitchell, Lyles, Manatunga, and Schisterman 2015; Perrier, Giorgis-Allemand,
Slama, and Philippat 2016), we believe it would be very beneficial to develop more statis-
tical methods that are flexible to model such data. In this work, we assumed that pools are
constructed by randomly mixing individual specimens. One interesting future work is to
consider the situation where pooling is performed within stratification of population on
the basis of some demographic variables, such as age or gender, which might potentially
improve the estimation performance. Caudill (2010) and Mitchell et al. (2014) adopted
such grouping criteria to characterise population and analyse biomarker data, respectively.
Another interesting extension of our work is to incorporate pooled exposures as a part of
the covariate information, which is a more complex problem and received many attention
recently (Linton and Whang 2002; Whitcomb et al. 2012; Delaigle and Zhou 2015).

Acknowledgments

We would like to thank an Associate Editor and two anonymous referees for their constructive
suggestions that have greatly improved the presentation of this article.

Disclosure statement

No potential conflict of interest was reported by the authors.



JOURNAL OF NONPARAMETRIC STATISTICS 831

ORCID

Dewei Wang http://orcid.org/0000-0003-0822-8563

References

Bondell, H.D., Liu, A., and Schisterman, E.F. (2007), ‘Statistical Inference Based on Pooled Data: A
Moment-Based Estimating Equation Approach’, Journal of Applied Statistics, 34, 129–140.

Caudill, S.P. (2010), ‘Characterizing Populations of Individuals Using Pooled Samples’, Journal of
Exposure Science and Environmental Epidemiology, 20, 29–37.

Cui, X., Härdle, W., and Zhu, L. (2011), ‘The EFM Approach for Single-Index Models’, The Annals
of Statistics, 39, 1658–1688.

Delaigle, A., and Hall, P. (2012), ‘Nonparametric Regression with Homogeneous Group Testing
Data’, The Annals of Statistics, 40, 131–158.

Delaigle, A., Hall, P., and Wishart, J.R. (2014), ‘New Approaches to Nonparametric and Semi-
parametric Regression for Univariate and Multivariate Group Testing Data’, Biometrika, 101,
567–585.

Delaigle, A., and Meister, A. (2011), ‘Nonparametric Regression Analysis for Group Testing Data’,
Journal of the American Statistical Association, 106, 640–650.

Delaigle, A., and Zhou,W.X. (2015), ‘Nonparametric and Parametric Estimators of Prevalence from
Group Testing Data with Aggregated Covariates’, Journal of the American Statistical Association,
110, 1785–1796.

Dhand, N.K., Johnson,W.O., and Toribio, J.L. (2010), ‘A Bayesian Approach to Estimate OJD Preva-
lence from Pooled Fecal Samples of Variable Pool Size’, Journal of Agricultural, Biological, and
Environmental Statistics, 15, 452–473.

Dodd, R.Y., Notari, E.P., and Stramer, S.L. (2002), ‘Current Prevalence and Incidence of Infectious
Disease Markers and Estimated Window-Period Risk in the American Red Cross Blood Donor
Population’, Transfusion, 42, 975–979.

Dorfman, R. (1943), ‘The Detection of Defective Members of Large Populations’, The Annals of
Mathematical Statistics, 14, 436–440.

Fan, J. (1993), ‘Local Linear Regression Smoothers and their Minimax Efficiencies’, The Annals of
Statistics, 21, 196–216.

Fan, J., and Gijbels, I. (1996), Local Polynomial Modelling and its Applications, London: Chapman
and Hall.

Faraggi, D., Reiser, B., and Schisterman, E.F. (2003), ‘ROC Curve Analysis for Biomarkers Based on
Pooled Assessments’, Statistics in Medicine, 22, 2515–2527.

Farrington, C.P. (1992), ‘Estimating Prevalence byGroup TestingUsingGeneralized LinearModels’,
Statistics in Medicine, 11, 1591–1597.

Gastwirth, J. L. (2000), ‘The Efficiency of Pooling in the Detection of Rare Mutations’, American
Journal of Human Genetics, 67, 1036–1039.

Härdle, W., Hall, P., and Ichimura, H. (1993), ‘Optimal Smoothing in Single-Index Models’, The
Annals of Statistics, 21, 157–178.

Ichimura, H. (1993), ‘Semiparametric Least Squares (SLS) and Weighted SLS Estimation of Single-
Index Models’, Journal of Econometrics, 58, 71–120.

Klein, R.W., and Spady, R.H. (1993), ‘An Efficient Semiparametric Estimator for Binary Response
Models’, Econometrica, 61, 387–421.

Lin, W., and Kulasekera, K.B. (2007), ‘Identifiability of Single-Index Models and Additive-Index
Models’, Biometrika, 94, 496–501.

Linton, O., andWhang, Y.J. (2002), ‘Nonparametric Estimation with Aggregated Data’, Econometric
Theory, 18, 420–468.

Liu, A., and Schisterman, E.F. (2003), ‘Comparison of Diagnostic Accuracy of Biomarkers with
Pooled Assessments’, Biometrical Journal, 45, 631–644.

Lyles, R.H., Van Domelen, D., Mitchell, E.M., and Schisterman, E.F. (2015), ‘A Discriminant Func-
tion Approach to Adjust for Processing and Measurement Error When a Biomarker Is Assayed



832 J. LIN AND D. WANG

in Pooled Samples’, International Journal of Environmental Research and Public Health, 12,
14723–14740.

Ma, C.X., Vexler, A., Schisterman, E.F., andTian, L. (2011), ‘Cost-EfficientDesigns Based on Linearly
Associated Biomarkers’, Journal of Applied Statistics, 38, 2739–2750.

Malinovsky, Y., Albert, P.S., and Schisterman, E.F. (2012), ‘Pooling Designs for Outcomes under a
Gaussian Random Effects Model’, Biometrics, 68, 45–52.

McMahan, C.S.,McLain, A.C., Gallagher, C.M., and Schisterman, E.F. (2016), ‘EstimatingCovariate-
AdjustedMeasures of Diagnostic Accuracy Based on Pooled Biomarker Assessments’,Biometrical
Journal, 58, 944–961.

Mitchell, E.M., Lyles, R.H., Manatunga, A.K., Danaher, M., Perkins, N.J., and Schisterman, E.F.
(2014), ‘Regression for Skewed Biomarker Outcomes Subject to Pooling’, Biometrics, 70, 202–211.

Mitchell, E.M., Lyles, R.H.,Manatunga, A.K., and Schisterman, E.F. (2015), ‘Semiparametric Regres-
sion Models for a Right-Skewed Outcome Subject to Pooling’, American Journal of Epidemiology,
181, 541–548.

Mumford, S.L., Schisterman, E.F., Vexler, A., and Liu, A. (2006), ‘Pooling Biospecimens and Limits
of Detection: Effects on ROC Curve Analysis’, Biostatistics, 7, 585–598.

Perrier, F., Giorgis-Allemand, L., Slama, R., and Philippat, C. (2016), ‘Within-Subject Pooling of Bio-
logical Samples to Reduce ExposureMisclassification in Biomarker-based Studies’, Epidemiology,
27, 378–388.

Remlinger, K.S., Hughes-Oliver, J.M., Young, S.S., and Lam, R.L. (2006), ‘Statistical Design of Pools
Using Optimal Coverage and Minimal Collision’, Technometrics, 48, 133–143.

Schisterman, E., Faraggi, D., Reiser, B., and Trevisan, M. (2001), ‘Statistical Inference for the Area
under the Receiver Operating Characteristic Curve in the Presence of Random Measurement
Error’, Annals of Epidemiology, 154, 174–179.

Schisterman, E.F., Vexler, A., Yi, A., and Perkins, N.J. (2011), ‘A Combined Efficient Design for
Biomarker Data Subject to a Limit of Detection Due to Measuring Instrument Sensitivity’, The
Annals of Applied Statistics, 5, 2651–2667.

Thompson, K.H. (1962), ‘Estimation of the Proportion of Vectors in aNatural Population of Insects’,
Biometrics, 18, 568–578.

Van, T.T., Miller, J., Warshauer, D.M., Reisdorf, E., Jerrigan, D., Humes, R., and Shult, P.A. (2012),
‘Pooling Nasopharyngeal/Throat Swab Specimens to Increase Testing Capacity for Influenza
Viruses by PCR’, Journal of Clinical Microbiology, 50, 891–896.

Vansteelandt, E., Goetghebeur, E., and Verstraeten, T. (2000), ‘Regression Models for Disease
Prevalence with Diagnostic Tests on Pools of Serum Samples’, Biometrics, 56, 1126–1133.

Vexler, A., Liu, A., and Schisterman, E.F. (2006), ‘Efficient Design andAnalysis of Biospecimens with
Measurements Subject to Detection Limit’, Biometrical Journal, 48, 780–791.

Vexler, A., Schisterman, E.F., and Liu, A. (2008), ‘Estimation of ROC Curves Based on Stably Dis-
tributed Biomarkers Subject to Measurement Error and Pooling Mixtures’, Statistics in Medicine,
27, 280–296.

Wang, D., McMahan, C.S., and Gallagher, C.M. (2015), ‘A General Parametric Regression Frame-
work for Group Testing Data with Dilution Effects’, Statistics in Medicine, 34, 3606–3621.

Wang, D., McMahan, C.S., Gallagher, C.M., and Kulasekera, K.B. (2014), ‘Semiparametric Group
Testing Regression Models’, Biometrika, 101, 587–598.

Wang, J., Xue, L., Zhu, L., and Chong, Y.S. (2010), ‘Estimation for a Partial-Linear Single-Index
Model’, The Annals of Statistics, 38, 246–274.

Wang, D., Zhou, H., and Kulasekera, K.B. (2013), ‘A Semi-Local Likelihood Regression Estimator of
the Proportion Based on Group Testing Data’, Journal of Nonparametric Statistics, 25, 209–221.

Weinberg, C.R., and Umbach, D.M. (1999), ‘Using Pooled Exposure Assessment to Improve Effi-
ciency in Case–Control Studies’, Biometrics, 55, 718–726.

Whitcomb, B.W., Perkins, N.J., Zhang, Z., Ye, A., and Lyles, R.H. (2012), ‘Assessment of Skewed
Exposure in Case–Control Studies with Pooling’, Statistics in Medicine, 31, 2461–2472.

Whitcomb, B.W., Schisterman, E.F., Klebanoff, M.A., Baumgarten, M., Rhoton-Vlasak, A., Luo, X.,
and Chegini, N. (2007), ‘Circulating Chemokine Levels and Miscarriage’, American Journal of
Epidemiology, 166, 323–331.



JOURNAL OF NONPARAMETRIC STATISTICS 833

Xia, C. (2006), ‘Asymptotic Distributions for Two Estimators of the Single-Index Model’, Economet-
ric Theory, 22, 1112–1137.

Xia, Y., Tong, H., Li, W.K., and Zhu, L. (2002), ‘An Adaptive Estimation of Dimension Reduction
Space’, Journal of the Royal Statistical Society: Series B, 64, 363–410.

Xie,M. (2001), ‘RegressionAnalysis ofGroupTesting Samples’, Statistics inMedicine, 20, 1957–1969.
Zhu, L., and Xue, L. (2006), ‘Empirical Likelihood Confidence Regions in a Partially Linear Single-

Index Model’, Journal of the Royal Statistical Society B, 68, 549–570.

Appendix. Regularity conditions

We provide the mild regularity conditions under which the theorem in Section 3 holds. These
conditions are common in the single-index literature.

(C1) The curves dβ(t) = E(X | X�β = t) and ηβ(t) have bounded and continuous second-order
derivatives.

(C2) The probability density function ofX�β is bounded away from zero and satisfies the Lipschitz
condition of order 1 on {t = x�β , x ∈ X}.

(C3) As N → ∞, h → 0, Nh4 → ∞ and Nh/ logN → ∞.
(C4) K(·) is a bounded and symmetric kernel function with bounded first derivative.
(C5) Conditional on X, Y has a finite fourth moment.
(C6) The equation u��u = 0 has the unique root u = β0 in B.

Conditions C1–C4 are common smoothness assumptions (Xia 2006; Wang et al. 2010; Cui
et al. 2011). The Lipschitz condition in C2 allows for the discrete components in the covariates.
Condition C5 is similar to the one used in Wang et al. (2010). Condition C6 assures that the matrix
J �

0 �aJ0 is positive definite.


