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We propose Lp distance-based goodness-of-fit (GOF) tests for
uniform stochastic ordering with two continuous distributions F and
G, both of which are unknown. Our tests are motivated by the fact
that when F and G are uniformly stochastically ordered, the ordinal
dominance curve R = FG−1 is star-shaped. We derive asymptotic
distributions and prove that our testing procedure has a unique least
favorable configuration of F and G for p ∈ [1,∞]. We use simulation
to assess finite-sample performance and demonstrate that a modi-
fied, one-sample version of our procedure (e.g., with G known) is
more powerful than the one-sample GOF test suggested by Arcones
and Samaniego (2000, Annals of Statistics). We also discuss sam-
ple size determination. We illustrate our methods using data from a
pharmacology study evaluating the effects of administering caffeine
to prematurely born infants.

1. Introduction. Suppose X and Y are continuous random variables
with distribution functions F and G, respectively. In many applications, it is
of interest to compare F and G. The ordinal dominance curve (ODC), which
plots (G(t), F (t)) for −∞ ≤ t ≤ ∞, is a useful graphical tool that facilitates
such a comparison (Bamber, 1975; Hsieh and Turnbull, 1996; Carolan and
Tebbs, 2005; Davidov and Herman, 2012). The ODC can also be defined as
R = FG−1, where G−1(u) = inf{t : G(t) ≥ u} is the quantile function of G.
When F = G, the ODC follows the main diagonal of the unit square, the
so-called equal distribution line.

We consider order-restricted comparisons of F and G. Define F = 1− F
and G = 1 − G. These are the survivor functions if X and Y are lifetime
random variables, although herein we do not require X and Y to be non-
negative. Denote the corresponding densities by f and g, respectively. If
F ≤ G, then X and Y are stochastically ordered; this is written as F ≤S G
and means informally that X “tends to be smaller” than Y . Two stronger
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Fig 1. Ordinal dominance curves. Left: F ≤S G. Middle: F ≤US G. Right: F ≤LR G. In
each subfigure, the equal distribution line is shown dotted.

orders are the uniform stochastic order and the likelihood ratio order. When
F/G is nonincreasing, X and Y satisfy a uniform stochastic order, written
F ≤US G. When f/g is nonincreasing, X and Y satisfy a likelihood ratio
order, written F ≤LR G. It is easy to show these orderings follow the nested
structure: F ≤LR G =⇒ F ≤US G =⇒ F ≤S G. A comprehensive account
of these and other orderings is given in Shaked and Shanthikumar (2007).

Different stochastic orderings give rise to different functional forms of the
ODC. The weakest ordering F ≤S G holds if and only if R is at least as large
as the equal distribution line; i.e., R(u) ≥ u, for 0 ≤ u ≤ 1. The strongest
ordering F ≤LR G holds if and only if R is concave. The intermediate
ordering F ≤US G holds if and only if R is star-shaped (Lehmann and Rojo,
1992). One way to characterize a star-shaped ODC is that the slope of the
secant line from the point (1, 1) to (u,R(u)); i.e., r(u) = {1−R(u)}/(1−u),
is nonincreasing in u. Figure 1 gives examples of ODCs that correspond
to stochastic, uniform stochastic, and likelihood ratio orderings. This figure
demonstrates the utility of the ODC in characterizing how two distributions
are ordered and how the structure F ≤LR G =⇒ F ≤US G =⇒ F ≤S G
manifests itself graphically in the ODC.

This article is motivated by a pharmacology study evaluating the effects
of administering caffeine to prematurely born infants in Columbia, South
Carolina; see Section 5. Among 404 infants in the study, m = 127 were
administered caffeine and n = 277 were not. Each infant was then followed
until he or she was discharged from the hospital. All infants were eventually
discharged and were alive at the time of discharge; i.e., no discharge times
were censored. One of the goals of the study was to understand how the
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Fig 2. Premature infant data. Left: The sample ODC Rmn(u) = Fm{G−1
n (u)} for the

time to discharge (F = caffeine; G = no caffeine). Right: The least star-shaped majorant
MRmn is shown in blue. In each subfigure, the equal distribution line is shown dotted.

distributions of discharge times F (caffeine) andG (no caffeine) compared for
the two groups. In Figure 2 (left), we display the sample ODC for the data,
which is defined as Rmn(u) = Fm{G−1

n (u)}, for 0 ≤ u ≤ 1, where Fm and Gn
are the empirical distribution functions and G−1

n (u) = inf{t : Gn(t) ≥ u}
is the empirical quantile function. The sample ODC and its large-sample
properties were described in Hsieh and Turnbull (1996).

On the basis of Figure 2, which stochastic ordering, if any, characterizes
the true relationship between the discharge time distributions? There is a
substantive literature on nonparametric tests for stochastic orderings with
two or more distributions; see Davidov and Herman (2012), El Barmi and
McKeague (2016), and the references therein. In the two-sample case, most
of this literature describes tests where the equal distribution assumption
F = G is treated as the null hypothesis and the ordering (i.e., F ≤S G,
F ≤US G, or F ≤LR G) is placed in the alternative. A potential drawback
with this type of test is that it is constructed assuming a specific order-
restricted class of alternatives; if the assumed class is incorrect, the test
may lead to misleading or vacuous conclusions. For example, applying tests
of this type to the premature infant data, we obtain the following results:

• testing F = G versus F ≤S G: p-value < 0.00002 (Davidov and Her-
man, 2012)
• testing F = G versus F ≤US G: p-value < 0.00001 (Arcones and
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Samaniego, 2000)
• testing F = G versus F ≤LR G: p-value < 0.00001 (Carolan and

Tebbs, 2005).

Each test clearly dictates that the infant data are not consistent with F = G.
However, we are no closer to identifying which specific ordering (if any) holds
in this setting.

In this light, we consider goodness-of-fit (GOF) testing procedures in-
stead. By “goodness-of-fit,” we mean the procedure places the ordering in
the null hypothesis and attempts to detect departures from the ordering. By
comparison, the literature on nonparametric GOF tests with two distribu-
tions is more sparse, perhaps because this type of testing problem is more
difficult. The primary reason for the added difficulty is that the ordering
can hold under different configurations of F and G. Therefore, one must
determine the least favorable configuration of the two distributions before
the test can be performed; i.e., so that the probability of type I error can be
controlled. Carolan and Tebbs (2005) proposed nonparametric GOF tests
for likelihood ratio ordering with two continuous distributions by using the
least concave majorant of the sample ODC. This work was generalized and
improved upon by Beare and Moon (2015) in the econometrics literature,
who considered likelihood ratio ordering and its applications in finance.

GOF tests for uniform stochastic ordering have been proposed but only in
limited settings. Dardanoni and Forcina (1998) considered likelihood-based
tests against uniform stochastic ordering in a two-way contingency table.
Park et al. (1998) used a nonparametric maximum likelihood approach to
formulate GOF tests with two or more continuous distributions, but only
after data from these distributions have been assigned to disjoint intervals
in the form of counts. This essentially discretizes the problem and results
in testing against uniform stochastic ordering among several multinomial
distributions. Furthermore, this formulation gives rise to non-unique least
favorable configurations that depend on how the intervals are selected, the
number of distributions, and even the significance level used. Finally, in the
two-population setting, Arcones and Samaniego (2000) suggested a GOF
test for uniform stochastic ordering based on the family of order-restricted
estimators in Mukerjee (1996). However, these authors assume that one of
the population distributions is known (e.g., G is known) and do not de-
termine the least favorable configuration for their procedure. Instead, the
authors use critical values from an upper bound asymptotic distribution
which leads to a conservative test.

In this article, we propose a family of GOF tests for uniform stochastic or-
dering with two continuous distributions F and G; that is, we are interested
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in testing H0 : F ≤US G versus H1 : F �US G, where both distributions are
unknown. Motivated by the ODC approaches taken in Carolan and Tebbs
(2005) and Beare and Moon (2015), we construct test statistics for H0 ver-
sus H1 based on the Lp difference between the sample ODC and its least
star-shaped majorant (defined in Section 2). We then derive asymptotic dis-
tributions and prove that our testing procedure has a unique least favorable
configuration for p ∈ [1,∞]. Interestingly, this theoretical result is different
from the finding in Beare and Moon (2015), who showed that when using Lp

distance-based GOF tests for likelihood ratio ordering, the least favorable
configuration exists only when p ∈ [1, 2]. Furthermore, unlike Park et al.
(1998), our approach does not require one to discretize the support of the
distributions which can only lead to a loss in power. Finally, we show that
the one-sample version of our test (e.g., with G known) is not as conserva-
tive as the test proposed by Arcones and Samaniego (2000) and is generally
better equipped to detect departures from H0.

Formulating Lp distance-based GOF tests for uniform stochastic ordering
in the two-sample problem is technically challenging. It is not possible to
simply modify the proofs in Carolan and Tebbs (2005) and Beare and Moon
(2015) under likelihood ratio ordering; see Section 3. At the same time, es-
tablishing that such an ordering exists has great practical implications. For
example, if X and Y are lifetime random variables (and are absolutely con-
tinuous), then F ≤US G is equivalent to the corresponding hazard rates be-
ing ordered. This is an important characterization in reliability and survival
analysis applications. Our interest in uniform stochastic ordering is moti-
vated by our collaboration with researchers in the premature infant study
discussed earlier. Letting X and Y denote the times to discharge for the caf-
feine and no-caffeine groups, respectively, uniform stochastic ordering holds
if and only if pr(X > t|X > t0) ≤ pr(Y > t|Y > t0), for all t, t0 satisfying
t > t0 ≥ 0. In other words, no matter how much time t0 ≥ 0 has subse-
quently passed, administering caffeine is consistent with shorter discharge
times. Note that, in this context, stochastic ordering requires that the re-
lationship above hold only initially (i.e., when t0 = 0). Uniform stochastic
ordering guarantees this type of dominance will hold for all t0 ≥ 0.

2. Testing procedure. Suppose that X1, X2, ..., Xm are independent
and identically distributed (iid) from F and that Y1, Y2, ..., Yn are iid from
G. We assume the two samples are independent and that both F and G are
unknown. Let R = FG−1 denote the corresponding ODC. For our asymp-
totic results in Section 3 to hold, as in Hsieh and Turnbull (1996), we assume
F and G have continuous densities f and g and that the first derivative of
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R is bounded over [0, 1]. Throughout this article, we denote the parame-
ter space of R by Θ, the collection of nondecreasing, continuously differen-
tiable functions from [0, 1] to [0, 1]. Under our assumptions, the hypotheses
H0 : F ≤US G and H1 : F �US G can be expressed equivalently as

H0 : R ∈ Θ0 = {θ ∈ Θ : θ is star-shaped} and H1 : R ∈ Θ1 = Θ \Θ0.

Recall that θ ∈ Θ is star-shaped if and only if {1− θ(u)}/(1− u) is nonin-
creasing in u.

Let Rmn = Rmn(u) = Fm{G−1
n (u)} denote the sample ODC, defined

in Section 1. Informally, our testing procedure is based on measuring the
distance between Rmn and an estimate of R subject to the constraint that
F ≤US G. Towards defining this restricted estimator, let l([0, 1]) denote
the collection of bounded functions on [0, 1]. For any h ∈ l([0, 1]), its least
star-shaped majorant is defined as

Mh = inf{h∗ ∈ l([0, 1]) : h ≤ h∗ and h∗ is star-shaped};

i.e., Mh is the smallest star-shaped function in l([0, 1]) that is at least as
large as h. Throughout our work, we call M : l([0, 1]) 7→ l([0, 1]) the least
star-shaped majorant operator. Just as Rmn is an estimator of R under
no restriction (Hsieh and Turnbull, 1996), the least star-shaped majorant
MRmn is an estimator of R under H0 : F ≤US G. Using Lemma 1 in
the supplementary article (Tang et al., 2016), we show that this restricted
estimator can be calculated as

MRmn(u) = 1− min
v∈V∪{0}
v≤u

{
1−Rmn(v)

1− v

}
(1− u),

for 0 ≤ u < 1, where V is the set of discontinuous (jump) points of Rmn and
MRmn(1) = 1. Figure 2 (right) shows the least star-shaped majorant of the
sample ODC for the premature infant data described in Section 1.

Our testing procedure utilizes the sample ODC Rmn and its least star-
shaped majorantMRmn. Specifically, we propose the family of test statistics

Mp
mn = cmn‖MRmn −Rmn‖p,

where cmn = {mn/(m+n)}1/2 is a normalizing constant and ‖ · ‖p is the Lp

norm with respect to Lebesgue measure. We allow for p ∈ [1,∞]; i.e., ‖h‖p =
(
∫

[0,1] |h(u)|pdu)1/p when p <∞ and ‖h‖∞ = supu∈[0,1] |h(u)|. For example,

when p = 1, ‖MRmn −Rmn‖1 equals the area between the two estimators;
when p =∞, ‖MRmn−Rmn‖∞ equals the largest vertical distance between
the estimators. For any p ∈ [1,∞], clearly large values of Mp

mn are evidence
against H0.
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3. Theoretical results. In this section, we first describe the asymp-
totic distribution of Mp

mn for any star-shaped ODC; i.e., for any R ∈ Θ0. We
then demonstrate that, for any p ∈ [1,∞], all null distributions are domi-
nated stochastically by the asymptotic distribution of Mp

mn under R(u) = u,
that is, when F = G. From this least favorable distribution, we can find the
critical value cα,p that satisfies limm,n→∞ pr(Mp

mn ≥ cα,p) = α when F = G
and limm,n→∞ pr(Mp

mn ≥ cα,p) ≤ α when H0 : F ≤US G is true. In other
words, rejecting H0 when Mp

mn ≥ cα,p is an asymptotic size α decision rule.
Finally, we examine relevant asymptotic distributions when R ∈ Θ1 and
then characterize large-sample power properties. We also discuss sample
size calculations to detect departures from H0. All theorems are proved in
Section 7. Additional technical details are provided in the supplementary
article (Tang et al., 2016).

3.1. Asymptotic results under H0. Let I denote the identity operator on
l([0, 1]) and define D = M− I. When H0 is true; i.e., when R ∈ Θ0, note
that MR = R and

Mp
mn = cmn‖MRmn −Rmn‖p = cmn‖DRmn −DR‖p.

At first glance, establishing the limiting distribution of Mp
mn under H0 might

seem to be straightforward, that is, one could simply start with the asymp-
totic distribution of cmn(Rmn −R) described in Hsieh and Turnbull (1996)
and apply the functional delta method (see, e.g., Section 3.9 in van der
Vaart and Wellner, 1996) and continuous mapping theorem. This was the ap-
proach taken by Beare and Moon (2015) with their Lp distance-based GOF
test statistics under likelihood ratio ordering. In our setting, this direct ap-
proach is not possible because whereas the least concave majorant operator
in Beare and Moon (2015) is Hadamard directionally differentiable (Shapiro,
1990, 1991), the least star-shaped majorant operator M (and hence D) is
not always so; see Lemma 5 in the supplementary article (Tang et al., 2016).
Fortunately, this does not create insurmountable problems because weak
convergence of cmn(DRmn − DR) is not a necessary prerequisite to derive
the asymptotic distribution of cmn‖DRmn −DR‖p.

Before we state the asymptotic distribution of Mp
mn for any R ∈ Θ0, we

need to describe R precisely because these distributions depend completely
on the shape of R. Recall that when R ∈ Θ0, the slope function r(u) =
{1 − R(u)}/(1 − u) is nonincreasing in u. When r(u) is strictly decreasing
over [0, 1], we say that R is strictly star-shaped. When R ∈ Θ0 is not strictly
star-shaped, then, analogously to Beare and Moon (2015), there exists a
unique collection (finite or countable) of closed, pairwise disjoint intervals
of the form [ak, bk], 0 ≤ ak < bk ≤ 1, where
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• the slope r(u) is constant over each interval (i.e., R is affine over each
interval)
• no two intervals possess the same value of r(u).

In this case, we say that R ∈ Θ0 is non-strictly star-shaped. The reason
we bifurcate Θ0 using “strictly” and “non-strictly” descriptors is that the
nondegenerate part of the asymptotic distribution of Mp

mn depends only on
those regions where R is non-strictly star-shaped. If R is strictly star-shaped
over [0, 1], the distribution of Mp

mn collapses to zero in the limit.
To make our description of the asymptotic distributions precise, we there-

fore introduce the following notation. For 0 ≤ a < b ≤ 1, define

M(1,0)
[a,b] h = inf{h∗ ∈ l([0, 1]) : h ≤ h∗ and h∗ is star-shaped

over [a, b] with kernel (1, 0)}.

A general definition of what it means for a function h∗ to be star-shaped
with kernel (c, d) is given directly before Lemma 1 in the supplementary ar-

ticle (Tang et al., 2016). For any h ∈ l([0, 1]), the function M(1,0)
[a,b] h has two

defining characteristics. First, M(1,0)
[a,b] h(u) = h(u) whenever u /∈ [a, b]. Sec-

ond, over [a, b],M(1,0)
[a,b] h is the smallest function (at least as large as h) that

is star-shaped with kernel (1, 0); i.e., the slope function −M(1,0)
[a,b] h(u)/(1−u)

over [a, b] is nonincreasing in u. The importance of the functional operator

M(1,0)
[a,b] : l([0, 1]) 7→ l([0, 1]) becomes clear as we state our first main result.

Theorem 1 Suppose R ∈ Θ0 and let B denote a standard Brownian bridge.
The asymptotic results below hold when min{m,n} → ∞ and n/(m+ n)→
λ ∈ (0, 1).

(a) If R is strictly star-shaped over [0, 1], then Mp
mn

d−→ 0 for all p ∈ [1,∞].
(b) If R is non-strictly star-shaped, then for p ∈ [1,∞),

Mp
mn

d−→

{∑
k

[
λR′(ak) + (1− λ){R′(ak)}2

]p/2 ∫ bk

ak

{
D(1,0)

[ak,bk]B(u)
}p
du

}1/p

;

when p =∞,

Mp
mn

d−→ sup
k

{[
λR′(ak) + (1− λ){R′(ak)}2

]1/2
sup

u∈[ak,bk]

{
D(1,0)

[ak,bk]B(u)
}}

.

In both asymptotic distributions, R′ is the derivative of R and D(1,0)
[ak,bk] =

M(1,0)
[ak,bk] − I.
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From Theorem 1, one can see that when F ≤US G, the only randomness in
the asymptotic distribution of Mp

mn arises from the non-strictly star-shaped

regions [ak, bk] and is described probabilistically by the D(1,0)
[ak,bk]B processes.

Furthermore, when F = G, the asymptotic distribution of Mp
mn simplifies

to ‖D(1,0)
[0,1] B‖p for all p ∈ [1,∞]. When p = 1, for example, this quantity de-

scribes the distribution of the area between the least star-shaped majorant

of a standard Brownian bridge B and B itself. When p = ∞, ‖D(1,0)
[0,1] B‖∞

describes the distribution of the sup-norm distance between these two pro-
cesses. Readers familiar with the GOF tests for likelihood ratio ordering in
Carolan and Tebbs (2005) and Beare and Moon (2015) will no doubt recog-
nize the homology between our Theorem 1 and the corresponding results in
these articles. However, as noted earlier, GOF tests for uniform stochastic
ordering present their own set of mathematical challenges and different con-
clusions are reached about the existence of a least favorable configuration.

Theorem 2 Suppose R ∈ Θ0. For any p ∈ [1,∞], the asymptotic distribu-

tion of Mp
mn is ordinary stochastically smaller than ‖D(1,0)

[0,1] B‖p; i.e.,

lim
m,n→∞

n/(m+n)→λ

prR∈Θ0
(Mp

mn ≥ t) ≤ pr(‖D(1,0)
[0,1] B‖p ≥ t),

for all t ∈ R, where λ is defined in Theorem 1.

Theorem 2 establishes that when using Mp
mn to test H0 : F ≤US G versus

H1 : F �US G, the equal distribution line R(u) = u represents the least
favorable configuration of F and G for all p ∈ [1,∞]. Proving this result

involves showing that each of the D(1,0)
[ak,bk]B processes in Theorem 1 are mu-

tually independent, a somewhat startling discovery because each process

shares the same Brownian bridge B and each operator D(1,0)
[ak,bk] shares the

same kernel point (1, 0). The practical utility of Theorem 2 is that, for any
p ∈ [1,∞], we can determine the critical value that maximizes the probabil-
ity of type I error over all configurations of F and G in Θ0. This result is
different than the conclusion reached in Beare and Moon (2015), who showed
that when testing against likelihood ratio ordering using Lp distance-based
statistics involving the least concave majorant of Rmn, R(u) = u is the least
favorable configuration when p ∈ [1, 2] and for p > 2 the least favorable
configuration does not exist. Careful inspection of Theorem 1 and some in-
tuition sheds insight on why this is true. When R is star-shaped, but not
strictly star-shaped, each of the derivatives R′(ak) in Theorem 1 satisfies
R′(ak) ≤ 1. However, when F ≤LR G, there is no guarantee these deriva-
tives are uniformly bounded for all concave R and hence anomalous limiting
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behavior can result when p is too large.
For given values of the significance level α and p ∈ [1,∞], denote the 1−α

quantile of ‖D(1,0)
[0,1] B‖p by cα,p; i.e., cα,p solves α = pr(‖D(1,0)

[0,1] B‖p ≥ cα,p). To

approximate the distribution of ‖D(1,0)
[0,1] B‖p, we generated 100,000 Brownian

bridge paths on a grid of 100,000 equally spaced points in [0, 1], and, for each

p ∈ {1, 2, 3, 5,∞}, we calculated ‖D(1,0)
[0,1] B‖p for each path. For each p, these

100,000 values were used to approximate the density function of ‖D(1,0)
[0,1] B‖p

and quantiles cα,p, for α = 0.01, 0.05, and 0.10. These functions and the
selected quantiles cα,p are provided in the supplementary article (Tang et
al., 2016).

3.2. Asymptotic results under H1. The difference between the asymp-
totic distribution of Mp

mn under H0 : R ∈ Θ0 and that under H1 : R ∈ Θ1

arises from the non-star-shaped regions of R. To characterize a non-star-
shaped ODCR ∈ Θ1, start withMR, which is star-shaped, and note that (as
in Section 3.1) one can partition the unit interval [0, 1] as [0, 1] = S∪(∪kSk),
where MR is strictly star-shaped over S and non-strictly star-shaped over
pairwise disjoint intervals of the form Sk = [ak, bk], 0 ≤ ak < bk ≤ 1, for
k = 1, 2, .... One can further partition each Sk as Sk = Sk1 ∪ Sk2, where
Sk1 = {u ∈ Sk : MR(u) = R(u)} and Sk2 = {u ∈ Sk : MR(u) > R(u)}.
Each Sk1 must contain ak so it is never empty, and the non-star-shaped
regions of R can be written as ∪kSk2. In other words, R ∈ Θ0 when ∪kSk2

is empty and R ∈ Θ1 otherwise.
In general, these types of regions contribute differently to the limiting dis-

tribution of Mp
mn. Over the strictly star-shaped region S,MR(u) = R(u) for

all u and the Lp norm of cmn{DRmn(u)−DR(u)} converges in distribution
to 0, as in Section 3.1. To clearly describe the contribution over the Sk re-
gions, we introduce new notation. For any h ∈ l([0, 1]), define the functional
operator LSk

: l([0, 1]) 7→ l([0, 1]) according to

LSk
h(u) = − inf

v∈Sk1
v≤u

{
−h(v)

1− v

}
(1− u)ISk

(u) + h(u)ISc
k
(u), for u ∈ [0, 1),

where IA(·) is the indicator function over the set A and Ac denotes the com-
plement of A. When u = 1, LSk

h(u) = max{h(1), 0} or h(1) depending on
whether the singleton {1} ∈ Sk1 or not; see Appendix C in the supplemen-
tary article (Tang et al., 2016). Using this new operator, we now characterize
asymptotic distributions for any ODC R ∈ Θ with those in Θ1 = Θ \Θ0 of
particular interest. A discussion on the large-sample power properties of our
testing procedure follows.
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Theorem 3 Suppose R ∈ Θ. Using the notation described in this subsec-
tion,

cmn‖DRmn −DR‖p
d−→

{∑
k

∫
u∈Sk

∣∣∣LSk
T λR(u)− T λR(u)

∣∣∣p du}1/p

for p ∈ [1,∞); when p =∞,

cmn‖DRmn −DR‖p
d−→ sup

k
sup
u∈Sk

∣∣∣LSk
T λR(u)− T λR(u)

∣∣∣ .
Both results hold as min{m,n} → ∞ and n/(m + n) → λ ∈ (0, 1). In both
cases, T λR(u) = λ1/2B1(R(u)) + (1 − λ)1/2R′(u)B2(u), 0 ≤ u ≤ 1, where B1

and B2 denote two independent standard Brownian bridges.

Four remarks are in order. First, the process T λR = {T λR(u), 0 ≤ u ≤ 1}
in Theorem 3 is well known; as noted earlier, it represents the asymptotic
distribution of cmn(Rmn − R) for any R ∈ Θ; see, e.g., Theorem 2.2 in
Hsieh and Turnbull (1996). Second, the asymptotic distributions identified
in Theorem 3 apply for any R ∈ Θ, but we show in the supplementary
article (Tang et al., 2016) that they quickly reduce to those in Theorem 1
when R ∈ Θ0. Third, our Lp tests are consistent for p ∈ [1,∞]. To see why,
consider the sup-norm (p = ∞) case in Theorem 3 and note that, by the
triangle inequality,

prR∈Θ1
(M∞mn ≥ cα,∞) = prR∈Θ1

(
cmn ‖DRmn‖∞ ≥ cα,∞

)
≥ prR∈Θ1

(
cmn ‖DRmn −DR‖∞ ≤ cmn ‖DR‖∞ − cα,∞

)
which can be approximated by

prR∈Θ1

(
sup
k

sup
u∈Sk

∣∣∣LSk
T λR(u)− T λR(u)

∣∣∣ ≤ cmn ‖DR‖∞ − cα,∞).
It is easy to show that supk supu∈Sk

|LSk
T λR(u)−T λR(u)| is bounded and that,

for any R ∈ Θ1, cmn‖DR‖∞ → ∞, as min{m,n} → ∞, which establishes
our claim. The finite p argument is analogous. Fourth, approximate lower
bounds on the power, like the one above in the sup-norm case, can be used
for sample size calculations. For an ODC R ∈ Θ1 deemed to be clinically
relevant, one can determine numerically the smallest m and n that solve
prR∈Θ1

(supk supu∈Sk
|LSk

T λR(u) − T λR(u)| ≤ cmn‖DR‖∞ − cα,∞) = 1 − β,
where β ∈ (0, 1). The resulting solution will be inexorably conservative but
still potentially useful for planning purposes. We illustrate this approach
with examples in Section 4.
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We conclude this section with a brief discussion on local power. This dis-
cussion is ultimately not dissimilar from the local power discussion in Beare
and Moon (2015) under likelihood ratio ordering. However, our interest in
local power arises because we want to compare the one-sample version of
our testing procedure to the GOF test suggested by Arcones and Samaniego
(2000). This one-sample comparison is given in Section 4.3. The two-sample
discussion is given now. Let {R(r), r = 1, 2, ..., } denote a sequence of ODCs
in Θ1. For each r ≥ 1, denote the corresponding distributions by F (r) and

G(r) from which we have independent random samples X
(r)
1 , X

(r)
2 , ..., X

(r)
m

and Y
(r)

1 , Y
(r)

2 , ..., Y
(r)
n , respectively. We examine local power properties by

letting R(r) approach Θ0 in the sense that ‖DR(r)‖p = ‖MR(r)−R(r)‖p → 0
as r → ∞ at different rates. Using the notation in this paragraph, our last
theorem summarizes the salient results.

Theorem 4 Suppose the first derivative of R(r) ∈ Θ1 is uniformly bounded
over [0, 1] for all r. Suppose p ∈ [1,∞]. All limits stated below assume that
max{m,n} = O(r) and n/(m+ n)→ λ ∈ (0, 1), as r →∞.
(a) If lim cmn‖DR(r)‖p =∞, then lim prR(r)∈Θ1

(Mp
mn > cα,p) = 1.

(b) For any β ∈ (0, 1), there exists ηp(β) > 0 such that

lim inf prR(r)∈Θ1
(Mp

mn > cα,p) ≥ 1− β

whenever lim inf cmn‖DR(r)‖p ≥ ηp(β).

Part (a) of Theorem 4 indicates that when ‖DR(r)‖p converges to 0 at
a rate slower than c−1

mn, cmn‖DR(r)‖p diverges and the power of our test
converges to 1. Part (b) guarantees that when cmn‖DR(r)‖p remains bounded
away from zero, the power of our test is still nontrivial; i.e., it does not
converge to 0. This occurs when the “amount of information” cmn increases
and the “departure” ‖DR(r)‖p decreases, and both do so at the same rate.

4. Simulation evidence. We use simulation to assess the finite-sample
performance of our tests. In Section 4.1, we consider fixed ODCs under both
H0 : F ≤US G and H1 : F �US G to estimate type I error probability and
power, respectively, and we illustrate the sample size calculations described
in Section 3.2. In Section 4.2, we modify our testing procedure to allow for
one of the population distributions to be known and compare this modified
test to the one-sample GOF test in Arcones and Samaniego (2000). Local
power results are provided in Section 4.3.

4.1. Fixed ODC comparisons. We consider four ODCs satisfying R ∈ Θ0

(R1, R2, R3, and R4) and four ODCs satisfying R ∈ Θ1 (R5, R6, R7, and R8).
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Fig 3. Left: Star-shaped ODCs; i.e., Ri ∈ Θ0. Right: Non-star-shaped ODCs; i.e., Ri ∈ Θ1.
A description of each curve is given in the supplementary article (Tang et al., 2016).

The H0 ODCs (Figure 3, left) are each members of a family of star-shaped
ODCs that we describe in the supplementary article (Tang et al., 2016).
The H1 ODCs (Figure 3, right) are not star-shaped and are also described
in Tang et al. (2016). We also consider R0 = R0(u) = u, for u ∈ [0, 1], to
examine finite-sample performance under the least favorable configuration
F = G. All of our results are based on 10, 000 Monte Carlo data sets using
independent samples from F and G with sample sizes m and n, respectively.
To generate the samples, we let F (u) = Ri(u) and G(u) = u, for u ∈
[0, 1]. We then sample X1, X2, ..., Xm from F using the inverse cumulative
distribution function technique and independently sample Y1, Y2, ..., Yn from
a uniform(0, 1) distribution. This provides independent samples for each
ODC R under consideration.

Table S.2 in the supplementary article (Tang et al., 2016) gives Monte
Carlo estimates of the probability of rejecting H0 : F ≤US G for different
sample sizes, values of p ∈ {1, 2,∞}, and α = 0.05. We experimented with
other values of p (i.e., p = 3 and p = 5) but obtained results similar to
those when p = 2. Of initial interest is the finite-sample performance when
F = G. With 10,000 simulated data sets, the margin of error associated with
the size estimates under F = G, assuming a 99 percent confidence level, is
approximately 0.006. Therefore, one notes that our tests with p = 1 and
p = 2 are slightly anticonservative with small samples and otherwise operate
closely to the nominal level. Furthermore, examining the rejection rates for
the other star-shaped ODCs (R1, R2, R3, and R4) supports Theorem 2
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which, for p ∈ [1,∞], guarantees the probability of type I error will be at
its maximum under F = G. Likewise, powers for the non-star-shaped ODCs
(R5, R6, R7, and R8) all approach unity as m and n become large. This
reinforces our consistency claim.

We also use the non-star-shaped ODCs in Figure 3 to illustrate sample
size determination. For p ∈ [1,∞] and for a given R ∈ Θ1, denote by dR,β,p
the 1− β quantile of the asymptotic distributions in Theorem 3. Using our
lower bound on the asymptotic power from Section 3.2 and taking m = n
(for simplicity), we obtain a closed-form expression for the minimum sample
size necessary to detect the departure ‖DR‖p = ‖MR−R‖p with probability
1− β when using an asymptotic size α test; i.e.,

m = 2

(
dR,β,p + cα,p
‖DR‖p

)2

, for p ∈ [1,∞].

With α = 0.05 and 1−β = 0.8, the supplementary article (Tang et al., 2016)
tables these solutions for each non-star-shaped ODC in Figure 3 and for each
p ∈ {1, 2,∞}. For example, for the R5 ODC, which corresponds to F and G
being stochastically ordered (but not uniformly stochastically ordered), the
minimum sample size solutions for p ∈ {1, 2,∞}, respectively, are m = 634,
m = 461, and m = 582. Such sample sizes might seem dispiritingly large;
however, it is not surprising these solutions are conservative. We describe in
Section 6 alternative approaches that should reduce this conservatism.

4.2. Comparison with Arcones and Samaniego (2000). We now turn our
attention to the special case of testing H0 : F ≤US G versus H1 : F �US G
where G is known. Arcones and Samaniego (2000), who focused largely on
optimal estimation of F (with F ≤US G and G known), also suggested a
conservative large-sample procedure to test against H0. Their proposed test
statistic, which we denote by Dm, can be expressed as a function of the
one-sample ODC Rm = FmG

−1; specifically,

Dm = m1/2 sup
0≤v≤u≤1

[(1− v){1−Rm(u)} − (1− u){1−Rm(v)}].

However, instead of deriving a least favorable (asymptotic) distribution for
inference, the authors proved that the asymptotic distribution of Dm is
bounded above by 2 supu∈[0,1] |B(u)|, where B is a standard Brownian bridge,

and selected their critical value cAS
α/2 to satisfy α = pr(supu∈[0,1] |B(u)| ≥

cAS
α/2). On the other hand, one-sample versions of our GOF procedure are

available and use the test statistics

Mp
m = m1/2

[ ∫
[0,1]
{DRm(u)}pdu

]1/p

and M∞m = m1/2 sup
u∈[0,1]

{DRm(u)},
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where D is the operator defined in Section 3.1 and Rm(u) = Fm{G−1(u)}.
The limiting distributions in Theorem 1 also apply here as m → ∞; in
addition, it is straightforward to modify the proof of Theorem 2 to conclude
that F = G admits the least favorable configuration for p ∈ [1,∞] in the
known G case.

For different sample sizes m (now corresponding to F only), Table S.3 in
the supplementary article (Tang et al., 2016) gives small-sample rejection
rates of our one-sample tests and the test from Arcones and Samaniego
(2000), both performed using α = 0.05. We used techniques similar to those
described in Section 3.1 to approximate the critical value cAS

α/2 = cAS
0.025 =

1.359 and performed all simulations in the same way as before except G is
now known. Clearly, there is a price to be paid for using the test based on
the Dm statistic when F = G; type I error probability estimates remain
significantly below the nominal level for all m ≤ 200. On the other hand,
our p = 1 and p = 2 tests are only minimally conservative when m ≤ 75,
and our sup-norm (p = ∞) test performs nominally even when m = 20.
In addition, the sup-norm test can be markedly more powerful at detecting
non-star-shaped alternatives with small to moderately sized samples.

4.3. Local power analysis. A consequence of Theorem 3 is that, for any
fixed R ∈ Θ1, our Lp GOF tests are consistent for all p ∈ [1,∞]. To glean
additional insight on which values of p might be preferred in practice, we
investigate the power associated with local alternatives. Starting in the lower
left corner, Figure 4 depicts a sequence of ODCs in Θ1 that approach Θ0

(moving from lower left to upper right). Each ODC shown in Figure 4 belongs
to a family of ODCs described in the supplementary article (Tang et al.,
2016); the defining feature of this family is that it is indexed by a single
parameter δ ∈ [0, 0.5]. The δ = 0 member, say R(0), is the initial ODC in
the lower left corner of Figure 4; the δ = 0.5 member R(0.5), shown in the
upper right, is the limiting ODC in Θ0. ODCs R(δ) with intermediate values
of δ ∈ (0, 0.5) are also identified in Figure 4.

In our testing problem, a local power analysis involves examining a se-
quence of ODCs {R(r), r = 1, 2, ..., } in Θ1 that converges to Θ0 at different
rates. We do so here by using the family of ODCs just described. Specifically,
we consider the rates ζr ∈ {log r, r2/5, r1/2}. For each ζr, we first choose a
sequence of constants δ(r) such that limr→∞ ζr|δ(r) − 0.5| = cζr > 0 and
then select members from our ODC family identified by R(r) = R(δ(r)), for

r = 1, 2, .... The resulting sequence R(r) satisfies ‖DR(r)‖p = ‖MR(r) −
R(r)‖p → 0 and ζr‖DR(r)‖p → c∗ζr,p > 0, both as r →∞. This investigation
allows us to learn more about the practical aspects of Theorem 4 (i.e., with
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Fig 4. Local power family of ODCs indexed by δ ∈ [0, 0.5]. The δ = 0 member R(0) is the
initial ODC in Θ1; the δ = 0.5 member R(0.5) is the limiting ODC in Θ0. This family is
described in the supplementary article (Tang et al., 2016).

both F and G unknown). We also use these ODC sequences, one for each
rate ζr, to compare the one-sample versions of our tests with the test in
Arcones and Samaniego (2000).

For each r ∈ {50, 100, 500, 1000, 5000, 10000}, we simulated 10,000 inde-

pendent random samples, X
(r)
1 , X

(r)
2 , ..., X

(r)
m from F (r) and Y

(r)
1 , Y

(r)
2 , ...,

Y
(r)
n from G(r), where F (r)(u) = R(r)(u) and G(r)(u) = u, 0 ≤ u ≤ 1, and
m = n = r. Figure 5 (top row) shows the estimated powers of our α = 0.05
tests associated with each rate: ζr = log r (left), ζr = r2/5 (middle), and
ζr = r1/2 (right). Note that with m = n = r, considering the slower rates
ζr = log r and ζr = r2/5 allows us to assess part (a) of Theorem 4, while
the fastest rate ζr = r1/2 allows us to assess part (b). Both parts are sup-
ported by our empirical results in Figure 5. For the slower rates, the powers
approach unity as expected; however, we find that there is no decisively pre-
ferred value of p among p ∈ {1, 2,∞}. On the other hand, when ζr = r1/2,
the p = 1 powers hover only slightly above 0.3 for all r, while the p = 2 and
p =∞ powers still approach unity.

Switching to the one-sample problem, we find quite different results. For
each rate ζr, Figure 5 (bottom row) displays the estimated powers of our one-
sample α = 0.05 tests which use M1

m, M2
m, and M∞m . Powers were estimated

in the same way as for the two-sample case except now we treat G(r)(u) = u
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Fig 5. Local power results with α = 0.05. Left: ζr = log r. Middle: ζr = r2/5. Right:
ζr = r1/2. Top: Two-sample case. Bottom: One-sample case. Our Lp results are shown
dotted for p = 1, dashed for p = 2, and dot-dashed for p = ∞. Arcones and Samaniego
(2000) results (one-sample case only) are shown using a solid line.

as known and take m = r. In this setting, the sup-norm test consistently
provides the largest power, followed by the p = 2 test and the p = 1 test. In
addition, all three distance-based tests outperform the corresponding α =
0.05 Arcones and Samaniego (2000) test in terms of local power, especially at
the fastest rate ζr = r1/2 where prR(r)∈Θ1

(Dm > cAS
0.025) appears to decrease

towards zero.

5. Premature infant data. Caffeine is commonly used to treat new-
born infants for apnea of prematurity (Schmidt et al., 2006) and to prevent
the onset of respiratory distress syndrome, bronchopulmonary dysplasia, and
extubation failure (Cox et al., 2015). Known as “the silver bullet” in the
treatment of prematurely born infants at risk for these and other acute con-
ditions (Aranda et al., 2010), caffeine is widely regarded within the neonatal
care community to be safe and cost effective. It has also been approved by
the United States Food and Drug Administration for use with preterm in-
fants due to its history of providing beneficial outcomes with no long-term
adverse side effects (Dobson and Hunt, 2013).

We now analyze the data from the study described in Section 1; for com-
plete details, see Cox et al. (2015). Because assessing the use of caffeine with
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premature infants was a central focus of this study, we consider only those
infants who were classified as “premature;” i.e., newborns whose gestational
age was at or below 37 weeks. With F and G denoting the discharge time
distributions for the caffeine and no-caffeine groups, respectively, recall that
Figure 2 displays the sample ODC Rmn and its least star-shaped majorant
MRmn, calculated from samples of size m = 127 from F and n = 277 from
G. As noted in Section 1, we performed the test in Davidov and Herman
(2012) with these data and concluded that F ≤S G was strongly supported
over F = G. We also performed the GOF tests in Beare and Moon (2015)
and concluded that F ≤LR G would be rejected at α = 0.05; the L1 and L2

statistics based on the least concave majorant of Rmn are 0.717 and 0.999,
respectively, which are larger than the corresponding 0.95 quantiles 0.664
and 0.753 identified by their least favorable distributions.

We therefore assess whether or not the data in Figure 2 are consistent with
uniform stochastic ordering. Testing H0 : F ≤US G versus H1 : F �US G
based on the least star-shaped majorant of Rmn, our GOF test statistics
are M1

mn = 0.170, M2
mn = 0.263, and M∞mn = 0.949, each of which is well

below the α = 0.10 critical values identified in the supplementary article
(0.496, 0.586, and 1.219, respectively), that is, H0 cannot be discounted at
any reasonable level of significance. Therefore, not only does caffeine therapy
provide point-of-care health benefits and improved long-term outcomes for
prematurely born infants, our analysis suggests that treating these infants
with caffeine may also lead to hospital discharge times that are uniformly
stochastically smaller than those for infants not treated with caffeine.

6. Concluding remarks. When two distributions F and G satisfy uni-
form stochastic ordering, F and G when conditioned on the interval [t0,∞),
for any t0 ∈ R, also satisfy uniform stochastic ordering. This desirable prop-
erty could be exploited to increase the power of our tests under H1 and
simultaneously reduce the sample sizes necessary to detect departures from
H0. To see how, suppose that uniform stochastic ordering is suspected to be
violated when t > t0, either from historical information or from observing
data in related applications. In this situation, one could apply our tests af-
ter conditioning to determine if R is non-star-shaped over the smaller region
[G−1(t0), 1] and calculate sample sizes to detect departures over it instead of
over [0, 1]. A similar approach was suggested by Carolan and Tebbs (2005)
for detecting departures from likelihood ratio ordering. In the same spirit,
Beare and Moon (2015) suggest that bootstrapping samples over departure
regions could help to increase the power of GOF tests for likelihood ratio
ordering. This strategy may also be fruitful in our setting, allowing one to
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reduce the conservatism arising from relying on the least favorable distribu-
tion over the entire unit interval.

We believe that our GOF tests could be generalized to allow for different
types of censored data, but the theory underpinning these extensions would
not be trivial. For example, with random right-censored data, there would be
nothing to prevent one from simply replacing the empirical survival functions
Fm and Gn with Kaplan-Meier estimators of F and G and then calculating
Rmn andMRmn using these estimates. However, asymptotic distributions of
the corresponding test statistics may depend heavily on the latent censoring
distributions, and there is no guarantee that the least favorable configuration
of F andG will exist. Future work could investigate censored-data extensions
of majorant-based inference−not only with uniform stochastic ordering, but
with other orderings as well.

Finally, estimating distributions under a uniform stochastic ordering as-
sumption has received considerable attention for two populations; see, e.g.,
Rojo and Samaniego (1993), Mukerjee (1996), and Arcones and Samaniego
(2000). We view the one- and two-sample tests proposed herein as helpful
inference procedures to determine if the uniform stochastic ordering assump-
tion is plausible and hence restricted estimation methods for F and G are
warranted. An anonymous referee has suggested that developing pointwise
confidence intervals for R(u) under a uniform stochastic ordering constraint
may be a worthwhile next step. We agree and comment on this further after
Lemma 4 in the supplementary article (Tang et al., 2016). Another inter-
esting avenue for future research would be to generalize our majorant-based
tests to more than two populations. Estimation techniques in this setting
are available in Dykstra et al. (1991) and El Barmi and Mukerjee (2016).

7. Proofs. In this section, we provide the proofs of Theorems 1-4. Lem-
mas cited in this section are stated and proved in the supplementary article
(Tang et al., 2016), henceforth referred to as “the supplementary article.”

Proof of Theorem 1. We start with the asymptotic distribution of Rmn,
suitably centered and scaled. Applying Theorem 2.2 in Hsieh and Turnbull
(1996), it follows that cmn(Rmn−R) converges weakly to T λR as min{m,n} →
∞ and n/(m+ n)→ λ ∈ (0, 1), where T λR satisfies T λR(u) = λ1/2B1(R(u)) +
(1−λ)1/2R′(u)B2(u), for 0 ≤ u ≤ 1, and B1 and B2 are independent standard
Brownian bridges. When R ∈ Θ0, DR = 0 and Mp

mn = cmn‖DRmn−DR‖p.



20 TANG, WANG, AND TEBBS

Define the functional operator dDR : l([0, 1]) 7→ l([0, 1]) by

dDRh(u) =


max{h(1), 0} − h(1), if u = 1

M(1,0)
[ak,bk]h(u)− h(u), if ∃k such that ak ≤ u ≤ bk

0, otherwise,

for h ∈ l([0, 1]). Denote by C([0, 1]) the collection of all real continuous
functions with domain [0, 1]. If D is Hadamard directionally differentiable
tangentially to C([0, 1]) at R, then dDR is the Hadamard directional deriva-
tive of D. Applying the functional delta method and continuous mapping

theorem yields Mp
mn

d−→ ‖dDRT λR‖p for p ∈ [1,∞]. Those situations in which
D is Hadamard directionally differentiable are described in Lemma 5 in the
supplementary article.

When D is not Hadamard directionally differentiable, the functional delta
method and continuous mapping theorem cannot be applied. However, by
using Lemma 6 in the supplementary article, we are able to prove that

Mp
mn

d−→ ‖dDRT λR‖p anyway. For convenience, let Zmn = cmn(Rmn − R)
and Z = T λR. From Theorem 12.2 in Billingsley (1999) and Skorohod’s rep-
resentation theorem (see, e.g., Theorem 6.7 in Billingsley, 1999), there exist
random elements Z ′mn and Z ′ defined on a common probability space with

Z ′mn
L
= Zmn and Z ′

L
= Z such that ‖Z ′mn − Z ′‖∞ → 0 almost surely. The

notation “
L
=” denotes that two processes are equivalent in distribution. De-

fine R′mn = c−1
mnZ

′
mn + R. From Lemma 6 in the supplementary article,

because c−1
mn decreases to 0 and ‖Z ′mn − Z ′‖∞ → 0 almost surely, then for

all p ∈ [1,∞] we have

lim
m,n→∞

n/(m+n)→λ

cmn‖DR′mn −DR‖p = ‖dDRZ ′‖p

almost surely. Because cmn‖DR′mn − DR‖p
d
= cmn‖DRmn − DR‖p and also

‖dDRZ ′‖p
d
= ‖dDRT λR‖p, where the notation “

d
=” means equal in distribu-

tion, we have

lim
m,n→∞

n/(m+n)→λ

cmn‖DRmn −DR‖p
d
= ‖dDRT λR‖p.

This shows that Mp
mn

d−→ ‖dDRT λR‖p for all p ∈ [1,∞].
WhenR is strictly star-shaped over [0, 1], it is easy to see that ‖dDRT λR‖p =

0 which quickly establishes part (a). The remainder of the proof focuses on
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establishing part (b). When R is non-strictly star-shaped,

‖dDRT λR‖p =

[∑
k

∫ bk

ak

{D(1,0)
[ak,bk]T

λ
R(u)}pdu

]1/p

for p ∈ [1,∞) and ‖dDRT λR‖p = supk{supu∈[ak,bk]D
(1,0)
[ak,bk]T

λ
R(u)} for p =

∞. Using Lemma 1 in the supplementary article, we write D(1,0)
[ak,bk]T

λ
R(u) =

supv∈[ak,u]Qk(u, v) for u ∈ [ak, bk], where

Qk(u, v) =

(
1− u
1− v

)
T λR(v)− T λR(u), for v ∈ [ak, u].

In Lemma 8 in the supplementary article, we show that the processes

{Qk(u, v), ak ≤ v ≤ u < bk}

are mutually independent across k. Therefore, {D(1,0)
[ak,bk]T

λ
R(u), u ∈ [ak, bk]}

are also mutually independent. To prove further results, we note that over
each non-strictly star-shaped region [ak, bk], we can write R(u) as a linear
function; i.e., R(u) = 1−R′(ak)(1−u). Thus, from Lemma 2 in the supple-
mentary article, we have

D(1,0)
[ak,bk]T

λ
R(u) = D(1,0)

[ak,bk]{W
λ
R(u)− lλR,k(1)},

for all k, where W λ
R(u) = λ1/2W1(R(u)) + (1− λ)1/2R′(u)W2(u),

lλR,k(u) = λ1/2{1−R′(ak)(1− u)W1(1) + (1− λ)1/2R′(ak)uW2(1)},

and W1 and W2 are independent standard Wiener processes; i.e., Wi, for
i = 1, 2, satisfies Bi(u) =Wi(u)− uWi(1), 0 ≤ u ≤ 1, for i = 1, 2. Based on
the properties of a standard Wiener process, it follows that for u ∈ [ak, bk],

Wi(R(u))−Wi(1) = Wi(1−R′(ak)(1− u))−Wi(1)
L
= R′(ak)

1/2{Wi(u)−W1(1)},

for i = 1, 2. Furthermore, for u ∈ [ak, bk], we have R′(u) = R′(ak) and

W λ
R(u)− lλR,k(1)

L
= λ1/2R′(ak)

1/2{W1(u)−W1(1)}

+(1− λ)1/2R′(ak){W2(u)−W2(1)}
L
= {λR′(ak) + (1− λ)R′(ak)

2}1/2{W(u)−W(1)},
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whereW is a standard Wiener process. The last equivalence (in distribution)
follows because both right-hand side processes above are Gaussian, they have
the same mean E{W λ

R(u)− lλR,k(1)} = 0, for u ∈ [ak, bk], and they have the

same covariance cov{W λ
R(u1)− lλR,k(1),W λ

R(u2)− lλR,k(1)} = {λR′(ak) + (1−
λ)R′(ak)

2}min{1 − u1, 1 − u2}, for u1, u2 ∈ [ak, bk]. Using Lemma 2 in the
supplementary article again, we have

D(1,0)
[ak,bk]{λR

′(ak) + (1− λ)R′(ak)
2}1/2{W(u)−W(1)}

= {λR′(ak) + (1− λ)R′(ak)
2}1/2D(1,0)

[ak,bk]B(u),

where B is a standard Brownian bridge formed by W; i.e., B(u) = W(u) −
uW(1), for u ∈ [0, 1]. We can therefore write∫ bk

ak

{D(1,0)
[ak,bk]T

λ
R(u)}pdu

d
= {λR′(ak) + (1− λ)R′(ak)

2}p/2
∫ bk

ak

{D(1,0)
[ak,bk]B(u)}pdu,

for p ∈ [1,∞), and

sup
u∈[ak,bk]

D(1,0)
[ak,bk]T

λ
R(u)

d
= {λR′(ak) + (1− λ)R′(ak)

2}1/2 sup
u∈[ak,bk]

D(1,0)
[ak,bk]B(u),

for p = ∞. For p ∈ [1,∞), we have shown that
∫ bk
ak
{D(1,0)

[ak,bk]T
λ
R(u)}pdu are

mutually independent. One can show that
∫ bk
ak
{D(1,0)

[ak,bk]B(u)}pdu are also mu-

tually independent by replacing T λR(·) with B(·) in the definition of Qk(u, v)
and repeating the same argument. Therefore, we have

∑
k

∫ bk

ak

{D(1,0)
[ak,bk]T

λ
R(u)}pdu

d
=
∑
k

{λR′(ak) + (1− λ)R′(ak)
2}p/2

∫ bk

ak

{D(1,0)
[ak,bk]B(u)}pdu,

which completes the proof for p ∈ [1,∞). Completing the proof for the
p =∞ case is analogous. �

Proof of Theorem 2. When F = G, the ODC is R0 = R0(u) = u, 0 ≤
u ≤ 1, and T λR0

d
= B. Because R0 is non-strictly star-shaped over [0, 1],

Theorem 1 yields Mp
mn

d−→ ‖dDR0T
λ
R0
‖p

d
= ‖D(1,0)

[0,1] B‖p when F = G for
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p ∈ [1,∞]. It therefore suffices to show ‖D(1,0)
[0,1] B‖p ≥S ‖dDRT λR‖p for p ∈

[1,∞] and for any other R ∈ Θ0. If R ∈ Θ0 is strictly star-shaped, then

from Theorem 1, ‖dDRT λR‖p = 0 for p ∈ [1,∞] and hence ‖D(1,0)
[0,1] B‖p ≥S

‖dDRT λR‖p. If R ∈ Θ0 is non-strictly star-shaped, then for p ∈ [1,∞),

‖D(1,0)
[0,1] B‖p =

[∫ 1

0
{D(1,0)

[0,1] B(u)}p du
]1/p

≥

[∑
k

∫ bk

ak

{D(1,0)
[0,1] B(u)}p du

]1/p

≥

[∑
k

∫ bk

ak

{D(1,0)
[ak,bk]B(u)}p du

]1/p

.(7.1)

The first and second inequalities above hold because D(1,0)
[0,1] B(u) ≥ 0 and

also D(1,0)
[0,1] B(u) ≥ D(1,0)

[ak,bk]B(u) ≥ 0, for all u ∈ [0, 1]. Because λ ∈ (0, 1) and

R′(ak) ≤ 1 for all k, λR′(ak) + (1− λ)R′(ak)
2 ≤ 1 and the rightmost side of

(7.1) is greater than or equal to[∑
k

{λR′(ak) + (1− λ)R′(ak)
2}p/2

∫ bk

ak

{D(1,0)
[ak,bk]B(u)}pdu

]1/p
d
= ‖dDRT λR‖p.

Therefore, for R ∈ Θ0 non-strictly star-shaped, we have ‖D(1,0)
[0,1] B‖p ≥S

‖dDRT λR‖p for p ∈ [1,∞). Showing ‖D(1,0)
[0,1] B‖∞ ≥S ‖dDRT λR‖∞ for R ∈ Θ0

non-strictly star-shaped is analogous. �

Proof of Theorem 3. When R ∈ Θ1, we redefine the functional operator
dDR : l([0, 1]) 7→ l([0, 1]) in Theorem 1 by

dDRh(u) =


−h(1), if u = 1, R(u) < 1

max{h(1), 0} − h(1), if u = 1, R(u) = 1
LSk

h(u)− h(u), if ∃k such that u ∈ Sk \ {1}
0, otherwise.

The proof proceeds in the same manner as in Theorem 1. If D is not
Hadamard directionally differentiable, one can use Skorohod’s representa-
tion theorem and part (b) of Lemma 7 in the supplementary article to obtain
the result. �

Proof of Theorem 4. For convenience, all limits stated in this proof as-
sume that max{m,n} = O(r) and n/(m + n) → λ ∈ (0, 1), as r → ∞. We

have independent random samples X
(r)
1 , X

(r)
2 , ..., X

(r)
m and Y

(r)
1 , Y

(r)
2 , ..., Y

(r)
n

from F (r) and G(r), respectively. The sample ODC is R
(r)
mn = F

(r)
m (G

(r)
n )−1,
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where F
(r)
m and (G

(r)
n )−1 are the empirical distribution and empirical quan-

tile functions, respectively. Our test statistic is Mp
mn = cmn‖DR(r)

mn‖p. By
the triangle inequality,

prR(r)∈Θ1
(Mp

mn ≥ cα,p)

≥ prR(r)∈Θ1
(cmn‖DR(r)

mn −DR(r)‖p < cmn‖DR(r)‖p − cα,p)

for all p ∈ [1,∞]. Therefore, to prove part (a), it suffices to show that

cmn‖DR(r)
mn −DR(r)‖p = OP (1).

From Lemma 3 in the supplementary article, it follows that ‖MR
(r)
mn −

MR(r)‖∞ ≤ ‖R(r)
mn −R(r)‖∞, which implies ‖DR(r)

mn −DR(r)‖∞ ≤ 2‖R(r)
mn −

R(r)‖∞. Because Lp norms are dominated by the sup-norm, it therefore suf-

fices to show cmn‖R(r)
mn−R(r)‖∞ is OP (1). To accomplish this, we decompose

cmn(R
(r)
mn −R(r)) into two parts:

(7.2) cmn(R(r)
mn −R(r)) = cmn{F (r)

m (G(r)
n )−1 − F (r)(G(r)

n )−1}
+ cmn{F (r)(G(r)

n )−1 − F (r)(G(r))−1}.

Define the two independent empirical processes

Um(u) =
1

m

m∑
i=1

I{F (r)(X
(r)
i ) ≤ u}

and Vn(u) = n−1
∑n

i=1 I{G(r)(Y
(r)
i ) ≤ u}, for 0 ≤ u ≤ 1. This allows us to

rewrite F
(r)
m as UmF

(r) and F (r)(G
(r)
n )−1 as R(r)V

(r)
n . Consequently, the two

terms on the right-hand side of Equation (7.2) can be written as

(7.3) cmn{F (r)
m (G(r)

n )−1 − F (r)(G(r)
n )−1}

= cmn[Um{F (r)(G(r)
n )−1} − U{F (r)(G(r)

n )−1}]

and

(7.4) cmn{F (r)(G(r)
n )−1 − F (r)(G(r))−1} = cmn(R(r)Vn −R(r)V ),

where U(·) and V (·) both represent the cumulative distribution function of a
uniform distribution on [0, 1]. These expressions allow us to unify all random
samples (from different distributions) to be uniformly distributed.

We are now ready to show that the sup-norms of the right-hand sides of
Equations (7.3) and (7.4) are uniformly bounded in probability. We begin



GOF TESTS FOR UNIFORM STOCHASTIC ORDERING 25

with the uniform processes. From Theorem 3 in Komlós et al. (1975), there

exist versions of independent standard Brownian bridges B(m)
1 and B(n)

2 such
that, almost surely,

‖
√
m(Um − U)− B(m)

1 ‖∞ = o(m−1/2(logm)2)(7.5)

‖
√
n(Vn − V )− B(n)

2 ‖∞ = o(n−1/2(log n)2).(7.6)

Because lim cmn/(λ
1/2√m) = 1, we have ‖cmn(Um − U) − λ1/2B(m)

1 ‖∞ =
o(m−1/2(logm)2) from Equation (7.5). Consequently, the sup-norm of the
right-hand side of Equation (7.3) is less than or equal to

‖cmn[Um{F (r)(G(r)
n )−1} − U{F (r)(G(r)

n )−1}]− λ1/2B(m)
1 {F (r)(G(r)

n )−1}‖∞
+ ‖λ1/2B(m)

1 {F (r)(G(r)
n )−1}‖∞

which is less than or equal to

‖cmn(Um − U)− λ1/2B(m)
1 ‖∞ + ‖λ1/2B(m)

1 ‖∞ = o(m−1/2(logm)2) +OP (1).

The OP (1) term arises because B(m)
1 is bounded with probability 1. Likewise,

the o(m−1/2(logm)2) term comes from Equation (7.5). Therefore, we have
shown that the sup-norm of the right-hand side of Equation (7.3), that is,

‖cmn{F (r)
m (G

(r)
n )−1 − F (r)(G

(r)
n )−1}‖∞ = OP (1).

For the right-hand side of Equation (7.4), we use the mean value theorem
to write

R(r)Vn(u)−R(r)V (u) = Ṙ(r)(τu){Vn(u)− V (u)},

where Ṙ(r) denotes the derivative of R(r) and where τu is between Vn(u) and
V (u). Therefore,

sup
u∈[0,1]

∣∣∣√n{R(r)Vn(u)−R(r)V (u)} − Ṙ(r)(τu)B(n)
2 (u)

∣∣∣
= sup

u∈[0,1]

∣∣∣Ṙ(r)(τu)[
√
n{Vn(u)− V (u)} − B(n)

2 (u)]
∣∣∣

which is less than or equal to

‖Ṙ(r)‖∞‖
√
n(Vn − V )− B(n)

2 ‖∞ = O(1)o(n−1/2(log n)2) = o(n−1/2(log n)2).

The O(1) term above comes from the assumption that the derivative of R(r)

is uniformly bounded for all r over [0, 1]. Likewise, the o(n−1/2(log n)2) term
comes from Equation (7.6). Therefore, because lim cmn/{(1− λ)1/2√n} = 1
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and because B(n)
2 is bounded with probability 1, we have shown the sup-norm

of the right-hand side of Equation (7.4), that is, cmn‖R(r)V
(r)
n −R(r)V ‖∞ =

OP (1). Finally, from Equation (7.2), we have cmn‖R(r)
mn−R(r)‖∞ = OP (1)+

OP (1) = OP (1), which establishes part (a).

To prove part (b), let q
(r)
β,p denote the 1 − β quantile of the finite-sample

distribution of cmn‖DR(r)
mn−DR(r)‖p; i.e., q

(r)
β,p solves prR(r)∈Θ1

(cmn‖DR(r)
mn−

DR(r)‖p ≤ q
(r)
β,p) = 1 − β. We have already shown cmn‖DR(r)

mn − DR(r)‖p =

OP (1), so supr q
(r)
β,p ≡ qβ,p <∞. Therefore,

lim inf prR(r)∈Θ1
(cmn‖DR(r)

mn −DR(r)‖p < qβ,p) ≥ 1− β.

Set ηp(β) = qβ,p + cα,p. Whenever lim inf cmn‖DR‖p ≥ ηp(β), it follows from
the triangle inequality that lim inf prR(r)∈Θ1

(Mp
mn ≥ cα,p) is greater than or

equal to

lim inf prR(r)∈Θ1
(cmn‖DR(r)

mn −DR(r)‖p < cmn‖DR(r)‖p − cα,p)

≥ lim inf prR(r)∈Θ1
(cmn‖DR(r)

mn −DR(r)‖p < qβ,p) ≥ 1− β.

This completes the proof of part (b). �
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SUPPLEMENTARY MATERIAL

Supplement to “Nonparametric goodness-of-fit tests for uni-
form stochastic ordering” (DOI: COMPLETED BY THE TYPESET-
TER; .pdf). In the supplementary article (Tang et al., 2016), we state and
prove lemmas that are cited in this manuscript. These lemmas describe
theoretical properties of the least star-shaped majorant operator, including
Hadamard directional differentiability. We also provide the estimated den-

sities of ‖D(1,0)
[0,1] B‖p and critical values cα,p for our tests. Finally, we describe

the families of ODCs used in Section 4 and give finite-sample simulation
results and sample size calculations.
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