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SUMMARY

Group testing, through the use of pooling, has proven to be an efficient method of reducing the
time and cost associated with screening for a binary characteristic of interest, such as infection
status. A topic of key interest in the statistical literature involves the development of regression
models that relate individual-level covariates to testing responses observed from pooled speci-
mens. In this article, we propose a general semiparametric framework that allows for the inclusion
of multi-dimensional covariates, decoding information, and imperfect testing. The asymptotic
properties of our estimators are presented and guidance on finite sample implementation is pro-
vided. We illustrate the performance of our methods through simulation and by applying them to
chlamydia and gonorrhea data collected by the Nebraska Public Health Laboratory as a part of
the Infertility Prevention Project.
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1. INTRODUCTION

Group testing, also known as pooled testing, was first proposed by Dorfman (1943) as a means
to reduce the cost associated with screening World War II inductees for syphilis. In order to reduce
testing expenditure, Dorfman suggested that pooled specimens, formed from combining blood
samples collected from individuals, be tested for the presence of syphilis. If the initial pool,
also referred to as a master pool, tested negative, then all contributing men could be declared
negative at the cost of only one test. Alternatively, positive master pools would be resolved by
retesting each of the contributing specimens one by one. Since this seminal work, many variants
of Dorfman’s decoding strategy have been proposed in an effort to further reduce screening costs
or increase classification accuracy; for a review see Kim et al. (2007).

In addition to being used for case identification, pooling techniques have also been imple-
mented for the purposes of estimation, predominantly in the context of estimating popula-
tion level characteristics; see Bilder & Tebbs (2005) for a review. More recently, authors have
developed binary regression models that relate pool response data to individual-level covari-
ate information through a specified link function; see Vansteelandt et al. (2000), Bilder & Tebbs
(2009), Chen et al. (2009), and Huang & Tebbs (2009). To obviate the specification of the link
function, Delaigle & Meister (2011), Delaigle & Hall (2012), and Wang et al. (2013) proposed
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nonparametric binary regression techniques for group testing data that allow for the incorporation
of a single continuous explanatory variable. Delaigle & Meister (2011) discussed extensions of
their approach that allow for multiple covariates via a multivariate kernel function. However, due
to the curse of dimensionality this approach may not be suitable for evaluating multiple explana-
tory variables. The aforementioned regression methods were designed to model data arising from
master pool testing only; i.e., these methods cannot incorporate information gained from decod-
ing positive pools. To our knowledge, the only binary regression models that allow for the incor-
poration of decoding information were proposed by Xie (2001) and Zhang et al. (2013), and were
developed under parametric assumptions.

Since its advent, group testing has been successfully implemented for screening for a vari-
ety of infectious diseases (Lewis et al., 2012; Van et al., 2012), and has found applications in
areas such as genetics (Gastwirth, 2000), drug discovery (Remlinger et al., 2006), medical ento-
mology (Venette et al., 2002), veterinary science (Muñoz-Zanzi et al., 2000), and plant pathol-
ogy (Venette et al., 2002). The group testing strategy implemented varies according to the goals
of the study and often does not conclude with master pool testing. Consequently, in this paper
we propose a general regression methodology for modelling test responses obtained from all
group testing algorithms that allows for the incorporation of multiple covariates and accounts
for imperfect testing. Unlike the aforementioned parametric methods, our semiparametric model
enjoys the modelling flexibility of nonparametric procedures, but is not subject to the curse of
dimensionality when multiple predictors are available. We develop hypothesis-testing methods
for evaluating the significance of potential predictors based on the asymptotic properties of our
proposed estimators. Through simulation, we illustrate that our methodology can more reliably
evaluate potential predictors when compared to analogous parametric methods.

Our methodology falls broadly into the class of single-index models, which have attracted
much attention in the statistical literature over the past few decades; see Ichimura (1993),
Härdle et al. (1993), Klein & Spady (1993), Xia et al. (2002), Xia (2006), Zhu & Xue (2006),
Cui et al. (2011) and the references therein. Though similar, there exists a fundamental differ-
ence between our method and those previously proposed in the literature. Specifically, all existing
single-index models require that a response be available for each individual, while in contrast our
method requires only the availability of the responses obtained from testing pools of individuals.
Therefore, the complex data structure resulting from group testing algorithms cannot be handled
by any of the existing single-index techniques.

2. MODELS AND METHODOLOGY

2·1. Modelling assumptions and general estimation procedure

In what follows, we propose a general modelling framework for data arising from any group
testing algorithm. Our proposed methodology can be greatly simplified under two of the most
common such algorithms, master pool testing and Dorfman decoding, as is illustrated in the
subsequent sections. Consider implementing a group testing algorithm to screen N individuals
for a binary characteristic of interest, such as infection status. In general, this process begins by
randomly assigning each of the individuals to exactly one of J initial groups of size c j . Let G j =
{1, . . . , c j } be a collection of indices identifying the c j individuals assigned to the j th group.
Within the j th group, screening is performed according to the protocol outlined by the specified
group testing algorithm, resulting in K j testing responses Y jl , for l = 1, . . . , K j . We let Y jl = 1
indicate that the lth pool tested positive, and Y jl = 0 otherwise. We identify the individuals in the
j th group whose specimens were pooled and tested by the lth assay by the set P jl ⊆ G j , and we
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define Z jl = (Y jl,P jl). For notational convenience, we collect all of the observed testing data
associated with the j th group into the set Z j = {Z j1, . . . , Z j K j }, and we assume throughout that
Z j ⊥⊥ Z j ′ for all j |= j ′, where ⊥⊥ denotes statistical independence.

Let Ti j denote the true status of the i th individual in the j th group, where Ti j = 1 indicates
that the individual is positive, and Ti j = 0 otherwise. For modelling purposes, we assume that
Xi j = (Xi j1, . . . , Xi jp)

T, a p-dimensional vector of covariates, is available for each individual
and that the random vectors (Ti j , Xi j ) are independent and identically distributed. In order to
relate the individuals’ true statuses to their predictor variables, we proceed under the single-index
generalization; i.e., we assume that pr(Ti j = 1 | Xi j = x) = p(xTβ), where p(·) is an unknown
smooth probability curve and β = (β1, . . . , βp)

T is a p-dimensional vector of regression param-
eters. To ensure identifiability, as with all single-index models, we assume that the support of
the covariate vectors, X, is a bounded convex set with at least one interior point and the param-
eter space of β is B = {β = (β1, . . . , βp)

T : ‖β‖ = 1, β1 > 0}, where ‖β‖ denotes the Euclidean
norm of β (Lin & Kulasekera, 2007). If one observed Ti j , for i = 1, . . . , c j and j = 1, . . . , J ,
then standard single-index estimation procedures could be employed to estimate p(·) and β, but
when the assay being used is imperfect and the testing responses are based on pooled assessments
the individuals’ true statuses are latent and these techniques are inapplicable.

To account for imperfect testing, we let Se and Sp denote the sensitivity and specificity of
the assay being employed; i.e., Se is the probability that a specimen will test positive given it is
truly positive and Sp is the probability that a specimen will test negative given it is truly neg-
ative. We assume that Se and Sp are known, constant, and independent of the pool size. Fur-
ther, we assume that given the true status of the pools being tested, Y jl ⊥⊥ Y jl ′ , for l |= l ′. These
assumptions are common in the group testing literature; see Xie (2001), Kim et al. (2007), and
Zhang et al. (2013).

Using the testing error rates and these assumptions we now relate the observed testing out-
comes to the true underlying statuses of the specimens being tested. To accomplish this, we let
Z(c) denote the set of all possible outcomes resulting from screening a group of size c accord-
ing to a specific group testing algorithm. Likewise, we define the set of all possible true sta-
tuses for the individuals assigned to a group of size c to be T (c). The conditional probability of
observing any Z = {(Y1,P1), . . . , (YK ,PK )} ∈Z(c) given any T = (T1, . . . , Tc) ∈ T (c) can be
calculated as

M(Z , T, c) = pr(P)

K∏
l=1

{
SYl Ỹl

e (1 − Se)
(1−Yl )Ỹl (1 − Sp)

Yl (1−Ỹl )S(1−Yl )(1−Ỹl )
p

}
,

where Ỹl = maxi∈Pl Ti and P = {P1, . . . ,PK }. The probability pr(P) accounts for the random-
ness, if any, in the pooling protocol of the group testing algorithm. In the Supplementary Material
we provide a derivation of M(Z , T, c) and illustrate how pr(P) should be evaluated.

In what follows we relate the observed testing outcomes arising from a group testing algorithm
to the individual-level covariate information. Through an application of the law of total prob-
ability it is easy to show that the conditional probability of observing Z j given β, p(·), and
X j can be expressed as

R{Z j ;X j , β, p(·)} =
∑

T ∈T (c j )

M(Z j , T, c j )

c j∏
i=1

p(X T
i jβ)Ti {1 − p(X T

i jβ)}1−Ti , (1)

where X j = (X1 j , . . . , Xc j j )
T. To derive (1) we proceed under the assumption that the observed

testing outcomes are independent of the measured covariates, given the individuals’ true statuses.
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Thus, the full conditional loglikelihood of {(Z1,X1), . . . , (Z J ,XJ )} can be expressed as

l{β, p(·)} =
J∑

j=1

logR{Z j ;X j , β, p(·)}.

If p(·) were known, an estimate of β could be obtained as the maximizer of l{β, p(·)}. Thus,
the primary challenge of fitting our model is to account for the dependence between the infinite-
dimensional parameter p(·) and the finite-dimensional parameter β. To explicitly acknowledge
this dependence, we write p(·) as pβ(·), and again point out that an estimate of β could be
obtained as the maximizer of l{β, pβ(·)}, if pβ(·) were known. In order to estimate the regression
parameters, we propose to replace the unknown function pβ(·) by a consistent estimator, p̂β(·),
so that our estimator of β can be obtained as β̂ = argmaxβ∈B l{β, p̂β(·)}.

As previously stated, traditional single-index techniques are not applicable in this context,
because the individuals’ statuses are latent. To circumvent this, we propose to make use of the
individuals’ diagnosed statuses. To this end, let Di j denote the diagnosed status of the i th indi-
vidual in the j th group, such that Di j = 1 indicates a positive diagnosis, and Di j = 0 otherwise.
Typically, an individual’s diagnosed status is determined based on the observed testing outcomes
and the specified testing protocol; i.e., Di j = �(i, Z j ), where � is a decision function unique to
the group testing algorithm being implemented. Define Fi j (t, μ) = pr(Di j = 1 | Ti j = t), which
can be calculated as

Fi j (t, μ) =
∑

Z∈Zi (c j )

∑
T ∈T (c j )

I (Ti = t)M(Z , T, c j )
∏
k |= i

{μ1−Tk (1 − μ)Tk },

where μ = pr(Ti j = 0) and Zi (c) = {z ∈Z(c) : �(i; z) = 1}; i.e., Zi (c) is the set of all possible
testing outcomes that would result in the i th individual in a group of size c being diagnosed
positive. The quantities Fi j (1, μ) and 1 − Fi j (0, μ) are commonly referred to as the pooling
sensitivity and specificity, respectively, and under specific group testing algorithms these mea-
sures of testing accuracy have nice analytic forms; see Kim et al. (2007).

In order to develop an estimator of pβ(·), we consider the conditional probability that an
individual will be diagnosed positive, given the linear predictor X T

i jβ, which can be expressed as

E(Di j | X T
i jβ = u) = ai j (μ) + bi j (μ)pβ(u), (2)

where ai j (μ) =Fi j (0, μ) and bi j (μ) =Fi j (1, μ) − Fi j (0, μ). The unknowns in (2) are μ and
pβ(·). Since μ is the unconditional probability that an individual is truly negative, one could
obtain an estimator, μ̂, of this parameter by maximizing the full loglikelihood

l p(μ) =
J∑

j=1

log

⎛
⎝ ∑

T ∈T (c j )

[
M(Z j , T, c j )

c j∏
i=1

{μ1−Ti (1 − μ)Ti }
]⎞
⎠ , (3)

with respect to μ; i.e., μ̂ = argmaxμl p(μ). Then, based on equation (2), we can obtain a local
linear kernel estimator of pβ(·) at a given point u by minimizing

J∑
j=1

c j∑
i=1

[
Di j − ai j (μ̂) − bi j (μ̂){pβ(u) + p′

β(u)(X T
i jβ − u)}

]2
Kh(X T

i jβ − u), (4)
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with respect to {pβ(u), p′
β(u)}T, where p′

β(·) denotes the first derivative of pβ(·), h is a user

defined bandwidth, K (·) is a symmetric kernel density function, and Kh(·) = h−1K (·/h). We
define { p̂β(u), p̂′

β(u)}T, the minimizer of (4), to be our estimator of {pβ(u), p′
β(u)}T. Conse-

quently, our final estimators can be expressed as

β̂ = argmaxβ∈B l
{
β, p̂β(·)} , p̂(u) = p̂

β̂
(u). (5)

For computational reasons, p̂β(u) can be expressed in closed form, but this expression is omitted
for brevity. Further, (4) is not the standard form of the local sum of squares, because the diag-
nosed statuses are correlated and μ̂ is a random term that depends on the observed testing data.
Despite these differences, in § 3 we show that our approach efficiently estimates β and p(·).
In the following two sections, we outline the formulas necessary to implement our regression
methodology under master pool testing and Dorfman decoding. A more detailed illustration is
provided in the Supplementary Material.

2·2. Estimation under master pool testing

The testing protocol under master pool testing specifies that specimens collected from individ-
uals belonging to a common group be combined to form a single master pool that is subsequently
assayed; i.e., the testing data available for modelling are Z j = {(Y j1,P j1)}, where P j1 = G j . If
Y j1 = 0, then all individuals in this group are diagnosed as negative, whereas Y j1 = 1 indicates
that at least one individual is at risk. Thus, we define Di j = �(i, Z j ) = Y j1. Under master pool
testing, the loglikelihood (3) reduces to

l p(μ) =
J∑

j=1

(1 − Y j1) log p j0 + Y j1 log(1 − p j0),

where p j0 = 1 − Se − δc j and δc = (1 − Se − Sp)μ
c. Similarly, a series of simple arguments pro-

vide that ai j (μ) = Se + δc j −1 and bi j (μ) = Se − ai j (μ). Finally, for the j th group the observed
testing data Z j belong to the set {(0,P j1), (1,P j1)}, and the conditional probability outlined
in (1) associated with either of these outcomes is R{(0,P j1);X j , β, p(·)} = 1 − Se − δ0

∏c j
i=1

{1 − p(X T
i jβ)} or R{(1,P j1);X j , β, p(·)} = 1 − R{(0,P j1);X j , β, p(·)}. The estimators

defined in (5) are then obtained as described in § 2·1.

2·3. Estimation under Dorfman decoding

Dorfman decoding proceeds in a similar fashion to master pool testing, with the key difference
that positive pools are resolved by retesting all contributing individuals one by one. Consequently,
Z j can take two forms, the first being Z j = {(Y j1,P j1)}, where Y j1 = 0 and P j1 = G j , denoting
that the master pool tested negative. The second occurs when the master pool test is positive; i.e.,
Y j1 = 1 and P j1 = G j , in which case Z j = {(Y j1,P j1), . . . , (Y j K j ,P j K j )} where K j = c j + 1
and P jl = {l − 1}, for l = 2, . . . , K j . The i th individual’s diagnosed status is determined to be
Di j = �(i, Z j ) = 1 if and only if Y j1 = 1 and Y j,i+1 = 1, Di j = �(i, Z j ) = 0 otherwise; i.e., a
positive diagnosis requires both the master pool and individual-level test to be positive. Under
Dorfman testing, the loglikelihood (3) reduces to

l p(μ) =
J∑

j=1

⎧⎨
⎩I (Y j1 = 0) log p j0 +

c j∑
k=0

I

⎛
⎝Y j1 = 1,

c j +1∑
l=2

Y jl = k

⎞
⎠ log p j1k

⎫⎬
⎭ .
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where p j1k = δc j (1 − Sp)
k S

c j −k
p + Se(Se + δ1)

k(1 − Se − δ1)
c j −k , p j0 = 1 − Se − δc j , and

δc = (1 − Se − Sp)μ
c. Similarly, simple arguments yield ai j (μ) = (1 − Sp)

2μc j −1 + Se

(1 − Sp)(1 − μc j −1) and bi j (μ) = S2
e − ai j (μ).

The approach described in § 2·2 can be used to calculate the probability that the j th master
pool will test negative; i.e., in this case we have thatR{(0,P j1);X j , β, p(·)} = 1 − Se − δ0

∏c j
i=1

{1 − p(X T
i jβ)}. To express the probability of the other testing outcomes, we define I j1 = {i ∈ G j :

Di j = 1} and I j0 = {i ∈ G j : Di j = 0}; i.e., the sets I j1 and I j0 identify the k = |I j1| and c j −
k = |I j0| individuals in the j th group that were diagnosed as positive and negative, respectively.
Thus, for other testing outcomes R{Z j ;X j , β, p(·)} is

k∑
k1=0

c j −k∑
k0=0

Sk1+I (k1+k0>0)
e (1 − Se)

k0 S
c j −k−k0
p (1 − Sp)

k−k1+I (k1+k0=0)
1∏

l=0

pr(S jl = kl), (6)

where S jl = ∑
i∈I jl

Ti j . The probabilities in (6) are conditional on the unknown parameters and
predictor variables, so S j1 and S j0 are the sum of independent and nonidentically distributed
Bernoulli random variables; i.e., S j1 and S j0 each follow a Poisson binomial distribution. The
estimators defined in (5) are then obtained as described in § 2·1.

3. ASYMPTOTIC PROPERTIES

We assume that J → ∞ as N → ∞ while group sizes remain finite. This is reasonable since
in practice the group sizes are naturally bounded by implementation considerations. Further, this
assumption is common in the group testing literature; see Delaigle & Meister (2011). We denote
the range of c j by {c(1), . . . , c(M)}. More explicitly, for all pooled observations there exists an m
such that c j = c(m). Further, for each m we let Jm denote the number of groups having size c(m),
and assume that Jmc(m)/N → γm as N → ∞; i.e., γm represents the proportion of individuals
assigned to groups of size c(m).

Theorem 1 provides the asymptotic properties of our proposed estimators β̂ and p̂(·). In order
to succinctly present these results we let β0 = (β01, β

(1)T
0 )T and p0(·) denote the true unknown

parameters, where β
(1)
0 = (β02, . . . , β0p)

T. We define

�c = c−1
∑

z∈Z(c)

E

[
R−1{z;X (c), β0, p0(·)}

c∑
i=1

{Pi (z, 1, c) − Pi (z, 0, c)}2 p′2
0 (X T

i β0)�(Xi )

]
,

where X (c) = (X1, . . . , Xc)
T, �(X) ={X−E(X | X Tβ0}{X−E(X T | X Tβ0)}T, and Pi (z, t, c) =

pr{Z = z | Ti = t,X (c), β0, p0(·)}. Finally, we define � = ∑M
m=1 γm�c(m) , which plays an inte-

gral role in the asymptotic variance covariance matrix of β̂. Under a specific testing protocol,
e.g., master pool testing or Dorfman decoding, the above expression for � can be more explicit.
To illustrate this fact, in the Supplementary Material we provide distinct versions of � for the
methodology described in § 2·2 and § 2·3. Using the above expressions we now give our main
result.

THEOREM 1. Under Conditions A1–A5 in the Appendix, we have that

N 1/2(β̂ − β0) → N (0, �)
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in distribution, where � =J0(J T
0 �J0)

−1J T
0 , J0 is the functional value of ∂ B(β(1))/∂β(1) eval-

uated at β(1) = β
(1)
0 , and B(β(1)) = ([1 − ‖β(1)‖2]1/2, β(1)T)T. Further,

sup
x∈X

| p̂(xTβ̂) − p0(xTβ0)|2 = Op
{
(log N )/(Nh)

}
.

The consistency rate for estimating p0(·) is the same rate demonstrated for kernel smoothing
estimators in a univariate nonparametric regression context; see Mack & Silverman (1982). The
estimator μ̂ is a maximum likelihood estimator, its asymptotic normality follows from standard
arguments and hence is omitted.

Theorem 1 suggests that large sample inference is possible once a good estimator �̂ of � is
obtained. To this end, the Supplementary Material gives an extension of a plug-in estimator of �

that was originally proposed by Wang et al. (2010). Using β̂ and �̂ one can conduct Wald type
inference; i.e., at the significance level α, a confidence interval for β0r can be constructed as

β̂0r ± �−1(1 − α/2)σ̂r N−1/2 (r = 1, . . . , p),

where �(·) is the cumulative distribution function of a standard normal distribution and σ̂ 2
r is the

r th diagonal element of �̂. Further, for r < p one may also perform hypothesis tests of the form

H0 : β0q1 = · · · = β0qr = 0 versus H1 : not all β0q1, . . . , β0qr equal 0,

using the test statistic RN = N (Dβ̂)T(D�̂DT)−1 Dβ̂, where D is a r × p matrix such that
Dβ0 = (β0q1, . . . , β0qr )

T. Given the results in Theorem 1, we have that under the null hypoth-
esis RN converges in distribution to a chi-square random variable having r degrees of freedom.
Consequently, at the significance level α one would reject the null hypothesis if RN > χ2

r (1 − α),
where χ2

r (a) is the ath quantile of a chi-square distribution having r degrees of freedom.

4. NUMERICAL ANALYSIS

A simulation study was conducted to assess the finite sample performance of our methodology.
This study considered the following three underlying true regression models:

Model 1: p0(u) = 1/{1 + exp(4 − 2u)},
Model 2: p0(u) = exp(−5u2 − 1·5),

Model 3: p0(u) = [sin{π(u − 0·3)} + 1·3]/[10 + 20(u − 0·3)2{sign(u − 0·3) + 1}],
where u = X Tβ0. Model 1 provides a situation under which a logistic link is appropriate, and
Models 2 and 3 emulate the gonorrhea and chlamydia data studied in § 5. For each of the above
models we considered a vector of predictors of the form X = (X1, X2, X3)

T, where X1 fol-
lows a standard normal distribution, while X2 and X3 each follow a Bernoulli distribution with
success probabilities 0·4 and 0·3, respectively. The regression parameters were specified to be
β0 = (β01, β02, β03)

T = {1/3, (8/9 − δ2)1/2, δ}T, where δ = {0, 0·1, 0·2, 0·3, 0·4}.
We set N = 10 000 and considered a common group size c j = c for all j = 1, . . . , J , where

J = N/c and c ∈ {1, 2, 5, 10}. The setting c = 1 corresponds to individual-level testing. In order
to generate group testing data, we first generated individual-level data; i.e., for each of the N
individuals we generated the pair (Ti j , Xi j ). Specifically, the predictor vector Xi j was simulated
according to the distributions described above and Ti j was subsequently determined accord-
ing to a Bernoulli(pi j ) distribution, where pi j = p0(X T

i jβ0). To create group testing data, we
then simulated the screening of the N individuals according to both master pool testing and
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Dorfman decoding, chosen due to their popularity. To allow for testing errors, we generated
testing responses using Se = 0·93 and Sp = 0·99. Under both master pool testing and Dorfman
decoding, this data generating process was repeated 500 times for each model and configuration
of (c, δ).

For each of the group testing datasets we estimated the regression parameter β0 and the link
function p0(·) using the methodology outlined in § 2. To implement our approach we specified
K (·) to be the Gaussian kernel, and selected the bandwidth in a similar fashion to the method
proposed in Härdle et al. (1993). Specifically, the bandwidth h̃ was chosen such that (β̃, h̃) is the
maximizer of CV(β, h) = ∑J

j=1 logR{Z j ;X j , β, p̂(− j)
β (·)}, where p̂(− j)

β (u) denotes the leave-
one-out estimator of pβ(u) obtained from minimizing (4) when the information pertaining to the
j th pool is omitted. For comparative purposes, we also implemented the parametric methods pro-
posed in Vansteelandt et al. (2000) and Zhang et al. (2013) for master pool testing and Dorfman
decoding, respectively, under the assumption the link function is logistic.

Table 1 provides summary statistics of the 500 estimates of β0 obtained by our methodol-
ogy, across all considered models and settings of c, under Dorfman decoding, when δ = 0·1. Our
approach exhibits little, if any, evidence of bias and the average standard errors are in agreement
with the sample standard deviation of the parameter estimates. The empirical coverage probabili-
ties for 95% confidence intervals are predominantly at their nominal level. Further, the parameter
estimates obtained from analysing group testing data can be as, if not more, efficient than the
estimates based on individual-level data; i.e., in most cases the estimators have smaller variances
when c > 1. This suggests that more precise inference can be obtained from analysing group
testing decoding data, when compared to individual-level testing information, and at a fraction
of the cost of data collection; similar findings were reported in Zhang et al. (2013).

Table 1 also provides the average mean squared error of prediction, where we define
MSE{β̂, p̂(·)} = N−1 ∑J

j=1
∑c j

i=1{ p̂(X T
i j β̂) − p0(X T

i jβ0)}2 to be the mean squared error of pre-
diction for a given dataset. This measure suggests that our methodology can more accurately
estimate the link function, using decoding data, than the analogous method that makes use of
individual-level testing information. Table 1 provides the ratio of the average mean squared error
of prediction for the parametric and our semiparametric model. We see that when the true under-
lying model is logistic the average mean squared error of prediction of our approach is roughly
three times larger than that of the parametric model, which assumes a logistic link. In contrast,
when the true model is not logistic the average mean squared error of prediction associated with
the parametric model can be up to thirty times greater than that of our methodology.

We conducted a power analysis of the hypothesis test for β03, using the estimates resulting from
our regression procedures and the methodology outlined in § 3 to perform the test of H0 : β03 = 0
versus H1 : β03 |= 0, at the α = 0·05 significance level. The same analysis was also performed for
each dataset using the aforementioned parametric models, again assuming a logistic link. The
hypothesis-testing results were used to construct power curves for our semiparametric approach
and the competing parametric model, across all considered configurations. The power curves
corresponding to data arising from Dorfman decoding when c = 5 are presented in Fig. 1. Under
both the semiparametric and parametric models the hypothesis-testing procedure suggested in § 3
maintains its correct size across all considered settings. The estimated power curves under Model
1 are very similar, with the parametric model having slightly more power. This suggests that our
methodology performs almost as well as the parametric model, which assumes the correct link
function. If the link function is misspecified under the parametric model these methods lose the
power to detect significant predictor variables, a feature not shared by our approach.

The results presented in Table 1 and Fig. 1 are based on analysing data arising from Dorfman
decoding, and the parameter estimates summarized in Table 1 correspond to the case in which
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Table 1. Summary of simulation results for data arising from Dorfman decoding

Parameter Measure c = 1 c = 2 c = 5 c = 10

Model 1 β01 BIAS (SD) 8·7 (3·5) 9·0 (3·1) 6·5 (3·3) 7·1 (3·1)

COV (SE) 93·6 (3·5) 94·4 (3·2) 95·3 (3·2) 95·8 (3·3)

β02 BIAS (SD) −5·1 (1·4) −4·7 (1·3) −4·4 (1·3) −4·4 (1·3)

COV (SE) 96·0 (1·4) 96·2 (1·3) 96·2 (1·3) 96·8 (1·4)

β03 BIAS (SD) −1·9 (5·2) −4·2 (4·9) −1·6 (5·4) −4·1 (5·6)

COV (SE) 94·4 (5·3) 94·6 (5·0) 93·2 (5·1) 92·6 (5·3)

p0 (xβ0) EMSE (RE) 1·31 (0·37) 1·25 (0·35) 1·28 (0·38) 1·27 (0·39)

Percentage reduction in testing 37·3% 52·5% 43·6%

Model 2 β01 BIAS (SD) 1·5 (1·4) 0·7 (1·4) 0·5 (1·4) 1·9 (1·4)

COV (SE) 93·0 (1·4) 95·3 (1·4) 93·8 (1·4) 95·1 (1·4)

β02 BIAS (SD) −1·2 (0·6) −1·0 (0·6) −0·6 (0·6) −1·1 (0·6)

COV (SE) 93·4 (0·6) 94·5 (0·6) 93·6 (0·6) 96·2 (0·6)

β03 BIAS (SD) −0·7 (3·4) 1·2 (3·2) −2·8 (3·2) −2·6 (3·1)

COV (SE) 93·0 (3·0) 92·3 (2·9) 92·6 (2·9) 92·9 (3·0)

p0 (xβ0) EMSE (RE) 1·25 (25·33) 1·09 (29·83) 1·18 (27·43) 1·18 (27·24)

Percentage reduction in testing 31·9% 41·9% 29·7%

Model 3 β01 BIAS (SD) 7·6 (2·5) 8·9 (2·4) 8·5 (2·4) 7·5 (2·4)

COV (SE) 92·4 (2·5) 92·8 (2·4) 92·3 (2·5) 93·0 (2·5)

β02 BIAS (SD) −3·7 (1·0) −4·4 (1·0) −4·3 (1·0) −4·0 (1·0)

COV (SE) 93·8 (1·0) 92·8 (1·0) 94·3 (1·0) 93·0 (1·0)

β03 BIAS (SD) −1·7 (3·7) −0·2 (3·9) 1·5 (3·6) 1·3 (4·0)

COV (SE) 92·4 (3·6) 92·4 (3·5) 94·0 (3·6) 92·7 (3·6)

p0 (xβ0) EMSE (RE) 1·61 (13·80) 1·46 (15·18) 1·46 (15·19) 1·57 (14·19)

Percentage reduction in testing 34·8% 47·4% 36·7%

BIAS and SD, empirical bias (×103) and standard deviation (×100) of the 500 estimates; SE, average standard
error (×100); COV, empirical coverage probability (×100) for nominal 95% confidence interval; EMSE,
average mean squared error of prediction (×104); RE, ratio of EMSE of the parametric model to the EMSE
of our semiparametric model.
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Fig. 1. Estimated power curves under Dorfman decoding. The solid and dashed curves correspond to our
approach and the parametric techniques, respectively.

δ = 0·1. The analogous table and figure for master pool testing are provided in the Supplementary
Material. Under both group testing algorithms, summaries of the parameter estimates pertaining
to other considered values of δ were practically identical and power curves constructed for the
other values of c resulted in the same conclusions. Consequently, these additional results were
omitted for brevity.
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Table 2. Summary of results for data arising from Dorfman decoding

Parameter Measure c = 1 c = 2 c = 5 c = 10

Chlamydia β01 MEAN (SE) 81·7 (6·3) 82·9 (6·4) 82·7 (6·1) 82·6 (6·2)

β02 MEAN (SE) −41·3 (9·2) −40·4 (9·5) −41·4 (9·1) −39·9 (9·3)

β03 MEAN (SE) 38·8 (14·7) 37·7 (15·3) 36·8 (14·8) 37·9 (14·7)

Percentage reduction in testing 34·0% 45·7% 35·4%

Gonorrhea β01 MEAN (SE) 47·6 (5·1) 47·7 (2·4) 48·1 (2·5) 47·1 (2·8)

β02 MEAN (SE) −70·0 (7·8) −69·8 (3·6) −70·0 (3·8) −71·2 (4·3)

β03 MEAN (SE) 50·4 (11·3) 53·1 (5·7) 52·5 (5·8) 51·3 (6·3)

Percentage reduction in testing 45·9% 71·0% 74·0%

MEAN, mean (×100) of the 500 estimates; SE, average standard error (×100).
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Fig. 2. Pointwise quantile curves as a function of the linear predictor u. Top row: chlamydia data,
bottom row: gonorrhea data. Left column: c = 1, right column: c = 5. The dashed, solid, and dotted

lines correspond to the 0·025, 0·5, and 0·975 quantiles, respectively.

5. APPLICATION TO CHLAMYDIA AND GONORRHEA DATA

In this section we illustrate our methodology using chlamydia and gonorrhea data collected
by the Nebraska Public Health Laboratory. This laboratory tests patients individually for the
presence of these bacterial infections, whereas other such laboratories have adopted group test-
ing strategies; e.g., the Iowa Hygienic Laboratory uses a Dorfman type algorithm (Jirsa, 2008)
to screen for these sexually transmitted diseases. The data we consider consist of individual-
level testing responses obtained from assaying urine specimens collected from N = 7310 female
patients. In addition to these testing responses we also have access to several predictor variables:
namely, X1, standardized age; X2, a binary variable indicating the presence of symptoms, with 1
indicating symptoms were present; and X3, a binary variable indicating the purpose of screening,
with 1 indicating family planning. Using these data, we are able to artificially construct group
testing data, treating the testing responses available in the dataset as the individuals’ true infection
statuses. We then assigned each of the individuals to a group of size c based on their specimen
arrival date, where c ∈ {1, 2, 5, 10}. Dorfman decoding was implemented to screen the groups
for both diseases, where testing responses for chlamydia and gonorrhea were simulated using the
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sensitivities 0·947 and 0·913 and specificities 0·989 and 0·993, respectively. These specifications
were chosen to emulate the protocol and assay currently used by the Iowa Hygienic Laboratory.
This process was repeated 500 times for each value of c and our model was fit to each resulting
dataset.

Table 2 provides a summary of the parameter estimates obtained from analysing the Dorf-
man decoding data. The regression parameter estimates obtained by our methodology are simi-
lar across all values of c, and in many situations exhibit less variability than the estimates based
on the artificial individual-level data; i.e., when c = 1. Figure 2 provides 0·025, 0·5, and 0·975
pointwise quantile curves of the 500 estimated regression functions obtained from analysing the
Dorfman decoding data when c = 1 and 5. The analogous figures for c = 2 and 10 are provided
in the Supplementary Material. The estimated regression curves based on the group testing data
exhibit less variability when compared to those based on individual screening data. These results
indicate that through group testing the screening cost for chlamydia and gonorrhea can be reduced
by up to 45·7% and 74·0%, respectively, while providing more precise inference.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online provides the details of our methodology
mentioned in § 2 and § 3, as well as a proof of Theorem 1 and additional simulation results. Code,
written in R, that implements our new techniques, is available upon request.

APPENDIX

We now provide regularity conditions under which Theorem 1 in § 3 holds.

Condition A1. The functions dβ(u) = E(X | X Tβ = u) and pβ(u) have bounded and continuous sec-
ond order derivatives.

Condition A2. The density function of X Tβ is bounded away from zero and satisfies a Lipschitz
condition of order 1 on {u = xTβ : x ∈ X}.

Condition A3. The bandwidth h = C N−1/5 for some constant C > 0, and K (·) is a bounded and sym-
metric density function with bounded first derivative.

Condition A4. The function M(·, ·, ·) is bounded away from 0.

Condition A5. The equation βT�β = 0 has the unique root β = β0 in B.

Conditions A1–A3 are common in the single-index literature. The Lipschitz condition in Condition A2
allows for discrete predictor variables. Condition A4 is easily satisfied when the assay is imperfect, as long
as 0·5 < Se, Sp < 1. This also assures that the denominator in � is bounded away from 0. Condition A5
guarantees that the matrix J T

0 �J0 is positive definite.
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