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Fine particulate matter (PM2.5) poses a significant risk to human health, with

long-term exposure being linked to conditions such as asthma, chronic bronchitis,

lung cancer, and atherosclerosis. In order to improve the current pollution control

strategies and to better shape public policy, the development of a more comprehen-

sive understanding of this air pollutant is necessary. To this end, this work attempts

to quantify the relationship between certain meteorological drivers and the levels

of PM2.5. It is expected that the set of important meteorological drivers will vary

both spatially and within the conditional distribution of PM2.5 levels. To account for

these characteristics, a new local linear penalized quantile regression methodology

is developed. The proposed estimator uniquely selects the set of important drivers at

every spatial location and for each quantile of the conditional distribution of PM2.5

levels. The performance of the proposed methodology is illustrated through simula-

tion, and it is then used to determine the association between several meteorological

drivers and PM2.5 over the Eastern United States. This analysis suggests that the

primary drivers throughout much of the Eastern United States tend to differ based

on season and geographic location, with similarities existing between “typical” and

“high” PM2.5 levels.
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1 INTRODUCTION

Particulate matter is an air pollutant that is comprised of microscopic particles of compounds, such as metals, soot, sulfates,

nitrates, smoke, and dust. The size of the particles is inextricably linked to their potential to pose risk to human health. Of

the various types, fine particulate matter (PM2.5), characterized by particles less than 2.5 𝜇m, poses the highest degree of risk

because it has the propensity to settle deep within the lungs and can pass into the bloodstream. Pope, Ezzati, and Dockery

(2009) and Krewski et al. (2009) link long-term exposure to PM2.5 to a decrease in human life expectancy in the United States.

In particular, it has been conjectured that long-term exposure to PM2.5 can lead to medical conditions, such as asthma, chronic

bronchitis, lung cancer, and atherosclerosis; for further discussion, see Khafaie, Yajnik, Salvi, and Ojha (2016) and the references

therein. Consequently, developing a more comprehensive understanding of the meteorological drivers of PM2.5 levels is of great

importance with respect to shaping pollution control strategies and public health policies. Further, it has been posited that acute

air pollution events are particularly harmful (Porter, Heald, Cooley, & Russell, 2015), and thus, gaining an understanding of the

drivers of these types of events is also important.
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Routine variability in air pollution levels can often be linked to meteorological conditions. Jacob and Winner (2009) surmise

that air quality in general is “strongly dependent” on meteorological variables (e.g., precipitation, temperature, and wind speed)

and that understanding this relationship is tantamount to understanding air pollution. Moreover, it is reasonable to believe

that the set of meteorological drivers that is associated with air pollution (or more specifically PM2.5) varies spatially; that

is, for example, in certain regions of the United States, precipitation might be useful with respect to explaining the trends in

PM2.5, but not in other regions. Several authors have conducted spatial and spatiotemporal analyses of PM2.5 over different

geographic regions. For example, Smith, Kolenikov, and Cox (2003) summarize the results of a spatiotemporal analysis of PM2.5

levels in three Southeastern U.S. states, and Lopez et al. (2015) model air pollution extremes, including PM2.5 levels, in the

Southwest United States. Both of these studies model air pollution, not the associated meteorological variables. However, others

have studied the relationship between meteorological conditions and air pollution; for example, see Jacob and Winner (2009),

Tai, Mickley, and Jacob (2010), and Porter et al. (2015). It is important to note that these authors considered either a global

relationship between meteorological variables and PM2.5 levels or the association at specific locations. For example, Porter

et al. (2015) and Tai et al. (2010) use quantile regression and standard linear regression techniques, respectively, to assess the

relationship between meteorological variables and PM2.5 levels at numerous geographic locations throughout the Continental

United States. Porter et al. (2015) perform the analysis at air pollution monitoring station locations, whereas Tai et al. (2010)

use points on a coarse grid; however, both analyses suggest that the relationship between PM2.5 and its meteorological drivers

varies spatially.

Motivated by these studies, the regression methodology developed herein is targeted at spatially modeling the conditional

quantiles of PM2.5 levels as a function of various meteorological variables over the Eastern United States. In particular, the

functional relationship between these variables is allowed to change spatially, and the methodology can be used to uniquely

select the set of important meteorological drivers of PM2.5 levels at any spatial location, even if data are unavailable at the

location of interest. Moreover, this estimation and selection process can be completed uniquely within any of the conditional

quantiles of PM2.5 levels. All of these goals are accomplished through the development of a new quantile regression method-

ology. Quantile regression, first proposed by Koenker and Bassett (1978), has become an increasingly popular alternative

to standard mean regression techniques. Owing to its popularity and utilitarian nature, many extensions and generalizations

of quantile regression have been proposed; for example, Kai and Li (2010) propose a nonparametric robust mean estimator

based on composite quantile regression, and Zhu, Huang, and Li (2012) develop a semiparametric quantile regression esti-

mator within the high-dimensional covariate setting. For modeling spatial data, Hallin, Lu, and Yu (2009) propose a local

linear estimator, and Sun, Wang, and Fuentes (2016) develop a fused adaptive least absolute shrinkage and selection operator

(LASSO) approach within the quantile regression framework. Although both of these methods are substantive contributions

to the literature, their scope differs from that of the current work. In particular, these methods neither provide for spatially

varying effect estimates nor possess the ability to identify a spatially unique set of meteorological drivers that are related to

PM2.5 levels.

The proposed regression methodology is developed by extending and generalizing the local linear quantile regression esti-

mator studied in Fan, Hu, and Truong (1994) and Yu and Jones (1998). To allow for spatially varying effect estimates, the

proposed approach views each of the regression coefficients associated with the meteorological variables as an unknown sur-

face that varies spatially, thus allowing the relationship between these variables and PM2.5 to change across the spatial domain.

In other words, the proposed approach could be viewed as a varying coefficient quantile regression model. Other authors have

considered such models (Cai & Xu, 2008; Honda, 2004; Kim, 2007; Wang, Zhu, & Zhou, 1998), but these works allow the

coefficient to vary in a single dimension; that is, typically the coefficient is allowed to vary in time or with the levels of another

covariate. To allow the coefficient to vary spatially, the approach taken here is very akin to the proposal of Chen, Deng, Yang,

and Matthews (2012). The primary advantage of the proposed approach over the technique outlined in Chen et al. (2012) is

that it employs regularization to obtain a sparse estimator; that is, during the estimation process, regression coefficients associ-

ated with insignificant variables are set to be identically equal to zero, thus completing the model fitting and variable selection

simultaneously. This is accomplished by adopting and adapting the adaptive LASSO of Zou (2006). Taking advantage of the for-

mulation of the proposed model, a computationally efficient technique for model fitting is developed. Moreover, the asymptotic

properties of the proposed estimator are established, and it is shown that the proposed estimator possesses what are commonly

referred to as the “oracle properties”; for further discussion, see Fan and Li (2001) and Zou (2006).

The remainder of this article is organized as follows. In Section 2, the proposed methodology is developed, and model fit-

ting strategies are discussed. Section 3 provides the asymptotic properties of the proposed estimator. The performance of the

proposed approach is examined through numerical studies in Section 4, and the results of the analysis of the motivating data

application are presented in Section 5. Section 6 concludes with a summary discussion. All technical proofs and conditions are

provided in the Supporting Information.
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2 METHODOLOGY

The proposed methodology seeks to assess the explanatory capacity of the available covariates (e.g., precipitation, wind speed,

and turbulence kinetic energy) for key quantiles of the conditional distribution of PM2.5. Based on this goal, adaptations to

the usual quantile regression methodology are considered. Specifically, these generalizations allow the association between

covariates and the response to vary spatially. In contrast, standard quantile regression techniques (e.g., see Koenker & Bassett,

1978) obtain an estimate of the conditional 𝜏th quantile, 𝜏 ∈ (0, 1), of the response variable (Y) given a vector of covariate

values (x), denoted by QY(𝜏, x, 𝜷𝜏). Herein, it is assumed that QY (𝜏, x, 𝜷𝜏) = x′𝜷𝜏 , where 𝜷𝜏 = (𝛽0𝜏
, … , 𝛽p𝜏 )

′ denotes a (p+ 1)-
dimensional vector of regression coefficients, with 𝛽0𝜏

being the usual intercept parameter. Note that a primary strength of

quantile regression is that it is capable of estimating different types of associations at different quantiles of interest; that is, it is

not necessary for 𝜷𝜏 = 𝜷𝜏′ , for 𝜏 ≠ 𝜏′. Under this parametric framework, estimating 𝜷𝜏 is tantamount to estimating the entire

conditional 𝜏th quantile function, for all values of the covariate, and this estimator can be obtained as

𝜷𝜏 = argmin
𝜷∈Rp+1

S∑
s=1

Ts∑
t=1

𝜌𝜏
(
Yst − x′

st𝜷𝜏

)
,

where 𝜌𝜏(z) = z{𝜏 − 1(z < 0)} is the usual “check loss” function, Yst denotes the observed response (i.e., PM2.5 level) at the

sth location at the tth time point, and xst is the corresponding vector of covariates, for t = 1, … ,Ts and s = 1, … , S. It is

worthwhile to point out that 𝜷𝜏 can be viewed as a “global” estimator, because it does not spatially vary; that is, this estimator

is the same for all locations within the spatial domain.

To acknowledge that the relationship between the response and covariates may differ geographically, one could fit a quantile

regression model at each spatial location individually; that is, one could obtain the location-specific estimator of 𝜷𝜏 as

𝜷
S
𝜏 = argmin

𝜷∈Rp+1

Ts∑
t=1

𝜌𝜏
(
Yst − x′

st𝜷𝜏

)
,

for s = 1, … , S. Consequently, an estimator of the location-specific conditional 𝜏th quantile function is obtained as

QY (𝜏, x, 𝜷S
𝜏) = x′𝜷S

𝜏 , for s = 1, … , S. In general, this approach would allow one to detect different relationships between the

response variable and covariates at different geographic regions, but it does not allow for the interpolation of this relationship

to regions where data are not available. Note that this approach is similar to the methodology employed by Porter et al. (2015).

To allow for such an interpolation, the proposed methodology views each of the regression coefficients as an unknown

surface; that is, for a geographic location l, it is assumed that 𝛽j𝜏 ∶= 𝛽j𝜏 (l), for j = 0, … , p, where l = (l0, l1)′ denotes a

2-dimensional vector of spatial coordinates, for example, latitude and longitude. Thus, define 𝜷𝜏(l) = {𝛽0𝜏
(l), … , 𝛽p𝜏 (l)}′, and

let ls = (ls0
, ls1

)′ denote the spatial coordinates of the sth location. The primary goal is to estimate 𝜷𝜏(l) at any location l*

of interest, whether or not l* corresponds to a location in the observed data. To accomplish this task, it is assumed that the

available data {(Yst, xst, ls) ∶ t = 1, … ,Ts; s = 1, … , S} are independent realization arising from a joint model that possesses

the following property:

x′𝜷𝜏(l) = argmin
a∈R

E {𝜌𝜏(Y − a)|x, l} .
This is equivalent to assuming that

Y = x′𝜷𝜏(l) + 𝜖𝜏 ,

where P(𝜖𝜏 ≤ 0|x, l) = 𝜏.

In order to develop an estimator of 𝛽j𝜏 (l
∗), the proposed approach makes use of the first-order Taylor series expansion of 𝛽j𝜏 (l),

about l*, given by

𝛽j𝜏 (l) ≈ 𝜃0∗
j𝜏 + 𝜃1∗

j𝜏
(
l0 − l∗

0

)
+ 𝜃2∗

j𝜏
(
l1 − l∗

1

)
, (1)

where 𝜃0∗
j𝜏 = 𝛽j𝜏 (l

∗), 𝜃1∗
j𝜏 = 𝜕𝛽j𝜏 (l)∕𝜕l0|l=l∗ , and 𝜃2∗

j𝜏 = 𝜕𝛽j𝜏 (l)∕𝜕l1|l=l∗ . It is assumed that all necessary derivatives exist; that is, it

is assumed that 𝛽j𝜏 (·), for j = 0, … , p, is continuously differentiable. For notational convenience, define 𝜽0∗
𝜏 = (𝜃0∗

0𝜏
, … , 𝜃0∗

p𝜏 )′,
𝜽1∗
𝜏 = (𝜃1∗

0𝜏
, … , 𝜃1∗

p𝜏 )′, 𝜽2∗
𝜏 = (𝜃2∗

0𝜏
, … , 𝜃2∗

p𝜏 )′, 𝜽∗
𝜏 = (𝜽0∗′

𝜏 ,𝜽1∗′
𝜏 ,𝜽2∗′

𝜏 , )′, and x∗
st = {x′

st, (ls0
− l∗

0
)x′

st, (ls1
− l∗

1
)x′

st}′. Inspired by local

polynomial regression techniques (e.g., see Fan & Gijbels, 1996; Fan et al., 1994), an estimator of 𝜽∗
𝜏 is

𝜽̂
∗
𝜏(h) = argmin

𝜽∗
𝜏
∈R3p+3

S∑
s=1

Ts∑
t=1

𝜌𝜏
(
Yst − x∗′

st 𝜽
∗
𝜏

)
K

(‖‖ls − l∗‖‖2

h

)
, (2)
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where 𝜽̂
∗
𝜏(h) = {𝜽̂0∗′

𝜏 (h), 𝜽̂1∗′
𝜏 (h), 𝜽̂2∗′

𝜏 (h)}′, K(·) is a symmetric kernel function (e.g., biweight, Epanechnikov, and Gaussian), h is

the bandwidth parameter, and || · ||2 is the usual Euclidean norm. Note that, from Equation 2, an estimator of 𝜷𝜏(l
∗) is given by

𝜷𝜏(l
∗) = 𝜽̂0∗′

𝜏 (h). In general, the approximation suggested in Equation 1 is good for l within a neighborhood of l*. This fact is

acknowledged through the use of K(·); that is, the kernel function downweights the influence of observations that are spatially

“far” from l*. Conceptually, the smoothing parameter h reflects what is meant by “far,” that is to say larger values of h equate

to larger neighborhoods of influence, and vice versa. As one might expect, different values of h inherently lead to different

estimates of 𝜷𝜏(l
∗). Note that the methodology outlined above is very akin to the technique presented in Chen et al. (2012),

and both provide estimates of 𝜷𝜏(l) that spatially vary. Additionally, the first-order approximation provided in Equation 1 could

easily be extended to a higher order approximation, but this generalization is not explored for two primary reasons: first, through

numerical studies and the motivating data application the first-order approximation appears to be sufficient in realistic scenarios

and second, so that the proposed methodology could be succinctly presented.

A primary goal of an analysis of this form is to identify the regions where each of the covariates are significantly related to

the response; that is, to perform model selection spatially. That is to say, it is expected that some covariates will be useful in

explaining the response variable in some geographical regions while not being useful in others. To allow and account for these

effects, the methodology described above is further extended and recast in the penalized regression context. Motivated by the

works of Tibshirani (1996), Zou (2006), and Wu and Liu (2009), the following sparse estimator is considered:

𝜽̃
∗
𝜏(h, 𝜆) = argmin

𝜽∗
𝜏
∈R3p+3

S∑
s=1

Ts∑
t=1

𝜌𝜏
(
Yst − x∗′

st 𝜽
∗
𝜏

)
K
(||ls − l∗||2

h

)
+ 𝜆

2∑
k=0

p∑
j=0

|||𝜃k∗
j𝜏
||| ∕ |||𝜃̂k∗

j𝜏 (h)
||| , (3)

where 𝜆 is a penalty parameter and 𝜃̂k∗
j𝜏 (h) is an initial estimate of 𝜃k∗

j𝜏 obtained from Equation 2. This approach yields

𝜷𝜏(l
∗) = 𝜽̃0∗

𝜏 (h, 𝜆), which is a sparse estimator (i.e., some coefficients are set to be identically equal to zero) of 𝜷𝜏(l
∗), where

𝜽̃
∗
𝜏 (h, λ) = {𝜽̃0∗′

𝜏 (h, 𝜆), 𝜽̃1∗′
𝜏 (h, 𝜆), 𝜽̃2∗′

𝜏 (h, 𝜆)}′. The sparsity of the estimator is due to the utilization of the adaptive LASSO penalty

by the proposed modeling framework. Further, as with the estimator obtained from Equation 2, the proposed sparse estimator is

inherently dependent on the bandwidth parameter h and the penalty parameter 𝜆. In fact, the sparsity of the estimator is directly

controlled by 𝜆, with large values of 𝜆 promoting a more sparse solution and vice versa. Given their influence, a method of

determining the tuning parameters h and 𝜆 is presented and evaluated in Section 2.2.

Note that the sparse estimator proposed in Equation 3 can be used to select covariates related to the 𝜏th quantile of the

response variable at a particular geographic location l*. Moreover, the effect size, direction, and significance associated with

each of the covariates are allowed to change from location to location. Consequently, given the scope of the proposed work, it

is desirable to identify regions of significance for each of the covariates. To this end, let  denote the entire spatial region of

interest, and for the jth covariate define the region j𝜏 = {l ∈  ∶ 𝛽j𝜏0(l) ≠ 0}, where 𝛽 j𝜏0(l) is the true value of 𝛽 j𝜏(l), for all

l; that is, j𝜏 is the region of  on which the jth covariate is truly related to the 𝜏th quantile of the response variable. Note that

the region described by j𝜏 , for all j, represents an uncountable set and is therefore impossible to identify exactly. In order to

provide an approximation to these regions, a fixed grid consisting of M points is selected within ; denote these points as l∗m,

for m = 1, … ,M. Let Ij𝜏 = {l∗m ∶ l∗m ∈ j𝜏}, and note that if the grid is selected to be large enough, then Ij𝜏 is a natural fine

approximation of j𝜏 . An estimator of Ij𝜏 can be constructed via Ĩj𝜏 = {l∗m ∶ 𝛽j𝜏(l∗m) ≠ 0}, where 𝛽j𝜏(l∗m) is the estimator resulting

from the proposed approach.

2.1 Model fitting strategy
In this section, data augmentation techniques that can be used to efficiently obtain the estimators described in Equations 2

and 3 are presented. First, define the transformed response and covariate vector as Zst = wsYst and ust = wsx∗
st, where ws =

K(h−1||ls − l∗||2). Based on this transformed data, the estimator described in Equation 2 can be equivalently expressed as

𝜽̂
∗
𝜏(h) = argmin

𝜽∗
𝜏
∈R3p+3

S∑
s=1

Ts∑
t=1

𝜌𝜏
(
Zst − u′

st𝜽
∗
𝜏

)
. (4)

Note that the estimator resulting from the minimization problem described in Equation 4 is identically equal to the standard

quantile regression estimator (about the 𝜏th quantile) obtained from treating Zst as the response variable and ust as the covari-

ate vector. Consequently, this optimization step can be carried out using existing software packages designed to fit quantile

regression models, for example, quantreg in R (for further details, see Koenker, 2015).
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In order to fit the penalized model, it is first noted that a|𝜙| = 𝜌𝜏(a𝜙) + 𝜌𝜏(−a𝜙), for all a > 0 and 𝜙 ∈ R. Thus, the terms

in the penalty of Equation 3 can be expressed as

𝜆
|||𝜃k∗

j𝜏
||| ∕ |||𝜃̂k∗

j𝜏 (h)
||| = 𝜌𝜏

(
𝜆𝜃k∗

j𝜏 ∕
|||𝜃̂k∗

j𝜏 (h)
|||) + 𝜌𝜏

(
−𝜆𝜃k∗

j𝜏 ∕
|||𝜃̂k∗

j𝜏 (h)
|||)

= 𝜌𝜏

(
Żjk1 − u̇′

jk1
𝜽∗
𝜏

)
+ 𝜌𝜏

(
Żjk2 − u̇′

jk2
𝜽∗
𝜏

)
,

for k = 0, 1, 2 and j = 0, … , p, where Żjk1 = Żjk2 = 0, u̇jk1 = −u̇jk2, and u̇jk1 is a vector containing all zeros with the

exception of the element corresponding to 𝜃k∗
j𝜏 that takes value −𝜆∕|𝜃̂k∗

j𝜏 (h)|. Consequently, the penalized estimator depicted

in Equation 3 can be fit after introducing appropriately structured synthetic data. In particular, define the synthetic response

variable Żr = 0, for r = 1, … ,R = 6p + 6, and the corresponding covariate vector u̇r, where u̇r is the rth row of the matrix

U̇ = [diag{𝜆∕|𝜽̂∗
𝜏(h)|}, diag{−𝜆∕|𝜽̂∗

𝜏(h)|}]′. Constructing synthetic data in this fashion allows one to impose the penalty in

Equation 3 as a part of an unpenalized problem. That is, based on the transformed and synthetic data, the estimator described

in Equation 3 can be equivalently obtained via

𝜽̃
∗
𝜏(h, 𝜆) = argmin

𝜽∗
𝜏
∈R3p+3

S∑
s=1

Ts∑
t=1

𝜌𝜏
(
Zst − u′

st𝜽
∗
𝜏

)
+

R∑
r=1

𝜌𝜏
(
Żr − u̇′

r𝜽
∗
𝜏

)
. (5)

It should be emphasized that, after adding the synthetic data to the observed data, the minimization problem described in

Equation 5 can easily be solved using standard numerical routines used to fit quantile regression models.

2.2 Tuning parameter selection
In order to determine appropriate values for the tuning parameters h and 𝜆, an iterative leave-one-out cross-validation scheme

is suggested. Similar proposals have been made in Li (1984), Rice (1984), and Zou and Li (2008). The difference between the

proposed scheme and standard leave-one-out cross-validation procedures is that rather than leaving a single observation out, as

is specified by the latter approach, the proposed scheme omits all observations associated with a particular location. Thus, for

a given value of h, define 𝜷
s
𝜏(ls) to be the estimator of 𝜷𝜏(ls) resulting from Equation 2 after removing the data associated with

sth location. The proposed leave-one-out cross-validation score used to select h is given by

CV1(h) =
S∑

s=1

Ts∑
t=1

𝜌𝜏

{
Yst − x′

st𝜷
s
𝜏(ls)

}
. (6)

It is then suggested that the smoothing parameter h be chosen to minimize Equation 6, and its value is denoted by ĥ. Once this

step is accomplished, let 𝜷
s
𝜏(ls) be the estimator of 𝜷𝜏(ls) resulting from Equation 3 after removing the data associated with sth

location, for a given value of 𝜆 with the smoothing parameter being set to be ĥ. The proposed leave-one-out cross-validation

score used to select 𝜆 is given by

CV(ĥ, 𝜆) = S−1

S∑
s=1

Ts∑
t=1

𝜌𝜏

{
Yst − x′

st𝜷
s
𝜏(ls)

}
. (7)

Using these cross-validation scores, it is suggested that one implement the one-standard error rule of Hastie, Tibshirani, and

Friedman (2009) to select the penalty parameter. That is, the penalty parameter is selected to be the largest value of 𝜆 satisfying

CV(ĥ, 𝜆) ≤ CV(ĥ, 𝜆∗) +
SD

{
CV(ĥ, 𝜆∗)

}√
S

,

where 𝜆* is the penalty parameter value that minimizes CV(ĥ, 𝜆) and SD{CV(ĥ, 𝜆∗)} is the sample standard deviation of the

cross-validation scores computed at the S locations using 𝜆*. Note that, utilizing the computationally efficient model fitting

strategies discussed in Section 2.1, one can easily minimize Equations 6 and 7 using standard grid search techniques over a

grid of potential values for h and 𝜆, respectively. Note that, when conducting this process, it is generally advisable, for both the

selection of h and 𝜆, to plot the cross-validation scores versus the tuning parameter of interest to ensure that a reasonable range

of values have been considered.
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It is worthwhile to note that the performance of the proposed methodology is inherently tied to the selection of both h and

𝜆. That is, misspecifying either of these tuning parameters can be deleterious to the performance of the proposed regression

methodology. Through simulation, it has been ascertained that the aforementioned process of selecting h and 𝜆 is reliable; for

further details, see Section 4. Further, given the computationally efficient model fitting strategy outlined in Section 2.1, it is

conjectured that the proposed approach could be used to handle extremely large data sets, but the computational time required

to complete the entire process (whether for small or larger data sets) is highly dependent on several features. In particular, the

computational time highly depends on the number of tuning parameter configurations under consideration, the number of spatial

units available in the data, and the number of spatial units at which one desires to obtain an estimate.

3 THEORETICAL RESULTS

In this section, three theoretical properties of the estimator in Equation 3 are discussed: consistency in variable selection,

asymptotic consistency, and asymptotic normality. The combination of these three characteristics provides that the proposed

estimator possesses what are commonly referred to as the “oracle properties.” That is to say, asymptotically, the proposed

estimator will correctly identify the collection of covariates that are truly related to the response variable, and the estimator

incurs no asymptotic bias that is attributable to the penalization process.

To establish these results, the asymptotic properties of the proposed estimator are first studied at an arbitrary geographic

location l*. At this location, let 𝜽∗
𝜏0

denote the true value of 𝜽∗
𝜏 , where 𝜽∗

𝜏0
= (𝜽0∗′

𝜏0
,𝜽1∗′

𝜏0
,𝜽2∗′

𝜏0
)′ and 𝜽k∗

𝜏0
= (𝜃k∗

0𝜏0
, … , 𝜃k∗

p𝜏0
), for

k = 0, 1, 2. Based on 𝜽∗
𝜏0

, define the collection of indices given by ∗ = {j ∶ 𝜃0∗
j𝜏0

≠ 0}. Note that, for every j ∈ ∗, one has that

𝜃0∗
j𝜏0

≠ 0 (i.e., the true value of 𝛽j𝜏 (l
∗) is nonzero), which is equivalent to saying that the 𝜏th quantile of the response variable

is truly related to the jth covariate at the geographic location l*. Moreover, for every j ∉ ∗, one has that 𝜃0∗
j𝜏0

= 0, thereby

indicating that the jth covariate is not related to the 𝜏th quantile of the response variable at the geographic location l*. Similarly,

define the set of indices ̃∗
𝜆
= {j ∶ 𝜽̃0∗

j𝜏 (h, 𝜆) ≠ 0}, with respect to the proposed estimator. This set of indices identifies the

collection of covariates selected by the proposed estimator as being related to the 𝜏th quantile of the response variable at location

l*. Thus, the property referred to as consistency in variable selection can be succinctly stated as limN→∞P(̃∗
𝜆
= ∗) = 1,

where N =
∑S

s=1 Ts; that is, as the sample size tends to infinity the proposed estimator will identify the collection of covariates

that are truly related to the 𝜏th quantile of the response with probability approaching unity. A formal statement of this result

and the asymptotic properties of the proposed estimator is now provided.

Theorem 1. Under conditions 1–4 provided in Appendix S1, if 𝜆 → ∞ and 𝜆(Nh4)−1∕2 → 0 as N =
∑S

s=1 Ts → ∞, the
following results hold:

1. consistency in variable selection: limN→∞P(̃∗
𝜆
= ∗) = 1

2. asymptotic consistency: 𝜽̃0∗
𝜏∗ (h, 𝜆)

p
−−→𝜽0∗

𝜏0∗ .

3. asymptotic normality:
√

Nh2{𝜽̃0∗
𝜏∗ (h, 𝜆) − 𝜽0∗

𝜏0∗ − ∗ (l∗)}
d
−−→N(0,Σ),

where a denotes the subvector of a corresponding to the index set .

A proof of this result is provided in Appendix S1, along with closed-form expressions for the asymptotic bias ∗ (l∗) and

covariance matrix Σ.

The statement of Theorem 1 warrants several comments. First, unlike many classical regression methodologies, the proposed

approach is not reliant on the aforementioned asymptotic properties to perform variable selection; that is, because the proposed

method results in a sparse estimator, it does not make use of asymptotic inference to perform variable selection. The asymptotic

normality of the proposed estimator is established solely for completeness. Second, the aforementioned result guarantees, under

the stated regularity conditions, that the proposed estimator is asymptotically consistent, and that the approach possesses the

consistency in variable selection property; that is, in the limit, the estimator in Equation 3 will not only select the truly significant

covariates, but it will also precisely estimate the associated effects. Last, this result holds at one particular geographic location,

that is, at l*. Given the scope of this work, extending this result to the entire spatial region is of interest. That is, based on the

estimator Ĩj𝜏 proposed in Section 2, it would be desirable to have that the P(Ĩj𝜏 = Ij𝜏 ,∀j) goes to unity as the sample sizes tend

to infinity, and the following corollary provides this result.

Corollary 1. Under the conditions of Theorem 1, one has that P(Ĩj𝜏 = Ij𝜏 ,∀j) converges to 1 as N goes to infinity.

A proof of this result is provided in Appendix S1.
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4 SIMULATION STUDY

In order to illustrate the finite sample performance of the proposed methodology, the following simulation is conducted. This

study aims to evaluate two characteristics of the proposed approach: estimation accuracy and its ability to perform variable

selection at locations in a spatial domain. To this end, this study considers T = 100 observations at each of S = 100 locations.

These sample sizes were chosen to be significantly smaller than the sample sizes that are available in the motivating data

application. The spatial locations ls are chosen to be an equally spaced grid on [−3, 3] × [−3, 3], as depicted in Figure 1. Each

of the data points (Yst, xst), for s = 1, … , S and t = 1, … ,T, is generated according to the following model:

Yst = x′
stγ(ls) + 𝜖st, (8)

where xst
iid∼ N(0, I4), I4 is a 4 × 4 identity matrix, γ(ls) = {f1(ls), … , f4(ls)}′, and 𝜖st are iid random variables generated

from a rescaled t-distribution with three degrees of freedom, where rescaling provides a standard deviation of 0.1. For

j = 1, … , 4, the functions fj(·) are the sum of truncated bivariate Gaussian density functions, truncated to create regions of

significance/insignificance, that is, regions where the regression coefficient surfaces are identically equal to zero. Contour plots

of fj(·), for j = 1, … , 4, over the region of interest are provided in the first column of Figure 1, and the first column of Figure 2

provides a depiction of where fj(l) ≠ 0; that is, these figures depict Ijr, for j = 1, … , 4. Note that the choices of these functions

provide for a broad range of scenarios: the true regression parameter surface changing sign spatially (f1 and f3), a very small

signal relative to the noise level (f2), small areas of insignificance between areas of significance (f1 and f3), and large areas of

insignificance (f2 and f4).

Several comments about the simulation design are warranted. First, the study considers four covariates, each of which are

generated according to a standard normal distribution. This emulates the process of standardizing covariates that is common

in the penalized regression literature. Second, the effect sizes given by fj(·) range from approximately −1.0 to 1.0 for three of

the covariates and −0.20 to 0.20 for one of the covariates. Thus, this specification leads to a broad spectrum of signal-to-noise

ratios when one considers the standard deviation of the error terms (i.e., 0.10). Last, by generating data in this fashion, one has

that for all 𝜏, 𝛽 j𝜏(l) = fj(l), for j = 1, … , 4.

The aforementioned process is used to generate B = 1, 000 independent data sets, which are analyzed using the methodology

outlined in Section 2. The analysis of each data set is performed at two quantiles, that is, at 𝜏 = 0.50 and 𝜏 = 0.95. These two

separate analyses illustrate the characteristics of the proposed approach when used to estimate the central tendency and the tails

of the conditional distribution of the response. The leave-one-out cross-validation technique described in Section 2.2 is utilized

to identify the smoothing and penalty parameters h and 𝜆, respectively, for each of the 1,000 data sets. In order to graphically

depict the resulting estimators, the regression coefficients are estimated at M = 10, 000 locations l∗m throughout the spatial

region of interest. The spatial locations are taken to be a 100 × 100 grid of equally spaced points on [−3, 3] × [−3, 3]. For a

given h and 𝜆, the corresponding leave-one-out cross-validation value took approximately one minute, on average, to compute.

After selecting h and 𝜆, the computing time necessary to perform each spatial interpolation was less than 0.5 seconds.

The second and third columns of Figure 1 provide contour plots of the sample median of the B = 1, 000 estimates of 𝛽j𝜏(l∗m)
for 𝜏 = 0.50 and 𝜏 = 0.95, respectively, at every considered value of l∗m. Note that the true surface that is being estimated is

depicted in the contour plots in the first column of Figure 1. This figure illustrates that the proposed methodology can accurately

estimate 𝛽 j𝜏(l), for j = 1, … , 4, across a spatial domain, for both the central tendencies (i.e., when 𝜏 = 0.50) and the extremes

(i.e., when 𝜏 = 0.95) of the response. One will note that a minor loss in accuracy is observed when 𝜏 = 0.95, but this is expected

because the estimator is attempting to estimate the tails of the conditional distribution of the response. With that being said,

the proposed approach is still able to effectively estimate the general spatial trends of the regression coefficient surfaces when

𝜏 = 0.95. The second and third columns of Figure 2 provide a spatial depiction of the proportion of times that the proposed

estimator is nonzero for 𝜏 = 0.50 and 𝜏 = 0.95, respectively, at every considered spatial location l∗m. The first column of

Figure 2 depicts the regions of true significance/insignificance. From this figure, it can be seen that the proposed methodology

accurately identifies the regions on which the covariates are truly related to the response, for all considered values of 𝜏. In order

to assess variability, Web Figure 1 provides contour plots of the sample standard deviation of the B = 1, 000 estimates of 𝛽j𝜏(l∗m),
for 𝜏 = 0.50 and 𝜏 = 0.95, at every considered value of l∗m. In summary, the results of this simulation study indicate that the

proposed approach is capable of accurately quantifying the relationship between a set of covariates and the response at multiple

quantiles across a spatial domain. Moreover, the methodology developed in Section 2 is capable of accurately identifying spatial

regions of significance/insignificance.

Several additional simulation studies were conducted in order to evaluate the performance of the proposed approach in

other settings that are commonly encountered in spatial analyses. First, a study (results not shown) considering normal errors
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FIGURE 1 Plots of 𝜷 j(l
∗
m) (left panels), the pointwise medians of the estimates when 𝜏 = 0.50 (middle panels), and the pointwise medians of the

estimates when 𝜏 = 0.95 (right panels)

was also performed and provided practically identical results to those discussed above. Second, as environmental covari-

ates could potentially be correlated with one another, a simulation study considering correlated covariates was conducted.

Third, in spatial analyses, the errors could exhibit spatial correlation, and as such a simulation investigating the perfor-

mance of the proposed methodology was conducted to assess the impact of this characteristic. Last, a study considering

both spatial correlation and correlated covariates was performed. The details and a summary of the results of these addi-

tional studies are provided in Appendix S2. Through all of these additional studies, no appreciable differences were found

with the conclusions drawn above; that is, these additional studies again indicate that the proposed approach is capable

of accurately quantifying the relationship between a set of covariates and the response at multiple quantiles across a spa-

tial domain, as well as being able to identify spatial regions of significance/insignificance. Further, one should note that a

primary strength of the proposed methodology is that it is capable of estimating different types of spatial associations at

the different quantiles of the conditional distribution of the response given the covariates; that is, the proposed technique

can be used to estimate 𝛽 j𝜏(l), for 𝜏 ∈ {𝜏1, 𝜏2}, even when 𝛽j𝜏1
(l) ≠ 𝛽j𝜏2

(l). For ease of exposition, this particular fea-

ture is not illustrated through the study design discussed above, but is demonstrated through the results obtained from the

motivating example.
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FIGURE 2 The region of significance for 𝜷 j(l
∗
m) (left panels), the pointwise proportion of nonzero estimates when 𝜏 = 0.50 (middle panels), and

the pointwise proportion of nonzero estimates when 𝜏 = 0.95 (right panels). Note that the white and black regions in the left panels depict regions

where 𝜷 j(l
∗
m) is zero and nonzero, respectively

5 SPATIALLY MODELING THE METEOROLOGICAL DRIVERS OF PM2.5

Attention is now turned to modeling the meteorological drivers of PM2.5 over the Eastern United States.

5.1 Data and study area
The study region considered in this analysis roughly corresponds to the Eastern Time Zone of the United States. The response

variable of interest is daily average PM2.5 levels recorded at 174 Environmental Protection Agency (EPA) stations, with consis-

tent data records, within this region. Figure 3 provides a spatial map that depicts the location of each of these stations. The data

used in this analysis were collected between the years 2010 and 2014. Further, as it is believed that the drivers of PM2.5 may

differ by season, the data are divided into four seasons. The analysis presented here focuses on the summer and winter seasons,

with summer defined to be the months of June–August, and winter being the months of December–February.

The meteorological variables for this analysis are obtained from the North American Regional Reanalysis (NARR) and consist

of the 12 covariates given in Table 1. The process of selecting these covariates is driven by information gained from other

similar studies; for example, see Jacob and Winner (2009) and Porter et al. (2015). Note that the precipitation indicator variable

takes the value 1 if any of the corresponding day's NARR categorical rain readings (presence/absence of precipitation) takes the

value of 1. Further, lower tropospheric stability represents the difference between the potential temperature at the surface and
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FIGURE 3 Plot of the locations of the EPA stations used in the PM2.5 analysis

TABLE 1 The 12 considered meteorological variables that were obtained from the

NARR

Variable Abbreviation Comment

Precipitation Precip Daily presence/absence

Night air temperature Night Temp Nighttime average

Day air temperature Day Temp Daytime average

Night planetary boundary layer height Night HPBL Nighttime average

Day planetary boundary layer height Day HPBL Daytime average

Relative humidity RH Daytime average

Lifted index LFTX Daytime average

Lower Tropospheric Stability LTS Average of previous 24 hr

Wind speed Wnd Spd Average of previous 48 hr

Turbulence kinetic energy TKE Same day average

Downward shortwave radiative flux DSWRF Average of previous day

Percent cloud cover TCDC Average of previous day

the potential temperature at 700 hPa (Klein and Hartmann, 1993; Porter et al., 2015). In order to be able to compare estimated

coefficients throughout the spatial domain, all variables are standardized.

5.2 Spatial analysis
The aim of this analysis is to improve the level of understanding regarding the spatial relationship between PM2.5 and the 12

meteorological variables presented in Table 1, throughout the study region. Moreover, it is desired to assess this relationship

throughout different seasons (i.e., summer and winter) and at different quantiles of the conditional distribution of PM2.5 levels

(𝜏 = 0.50 and 𝜏 = 0.95). To accomplish this task, the proposed model is fit to the available data (within season) at a grid

of 1,783 points covering the Eastern United States. The strategy discussed in Section 2.2 is utilized to determine the tuning
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FIGURE 4 Results of the spatial analysis of the winter PM2.5 data: Presented results include the estimates of 𝛽j𝜏 (l∗m) for each of the considered

meteorological drivers, when 𝜏 = 0.50. Note that regions of insignificance are depicted in white

parameters h and 𝜆. For each season and quantile, Figures 4 –7 present the estimated regression coefficient surfaces for all 12

variables, and Web Figures 2 –5 provide the same results but on a common scale so that one can examine relative importance. In

particular, these figures summarize the model fits for the different seasons and for the different considered quantiles, in addition

to providing regions of significance/insignificance for each of the considered meteorological variables.

5.2.1 Meteorological drivers of PM2.5 in the winter
Through the results presented in Figures 4 and 5, it appears that wind speed is the primary driver over most of the region during

the winter, and as expected is negatively related to PM2.5 levels at both quantiles of interest. Interestingly, wind speed seems to
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FIGURE 5 Results of the spatial analysis of the winter PM2.5 data: Presented results include the estimates of 𝛽j𝜏 (l∗m) for each of the considered

meteorological drivers, when 𝜏 = 0.95. Note that regions of insignificance are depicted in white

play a larger role in describing PM2.5 levels at the 0.95 quantile in the winter, as the magnitude of its coefficient appears to be

larger at this quantile. The height of the planetary boundary layer is also an important variable throughout much of the study

region, suggesting that inversions may play an important role in the winter. Planetary boundary layer height (HPBL) seems to

be most important in the Northern part of the region for 𝜏 = 0.50. At this quantile, nighttime HPBL is most important in the

far Northeast, whereas daytime HPBL is most important in the upper Midwest. For 𝜏 = 0.95, daytime height of the planetary

boundary layer is also important in Southern portions of the study area.

Air pollution is commonly associated with warmer air temperatures, but this analysis finds that nighttime air temperature

has a negative relationship with PM2.5 at both quantiles during the winter. This negative relationship between surface-level

air temperature and PM2.5 could be consistent with the importance of inversions. Lower tropospheric stability is found to be
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FIGURE 6 Results of the spatial analysis of the summer PM2.5 data: Presented results include the estimates of 𝛽j𝜏 (l∗m) for each of the considered

meteorological drivers, when 𝜏 = 0.50. Note that regions of insignificance are depicted in white

positively related to PM2.5 levels throughout much of the study region for 𝜏 = 0.95, but does not look to be significant for

𝜏 = 0.50. Relative humidity's association tends to be positive in large portions of the region at both quantiles. In much of the

region, cloud cover does not seem to be strongly related to PM2.5 levels for 𝜏 = 0.50, but seems to have more importance in

parts of the study region for 𝜏 = 0.95.

5.2.2 Meteorological drivers of PM2.5 in the summer
Through the results presented in Figures 6 and 7, air temperature appears to be the most significant meteorological driver for

describing median (i.e., when 𝜏 = 0.50) PM2.5 throughout the Eastern United States. Although nighttime air temperature is

found to be negatively related to PM2.5 in the winter, daytime air temperature is found to be positively related to PM2.5 during the
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FIGURE 7 Results of the spatial analysis of the summer PM2.5 data: Presented results include the estimates of 𝛽j𝜏 (l∗m) for each of the considered

meteorological drivers, when 𝜏 = 0.95. Note that regions of insignificance are depicted in white

summer, especially in the Northeast. Not unexpectedly, wind speed seems to be a secondary driver and is negatively related to

PM2.5 throughout most of the region. Relative humidity seems to be positively related to PM2.5 at both quantiles in the Northern

portion of the region, but looks to have a negative relationship in Southern portions of the region.

At the 0.50 quantile of PM2.5 levels, the proposed modeling approach tends to select downward shortwave radiative flux on

the previous day in the Carolinas, but tends to select cloud cover over that region at the 0.95 quantile. Interestingly, precipitation

and lifted index looks to be important over Kentucky and Tennessee for 𝜏 = 0.95, but not for 𝜏 = 0.50.

5.2.3 Summary discussion of analysis
It is worthwhile to point out that throughout the region of interest, during both the winter and summer and at the different

considered quantiles, the association between PM2.5 levels and the meteorological covariates vary spatially. In particular, the
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magnitude of the estimated effect associated with each of the meteorological variables changes with the geographic area, with the

propensity to even change direction; that is, in some regions, variables are positively related with PM2.5 levels, and in others, they

possess a negative relationship. Moreover, the proposed approach finds that, in some regions of the study area, meteorological

drivers are significantly related, while they are insignificant in other areas. These findings are possibly attributable to the variable

composition of PM2.5 (Jacob & Winner, 2009); that is, the composition of PM2.5 tends to vary spatially, and as a consequence,

the set of significant meteorological drivers should as well. Last, it is possible that PM2.5 levels are spatially correlated, but

given the results of the numerical studies presented in Section 4, it is believed that this effect (if present) would not unduly

influence the results of this analysis.

The primary goal of this work is not to model PM2.5 levels, but rather to spatially model the effects of meteorological drivers

on different quantiles of PM2.5 levels. The work of Russell, Cooley, Porter, and Heald (2016) is similar in spirit, in the sense that

these authors spatially model the meteorological drivers' effects on air pollution, but they take a drastically different approach,

and focus on ground-level ozone extremes. The results of the analysis presented in Porter et al. (2015) are interesting to compare

and contrast with the results presented above. In particular, Porter et al. (2015) performs variable selection at a large number of

U.S. locations individually, using standard quantile regression models. This complimentary analysis found that air temperature

is the main driver of PM2.5 during the summer, with wind speed and lifted index also being important, throughout the study

region considered in this work. Also coinciding with the findings presented above, Porter et al. (2015) found that the height of

the planetary boundary layer is a primary driver throughout the Eastern United States during the winter, with turbulence kinetic

energy and relative humidity also being important. It is worthwhile to point out that any differences between these two analyses

are likely attributable to the differing variable selection strategies, and the fact that the two analyses consider slightly different

sets of meteorological variables.

6 DISCUSSION AND CONCLUSION

In this work, a local linear quantile regression methodology is developed for the purposes of estimating the spatial relationship

between a set of covariates and the conditional quantiles of a response variable. In particular, at any spatial location within the

region of interest, the proposed methodology can be used to address two main issues, that is, parameter estimation and variable

selection, and these are accomplished uniquely at every spatial location. In this sense, the proposed modeling procedure is quite

different compared to many existing spatial quantile regression models, because it makes use of an adaptive LASSO penalty

to perform model selection. The theoretical properties of the proposed estimator have been established, and the finite sample

characteristics are illustrated through simulation. Further, the proposed methodology is used to spatially model the effects of

meteorological drivers for different quantiles of the conditional distribution of PM2.5 levels throughout the Eastern United States.

There are several topics for future research pertaining to this proposal that could be undertaken. First, and foremost, the

development of techniques that could be implemented to conduct model validation would be of key interest. Second, developing

an approach that would allow the tuning parameters to vary spatially could also help with the performance of the proposal,

especially in areas where the effect size is relatively small. Third, efforts to extend the theoretical results presented in Section

3 could be made to allow for spatial and/or temporal correlation. This could likely be accomplished by adapting the techniques

outlined in Wu (2007). Last, generalizing the methodology to allow the effect estimates to vary in time could also be a reasonable

pursuit.
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