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Abstract

Screening procedures for infectious diseases, such as HIV, often involve pool-

ing individual specimens together and testing the pools. For diseases with low

prevalence, group testing (or pooled testing) can be used to classify individu-

als as diseased or not while providing considerable cost savings when compared

to testing specimens individually. The pooling literature is replete with group

testing case identification algorithms including Dorfman testing, higher-stage hi-

erarchical procedures, and array testing. Although these algorithms are usually

evaluated on the basis of the expected number of tests and classification accu-

racy, most evaluations in the literature do not account for the continuous nature

of the testing responses and thus invoke potentially restrictive assumptions to

characterize an algorithm’s performance. This article revisits the evaluation of

commonly used case identification algorithms in group testing but takes a differ-

ent approach. Instead of treating testing responses as binary random variables

(i.e., diseased/not), evaluations are made by exploiting an assay’s underlying

continuous biomarker distributions for positive and negative individuals. In do-

ing so, a general framework to describe the operating characteristics of group

testing case identification algorithms is provided when these distributions are

known. The methodology is illustrated using two HIV testing examples taken
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from the pooling literature.

Keywords: Classification, Measurement error, Pooled testing, Screening,

Sensitivity, Specificity

1. Introduction

Testing individual specimens in pools, which is known as group testing (or

pooled testing), is widespread in disease screening applications. Individuals in

pools that test negatively are declared to be negative, and positive pools are

resolved (or “decoded”) to determine which individuals are positive. The origins5

of group testing are usually traced back to Dorfman (1943), who proposed that

it be used to screen World War II soldiers for syphilis. Since this seminal work,

group testing has been applied to numerous infectious disease applications. A

literature review reveals recent public health and surveillance applications for

HIV (Krajden et al., 2014), HBV and HCV (Page-Shafer et al., 2008; Candotti10

and Allain, 2009), chlamydia and gonorrhea (Lewis et al., 2012), West Nile virus

(Busch et al., 2005), and influenza (Edouard et al., 2015). Group testing is also

routinely used by national organizations around the world to screen blood and

plasma donations for HIV/HBV/HCV and other diseases (see, e.g., Schmidt et

al., 2010; O’Brien et al., 2012; Stramer et al., 2013).15

The original procedure proposed by Dorfman (1943) is a two-stage hier-

archical algorithm; i.e., non-overlapping pools are tested in the first stage and

individuals from positive pools are tested in the second. Hierarchical algorithms

using a larger number of stages can reduce the number of tests needed when the

disease prevalence is small. For example, Mehta et al. (2011) describe a three-20

stage algorithm for HIV testing in San Diego that uses master pools of size 10

in the first stage, subpools of size 5 in the second stage, and individual testing

in the third. The most common non-hierarchical algorithm is two-dimensional

array testing (Phatarfod and Sudbury, 1994; Hudgens and Kim, 2011; McMa-

han et al., 2012b), where individuals are tested in the rows and columns of an25

array. A recent HIV application in New Jersey (Martin et al., 2013) illustrates
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how array testing can even be used in higher dimensions (Kim and Hudgens,

2009). Comprehensive summaries of group testing algorithms and their operat-

ing characteristics are found in Kim et al. (2007) and Westreich et al. (2008).

When faced with the task of choosing an appropriate case identification30

algorithm for screening purposes, public health officials and lab technicians are

interested in cost and accuracy. Laboratories with large budgets may opt to

test specimens individually as pooling can reduce an assay’s sensitivity. In the

group testing literature, this reduction is known as “the dilution effect” and

can result in an increased number of false negative diagnoses. Group testing35

algorithms can be selected on the basis of minimizing the expected number of

tests per individual to minimize costs (Kim et al., 2007; Westreich et al., 2008)

or perhaps in a way that incorporates both the expected number of tests and

classification accuracy (see, e.g., Malinovsky et al., 2016). Of course, additional

practical considerations such as testing platform constraints, the time needed40

for testing, and the availability of individuals to pool should also be carefully

considered.

When an individual or pooled specimen is tested, an assay typically elicits a

binary diagnosis (positive/negative) that is derived from measuring a continu-

ous biomarker; large values of this continuous measurement are usually evidence45

that the disease is present. Although it is widely known that dichotomizing a

continuous outcome can lead to a loss in information, previous evaluations in

group testing have largely ignored this underlying aspect and instead have relied

explicitly on binary results. Doing so helps to facilitate the derivation of closed-

form expressions for the expected number of tests and classification accuracy50

probabilities; however, this also usually requires one to make assumptions such

as (a) the sensitivity and specificity are unaffected by pool size; i.e., there is

no dilution effect, and (b) testing outcomes on pools containing common indi-

viduals are independent conditional on the true pool statuses. An important

contribution of this article is to provide a general framework for case identifica-55

tion evaluation where these assumptions are not needed.

In offering this framework, our approach exploits the underlying continuous
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biomarker distributions associated with positive and negative individuals. In

other words, we do not dichotomize testing outcomes into “positive” or “nega-

tive” categories, but instead we make our evaluations in terms of the biomarker60

distributions themselves. Our work is related to the methodology in Wein and

Zenios (1996), who proposed using biomarker concentrations to determine an

optimized Dorfman algorithm for HIV testing. However, our article takes a

somewhat different perspective. We are not focused on determining optimal

designs for specific group testing procedures per se; instead, our goal is to en-65

hance previous case identification algorithm evaluations, such as those in Kim

et al. (2007) and Westreich et al. (2008), in group testing applications where

biomarker distributions are known. Our evaluations can be performed for any

group testing procedure, including Dorfman testing, higher-stage hierarchical

algorithms, and array testing. We obtain closed-form expressions for operat-70

ing characteristics for normally distributed biomarkers in specific algorithms;

however, even these expressions may be of limited utility for practitioners. We

therefore use simulation to overcome the computational challenges when incor-

porating biomarker information.

2. Notation and Preliminaries75

We modify the notation from Wang et al. (2015), who used biomarker

distributions to acknowledge the dilution effect in group testing regression. Let

Ti = 1 if the ith individual is truly positive; Ti = 0 otherwise. We assume

the Ti’s are independent and identically distributed statuses with pr(Ti = 1) =

p, the prevalence of the population. Generalizing our evaluation framework

to allow for unequal individual disease probabilities (McMahan et al., 2012a;

2012b) or correlated individuals (Lendle et al., 2012) is straightforward; see

Section 6. Let C̃i denote the true biomarker level of the ith individual (e.g.,

viral load, optical density reading, antibody concentration, etc.). We assume

the C̃i’s are mutually independent random variables and that the conditional
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probability density function of C̃i given the true status Ti = t is

fC̃i|Ti=t
(u) = tfC̃+(u) + (1− t)fC̃−(u),

where fC̃+ and fC̃− denote the true biomarker density functions for positive and

negative individuals, respectively. In other words, positive individuals in the

population have true biomarker levels described by the common density fC̃+ ;

similarly, negative individuals’ true biomarker levels are described by fC̃− .

We are interested in calculating quantities like the expected number of80

tests per individual and classification accuracy probabilities commonly seen in

the group testing case identification literature (i.e., pooling sensitivity, pooling

specificity, predictive values). To set our ideas, we assume a hierarchical group

testing algorithm is used in S ≥ 2 stages, although we later modify our notation

to account for array testing in two dimensions (Phatarfod and Sudbury, 1994;85

Hudgens and Kim, 2011; McMahan et al., 2012b); see Section 3.3. An S-stage

hierarchical algorithm begins by testing a master pool of individual specimens.

If the master pool tests negatively, all individuals are declared to be disease-

free and no further testing is performed. Otherwise, non-overlapping subpools

are formed and are tested in the second stage. Any second-stage subpool that90

tests positively is split again while subpools that test negatively in the second

stage are declared to be disease-free. This process continues until all subpools

in a particular stage test negatively or until individual testing (in stage S) is

performed.

For an S-stage hierarchical algorithm, let Psl denote the index set of indi-95

viduals in the lth pool formed at the sth stage of testing, for l = 1, 2, ..., n1/ns

and s = 1, 2, ..., S, where ns = |Psl| is the number of individuals in Psl. To

illustrate this notation, Figure 1 displays the S = 3 stage hierarchical algorithm

described in Mehta et al. (2011) from Section 1. In this example, the master

pool is P11 = {1, 2, ..., 10}, the two second-stage pools are P21 = {1, 2, ..., 5} and100

P22 = {6, 7, ..., 10}, and the singleton pools P31 = {1},P32 = {2}, ...,P3,10 =

{10} are for individual testing in the third stage. These pools are of size n1 = 10,

n2 = 5, and n3 = 1. Additional examples of hierarchical algorithms used in HIV
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testing are found in Sherlock et al. (2007). Henceforth, a general S-stage hier-

archical algorithm is denoted by H(n1 : n2 : · · · : nS), where nS = 1. Note that105

Dorfman’s seminal strategy uses S = 2 stages.

Let TPsl
= 1 if the lth pool in the sth stage is truly positive; i.e., Psl contains

at least one truly positive individual, TPsl
= 0 otherwise. Similarly, let ZPsl

= 1

if Psl tests positively, ZPsl
= 0 otherwise. To acknowledge the continuous nature

of the diagnostic assay, we assume that ZPsl
= I(CPsl

> τPsl
); i.e., the pool110

Psl tests positively if CPsl
, the measured biomarker level of the pool, exceeds

a threshold τPsl
which potentially depends on the pool size ns at stage s. To

acknowledge the potential of error when measuring the true biomarker level C̃Psl
,

we assume that CPsl
|C̃Psl

∼ fε, where fε = fε(·|C̃Psl
) is a known probability

density function. Therefore, our framework utilizes three distributions: the115

true biomarker distributions for positive and negative individuals, fC̃+ and fC̃− ,

respectively, and fε, which incorporates the effect of assay measurement error.

Threshold selection for τPsl
is discussed in Section 4.

As noted in Section 1, previous evaluations of case identification algorithms

have largely assumed the sensitivity and specificity are constant and hence are

unaffected by pool size. Although this assumption may be reasonable when

testing negative pools (i.e., constant specificity), it is potentially more dubious

when testing positive pools. Using the Law of Total Probability, note that the

sensitivity associated with testing Psl can be written as

pr(ZPsl
= 1|TPsl

= 1) =

∑ns

m=1 pr(ZPsl
= 1|

∑
i∈Psl

Ti = m) pr(
∑
i∈Psl

Ti = m)

pr(TPsl
= 1)

,

where the random variable
∑
i∈Psl

Ti counts the number of positive individuals

in Psl. Therefore, for the sensitivity to remain constant throughout the test-120

ing process, one would have to require that pr(ZPsl
= 1|

∑
i∈Psl

Ti = m) are

equal for each m = 1, 2, ..., ns, l = 1, 2, ..., n1/ns and s = 1, 2, ..., S. Clearly,

this requirement may be unsuitable−especially when testing results are heavily

influenced by dilution.

On the other hand, when written in terms of the true biomarker distribu-125

tions, fC̃+ and fC̃− , and the measurement error density fε, the sensitivity of Psl
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is given by

Se(ns) = pr(ZPsl
= 1|TPsl

= 1) = pr

(
CPsl

> τPsl

∣∣∣∣∣ ∑
i∈Psl

Ti > 0

)

=

∑ns

m=1

(
ns

m

)
pmqns−mSe(ns : m)

1− qns
,

where q = 1− p and

Se(ns : m) =

∫ ∞
τPsl

∫ ∞
−∞

fε(u|v)nsf
m(ns−m)∑

i∈Psl
C̃i

(nsv)dvdu, (1)

where

f
m(ns−m)∑

i∈Psl
C̃i

(v) =

∫
∑ns

i=1 vi=v

m∏
i=1

fC̃+(vi)

ns∏
i=m+1

fC̃−(vi)dv1dv2...dvns . (2)

The expression in Equation (2) is the density of
∑
i∈Psl

C̃i, the sum of the mu-

tually independent biomarker levels in Psl when Psl contains exactly m ≥ 1

positive and ns − m negative individuals; we obtain this density by convolv-130

ing the true individual biomarker densities fC̃+ and fC̃− m and ns −m times,

respectively.

In writing Equation (1), we assume the true biomarker level C̃Psl
is the arith-

metic average of the individual biomarker levels in Psl; i.e., C̃Psl
= n−1s

∑
i∈Psl

C̃i.

This assumption is often viewed as sacrosanct in the biomarker pooling litera-

ture (see, e.g., Zhang and Albert, 2011; Malinovsky et al., 2012; Mitchell et al.,

2014; Delaigle and Hall, 2015) and is likely reasonable when pools are formed

from aliquots of equal volume. Under this assumption, the specificity of Psl is

given by

Sp(ns) = pr(ZPsl
= 0|TPsl

= 0) = pr

(
CPsl

< τPsl

∣∣∣∣∣ ∑
i∈Psl

Ti = 0

)

=

∫ τPsl

−∞

∫ ∞
−∞

fε(u|v)nsf
0(ns−0)∑

i∈Psl
C̃i

(nsv)dvdu, (3)

where f
0(ns−0)∑

i∈Psl
C̃i

(·) is the density that convolves fC̃− ns times−once for each of

the negative individuals in Psl. Note that Equations (1) and (3) are similar in

form to the analogous expressions found in McMahan et al. (2013) and Delaigle135
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and Hall (2015), both of whom incorporate biomarker and measurement error

distributions in group testing regression.

As an example, suppose the true individual biomarker distributions for neg-

ative and positive individuals are C̃− ∼ N (3, 0.25) and C̃+ ∼ N (6, 1), respec-

tively, and that the measurement error density is N (C̃, 0.0025). For these distri-140

bution choices, the threshold that maximizes Youden’s index (Youden, 1950) for

individual testing is τ∗ = 4.11, which provides values of sensitivity and speci-

ficity (for individual testing) equal to 0.970 and 0.987, respectively. To illustrate

the effect of pooling, Figure 2 displays the densities of the measured biomarker

level on Psl; i.e., fCPsl
(u) =

∫∞
−∞ fε(u|v)nsf

m(ns−m)∑
i∈Psl

C̃i
(nsv)dv, for different values145

of m when the pool size is ns = 5 and ns = 10. This figure illustrates how rele-

vant operating characteristics in group testing could ultimately depend on the

individual biomarker distributions, the pool size, the threshold used for pools

(see Section 4), and the number of positive individuals in each pool. In other

words, once one moves beyond treating pool and individual diagnoses as binary,150

case identification evaluation becomes far more complicated. Note that we have

created Figure 2 assuming normality for C̃−, C̃+, and the measurement error

so that fCPsl
(u) can be calculated exactly. However, biomarkers in real appli-

cations are rarely normally distributed and calculating fCPsl
(u) for non-normal

biomarkers, if it is even possible to do so, potentially involves high-dimensional155

integration (i.e., of dimension equal to the pool size).

3. Operating Characteristics

3.1. Efficiency

The most important characteristic of a group testing case identification algo-

rithm is its expected number of tests per individual, or efficiency. Because the160

cost of screening is usually highly correlated with the number of tests expended,

algorithms with lower values of this expectation are generally preferred. For ex-

ample, an algorithm whose efficiency is 0.5 is twice as efficient as individual

testing. An algorithm whose efficiency is larger than 1 uses more tests than in-

9
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Figure 2: Top panel: Individual biomarker densities for C̃− ∼ N (3, 0.25) and C̃+ ∼ N (6, 1).

Under our measurement error density assumption, C|C̃ ∼ N (C̃, 0.0025), the threshold τ∗ =

4.11 maximizes Youden’s index for individual testing. Middle and bottom panels: Densi-

ties of the pooled biomarker measurements, fCPsl
(u) =

∫∞
−∞ fε(u|v)nsf

m(ns−m)∑
i∈Psl

C̃i
(nsv)dv, for

different m (the number of positive individuals in Psl) when the pool size is ns = 5 and

ns = 10.

10



dividual testing on average. In the group testing literature, optimal algorithms165

are usually identified as those that are the most efficient.

Unfortunately, within the general framework we have outlined in this arti-

cle, calculating the efficiency quickly becomes unmanageable−even for simple

algorithms. For example, consider the S = 3 stage algorithm H(10 : 5 : 1)

depicted in Figure 1. It is easy to see that the efficiency of this algorithm is170

1
10 + 1

5pr(ZP11
= 1)+pr(ZP11

= 1, ZP21
= 1), where recall ZP11

and ZP21
denote

the (binary) testing responses of P11 and P21, respectively. When written in

terms of the biomarker distributions, the first-stage probability is

pr(ZP11 = 1) = pr(CP11 > τP11 |TP11 = 1)pr(TP11 = 1)

+ pr(CP11
> τP11

|TP11
= 0)pr(TP11

= 0)

=

10∑
m=1

(
10

m

)
pmq10−mSe(10 : m) + {1− Sp(10)}q10,

where Se(10 : m) is calculated using Equations (1) and (2) and Sp(10) is calcu-

lated using Equation (3) with ns = n1 = 10, τPsl
= τP11

, and Psl = P11. Even

more daunting, a second-stage pool tests positively with probability pr(ZP11 =

1, ZP21
= 1), which equals

5∑
m1=0

5∑
m2=0

(
5

m2

)
pm2q5−m2

(
5

m1

)
pm1q5−m1

∫ ∞
τP11

∫ ∞
τP21

{∫
R10

2∏
s=1

fε

(
us

∣∣∣∣ 1ns
ns∑
i=1

vi

)

×
m2∏
i=1

fC̃+(vi)

5∏
i=m2+1

fC̃−(vi)

m1+5∏
i=6

fC̃+(vi)

10∏
i=m1+6

fC̃−(vi)dv1dv2 · · · dv10

}
du2du1,

where n1 = 10 and n2 = 5. In this expression, it is understood that products

of the form
∏b
i=a fC̃+(vi) and

∏b
i=a fC̃−(vi), a > b, are vacuous.175

As this simple example illustrates, offering a biomarker-based framework for

group testing case identification presents nearly overwhelming computational

challenges. Unfortunately, this is the price one must pay when relaxing assump-

tions used in previous evaluations. For example, under classical assumptions in

Kim et al. (2007) and Westreich et al. (2008), the probabilities we have just

presented reduce to pr(ZP11
= 1) = Se(1− q10) + (1− Sp)q10 and

pr(ZP11
= 1, ZP21

= 1) = S2
e (1− q5) + Se(1− Sp)(q5 − q10) + (1− Sp)2q10,
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respectively, where Se and Sp are the assumed common sensitivity and specificity

for pools of size n1 = 10 and n2 = 5. The simplified formula for pr(ZP11
=

1, ZP21
= 1) above arises only when the testing responses ZP11

and ZP21
are

conditionally independent given the true pool statuses TP11
and TP21

. This

assumption is required under classical evaluations because P11 and P21 contain180

common individuals.

In Appendix A in the Supplementary Material, we have derived a general

expression for the efficiency of an S-stage hierarchical algorithm. This derivation

has been described previously in the group testing literature; see, e.g., Kim et

al. (2007) and the references therein. In our notation, the efficiency can be

expressed as

EFF{H(n1 : n2 : · · · : nS)} =
1

n1
+

S−1∑
s=1

1

ns+1
pr

(
s∏

s′=1

ZPs′1 = 1

)
,

where the random variable
∏s
s′=1 ZPs′1 equals 1 if and only if the first pool

in each of the first s stages tests positively. Calculating pr(
∏s
s′=1 ZPs′1 = 1)

within our framework involves accounting for the joint uncertainty that arises

in the correlated, error-laden biomarker measurements CP11
, CP21

, ..., CPs1
, an185

extremely difficult problem analytically. Although this probability can be cal-

culated exactly under normal biomarker assumptions, in general we recommend

using Monte Carlo simulation and estimating EFF{H(n1 : n2 : · · · : nS)} in-

stead. Such a strategy is flexible and will accommodate any biomarker and mea-

surement error distributions. In addition, one can quickly estimate the variance190

of the number of tests per individual (Kim et al., 2007), which would otherwise

be an intractable calculation. A description of our simulation procedure is now

given.

SIMULATION PROCEDURE

1. Generate T1, T2, ..., Tn1 ∼ iid Bernoulli(p). Generate C̃i ∼ fC̃i|Ti=t
(u) =195

tfC̃+(u) + (1− t)fC̃−(u), i = 1, 2, ..., n1.

2. (Stage 1). Calculate C̃P11
= n−11

∑
i∈P11

C̃i and generate CP11
from fε(·|C̃P11

).

12



(a) If ZP11 = I(CP11 > τP11) = 0, stop and classify the n1 individuals in

P11 as negative.

(b) If ZP11
= I(CP11

> τP11
) = 1, divide C̃i ∈ P11 into subgroups of size200

n2.

3. (Stage 2). Calculate C̃P2l
= n−12

∑
i∈P2l

C̃i for each subgroup in Step 2(b)

and generate CP2l
from fε(·|C̃P2l

). Calculate ZP2l
= I(CP2l

> τP2l
). For

each l,

(a) if ZP2l
= I(CP2l

> τP2l
) = 0, classify the n2 individuals in P2l as205

negative (stop if all second-stage subgroups are negative).

(b) if ZP2l
= I(CP2l

> τP2l
) = 1, divide C̃i ∈ P2l into subgroups of size

n3.

4. (Stage 3). For each subgroup in Step 3(b), calculate C̃P3l
= n−13

∑
i∈P3l

C̃i,

generate CP3l
from fε(·|C̃P3l

), and calculate ZP3l
= I(CP3l

> τP3l
). Con-210

tinue this overall process until all subgroups in a particular stage test

negatively or until individual testing (in stage S) is performed.

We implement this procedure B times and estimate the efficiency of H(n1 : n2 :

· · · : nS) using

ÊFF{H(n1 : n2 : · · · : nS)} =
1

n1B

B∑
b=1

Mb,

where Mb is the number of tests observed in the bth replication. The variance

of the number of tests per individual, denoted by var{H(n1 : n2 : · · · : nS)},

can be estimated using the sample variance of M1/n1,M2/n1, ...,MB/n1. Our215

simulation procedure is extremely fast and thus can be performed using very

large values of B. Under normal biomarker assumptions, we show in Ap-

pendix B in the Supplementary Material that the difference between calculating

EFF{H(n1 : n2 : · · · : nS)} exactly and estimating it using a large number of

replications is negligible.220
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3.2. Classification Accuracy

Although the efficiency of a group testing case identification algorithm is its

most important characteristic, being able to quantify an algorithm’s classifica-

tion accuracy is also critical. Two commonly used measures of accuracy in the

case identification literature are pooling sensitivity and pooling specificity. For

an S-stage hierarchical algorithm, the pooling sensitivity

PSE{H(n1 : n2 : · · · : nS)} = pr

(
S∏
s=1

ZPs1 = 1

∣∣∣∣T1 = 1

)
is the probability a truly positive individual is classified positively. Analogously,

the pooling specificity

PSP{H(n1 : n2 : · · · : nS)} = 1− pr

(
S∏
s=1

ZPs1 = 1

∣∣∣∣T1 = 0

)
is the probability a truly negative individual is classified negatively. Values of

PSE and PSP close to unity are preferred as this translates to a small percentage

of false negative and false positive diagnoses. Simple formulae for PSE and

PSP are available under classical assumptions (see, e.g., Kim et al., 2007). For225

example, PSE{H(n1 : n2 : · · · : nS)} = SSe implies that a larger number of

stages decreases pooling sensitivity. Of course, this formula no longer applies in

our more general framework.

We derive expressions for PSE{H(n1 : n2 : · · · : nS)} and PSP{H(n1 : n2 :

· · · : nS)} in terms of fC̃+ , fC̃− , and fε in Appendix B in the Supplementary

Material. However, as with the efficiency, these expressions may ultimately be

too complicated for practical use. Therefore, simulation details to estimate PSE

and PSP for an S-stage hierarchical algorithm are also provided. With these

estimates in hand, one can also estimate the pooling positive predictive value

PPV =
pPSE

pPSE + (1− p)(1− PSP)

and the pooling negative predictive value

NPV =
(1− p)PSP

(1− p)PSP + p(1− PSE)
.

These probabilities measure how likely an individual is truly positive (negative)

given that the individual has been classified positively (negatively).230
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3.3. Array Testing

Our simulation methodology can be extended to estimate the operating char-

acteristics of array testing algorithms. In two-dimensional array testing, indi-

viduals are first assigned to the cells of an array with R rows and C columns

(Phatarfod and Sudbury, 1994; McMahan et al., 2012b). In the first stage, the235

rows and the columns of the array are tested. The second stage uses individual

testing for individuals not classified as negative after the first stage. When the

prevalence p is small, two-dimensional array testing can be more efficient than

hierarchical algorithms (Kim et al., 2007; Westreich et al., 2008).

We modify our notation from Section 2 to accommodate array testing in

two dimensions. Let Tr,c denote the true binary status of the individual in the

(r, c)th position, and let C̃r,c denote this individual’s true biomarker level so that

fC̃r,c|Tr,c=t
(u) = tfC̃+(u) + (1 − t)fC̃−(u), for r = 1, 2, ..., R and c = 1, 2, ..., C.

The rth row and cth column pools are denoted by Pr+ = {(r, 1), (r, 2), ..., (r, C)}

and P+c = {(1, c), (2, c), ..., (R, c)}, respectively. Let C̃Pr+
= C−1

∑C
c=1 C̃r,c and

CPr+ denote the true and measured biomarker level of Pr+, respectively. Let

C̃P+c
= R−1

∑R
r=1 C̃r,c and CP+c

be defined analogously for P+c. In the first

stage, row and column testing provide ZPr+
= I(CPr+

> τPr+
) and ZP+c

=

I(CP+c
> τP+c

), where τPr+
and τP+c

are first-stage thresholds (see Section 4)

and where CPr+ |C̃Pr+ ∼ fε(·|C̃Pr+) and CP+c |C̃P+c ∼ fε(·|C̃P+c). We follow the

convention in Kim et al. (2007) when identifying which individuals to test in

the second stage; i.e., those individuals in

M =

{
(r, c) : ZPr+

= ZP+c
= 1 or ZPr+

= 1,

C∑
c′=1

ZP+c′ = 0

or

R∑
r′=1

ZPr′+ = 0, ZP+c = 1

}
.

The event {ZPr+ = ZP+c = 1} occurs at the intersection of the rth row and cth240

column. The other two events in M represent ambiguous first-stage outcomes

that could arise from testing error. Second-stage testing observes Zr,c = I(Cr,c >

τ) for each individual in M, where Cr,c|C̃r,c ∼ fε(·|C̃r,c) and τ is a threshold

15



for individual testing. Figure 3 illustrates this notation when R = C = 5

(i.e., for a square array). Complete simulation details to estimate the efficiency245

and accuracy probabilities are provided in Appendix C in the Supplementary

Material.

4. Threshold Selection

There are different types of assays used for infectious disease detection, in-

cluding antibody tests (e.g., ELISA, Western Blot, combination tests which also250

detect antigens, etc.) and more modern tests which utilize amplification meth-

ods. Before an assay is approved for commercial use, it is usually applied to

known positive and known negative specimens to determine suitable thresholds

for individual testing. Ideally, these thresholds provide high levels of sensitivity

and specificity when testing individual specimens. A complete list of screening255

assays for HIV/HBV/HCV and other infectious agents in the United States is

available at www.fda.com. An approved assay’s product insert typically recom-

mends which threshold should be used to identify positive individuals.

When an assay is applied to pooled specimens, choosing the appropriate

threshold can be more subjective. Early work in group testing estimation (see,260

e.g., Chen and Swallow, 1990; Tu et al., 1994) suggested that individual testing

assay thresholds might also be used for pools; see Stephens et al. (2000) and

Currie et al. (2004) for specific applications. In the infectious disease pooling

literature, a common strategy is to take the individual testing threshold, say

τ , and divide it by the number of individuals in the pool; e.g., τP11 = τ/n1265

for a master pool in an S-stage hierarchical algorithm H(n1 : n2 : · · · : nS),

τP2l
= τ/n2 for a second-stage pool, and so on. Note that selecting a pooled

threshold inappropriately large will decrease the pooling sensitivity, thereby

increasing the number of false negative diagnoses. On the other hand, a pooled

threshold that is too small will provide far too many false positive pools, thereby270

weakening the efficiency of group testing.

For individual testing with threshold τ , it is easy to see that the sensitivity
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is a decreasing function of τ while the specificity is an increasing function of

τ . Therefore, one way to choose an individual testing threshold is to maximize

Youden’s index (Youden, 1950); i.e., τ∗ = arg maxτ∈R{Se(τ) + Sp(τ) − 1}, as

this offers a balance between maximizing both sensitivity and specificity. For

a pool generically denoted by P consisting of individuals whose true disease

statuses are denoted by Ti, we propose a pooled threshold that is similar in

spirit to Youden’s index for individual testing; i.e.,

τ∗P = arg max
τ∈R

{∫ ∞
τ

fCP |
∑

i Ti=1(u)du+

∫ τ

−∞
fCP |

∑
i Ti=0(u)du− 1

}
.

The conditional density fCP |
∑

i Ti=1(·) describes the distribution of the mea-

sured biomarker level of pool P when there is exactly one positive individual in

it. We have selected this density for two reasons. First, in low disease preva-

lence applications, it is almost always true that a truly positive pool is positive275

because there is only one positive individual in the pool. Therefore, τ∗P will be

the appropriate threshold for a large majority of the positive pools. Second, as

positive pools could conceivably contain more than one positive individual, τ∗P

favors the adoption of a smaller-than-necessary threshold. Although this may

inflate the efficiency slightly, it also promotes the detection of positive individ-280

uals.

5. Applications

We illustrate our simulation methodology using two examples taken from

the HIV pooling literature. The first example is from Wein and Zenios (1996)

and Zenios and Wein (1998), who consider HIV testing with an antibody assay.285

The second example from May et al. (2010) is not an classical HIV screening

application, but instead describes a virological assay to detect treatment failure

among HIV patients. The salient feature of each application is that biomarker

distributions for C+ and C− are presented as well as posited distributions for

the assay measurement error. We illustrate our biomarker-based evaluations in290

each application using Dorfman testing, an S = 3 stage hierarchical algorithm

using halving (Black et al., 2012), and two-dimensional array testing.
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For Application 1 (Wein and Zenios, 1996; Zenios and Wein, 1998), the

biomarker distributions provided by the authors are ln C+ ∼ N (0.958, 0.8652),

C− ∼ I(C− = 0.086), and the measurement error distribution is CP |C̃P ∼295

N{C̃P/(1+ C̃P), 0.0088×C̃P/(1+ C̃P)2}. The use of a degenerate distribution for

negative individuals is described in Zenios and Wein (1998). For this collection of

distributions, the threshold that maximizes Youden’s index for individual testing

is τ∗ = 0.0485, which provides values of Se > 0.999 and Sp > 0.999; i.e., indi-

vidual testing is nearly perfect. For Application 2 (May et al., 2010), log10 C+ is300

specified to have a two-component mixture 0.93G1 + 0.07G2, where G1(G2) is a

three-parameter gamma random variable with shape parameter 1.6 (3.2), scale

parameter 0.5 (0.5), and location parameter 2.7 (2.7). For negative individu-

als, C− ∼ 0.85U1 + 0.05U2 + 0.10U3, where U1 ∼ U(0, 50), U2 ∼ U(50, 100), and

U3 ∼ U(100, 500), where U(a, b) denotes a uniform distribution from a to b. The305

measurement error distribution is specified as log10 CP |C̃P ∼ N (log10 C̃P , 0.122).

The threshold that maximizes Youden’s index for individual testing in Applica-

tion 2 is τ∗ = 436.11, which provides values of Se = 0.989 and Sp = 0.980.

For both applications, we illustrate the differences between our biomarker-

based calculations of efficiency, variability, and classification accuracy and the310

same calculations which rely on classical assumptions (Kim et al., 2007; Westre-

ich et al., 2008); i.e., constant Se(Sp) and conditional independence of test-

ing responses given the true statuses. In doing so, we consider values of p ∈

{0.01, 0.05, 0.10} while utilizing the three threshold options described in Sec-

tion 4: τ∗ (same for individual testing and pools), τ∗ divided by pool size,315

and our proposed Youden index threshold for pools τ∗P . For each combination

of p and the threshold used, we calculate the efficiency, the standard devia-

tion of the number of tests per individual, and the four accuracy probabilities

in Section 3.2. All of our biomarker-based characteristics are estimated using

B = 1,000,000 Monte Carlo data sets. Operating characteristics under classical320

assumptions are calculated exactly using the expressions in Kim et al. (2007).

Our results when p = 0.05 are provided in Table 1; the same tables for

p = 0.01 and p = 0.10 are given in Appendix D in the Supplementary Ma-
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terial. In each table, we first determine the most efficient Dorfman algorithm

H(n1 : 1), three-stage halving algorithm H(n1 : n1/2 : 1), and square array325

algorithm A(n1 × n1) under the classical assumptions in Kim et al. (2007) and

then compare our biomarker-based evaluations to this optimal setting. Our goal

is not to try to outperform the operating characteristics under classical assump-

tions per se, but instead to illustrate the differences between these calculations

and those which exploit underlying biomarker distributions and measurement330

error, and, more pointedly, how these differences depend on the threshold used.

This comparison simultaneously allows one to assess how robust group testing

characteristics are under classical assumptions. To the best of knowledge, this

is the first assessment of this type in the case identification literature.

From Table 1 and the additional tables in Appendix D, it is clear that the335

efficiency (EFF), the standard deviation of the number of tests per individual

(SD), and the pooling sensitivity (PSE) of group testing are the most heavily

influenced by the choice of threshold. One should not be deceived by the osten-

sibly efficient results that arise when the threshold for individual testing τ∗ is

also used with pools, as this is also accompanied by a decrease in PSE−sharply340

so in Application 2 where Se and Sp are lower. On the other hand, divid-

ing τ∗ by the pool size leads to a threshold that is too small. This results in

too many negative pools testing positively which inflates the efficiency. Our

proposed threshold for pools τ∗P offers a nice compromise between these two

extremes by providing approximately the same efficiency as under classical as-345

sumptions. Both applications show that accuracy probabilities under classical

assumptions may be slightly optimistic, an important finding for practitioners

who are concerned about classification accuracy. This is seen more noticeably

in Application 2 where the error rates for individual testing are comparatively

larger and also for lower values of p in both applications (e.g., p = 0.01, shown350

in Appendix D).
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6. Discussion

We have proposed a simulation-based methodology to evaluate the oper-

ating characteristics of group testing case identification algorithms when in-

dividual biomarker distributions are known. Our approach allows the inves-355

tigator to incorporate the effect of assay measurement error and proposes a

new strategy for selecting thresholds when testing pools. Our research web site

www.chrisbilder.com/grouptesting contains R programs that implement our

simulation methods for hierarchical algorithms and two-dimensional array test-

ing with normally distributed biomarkers. These programs can be changed to360

include other biomarker distributions; e.g., gamma, lognormal, or nonstandard

choices like those found in Section 5. In addition, these programs can be modi-

fied to include other group testing strategies, such as array testing designs that

include master pools (Kim et al., 2007), higher dimensional arrays (Kim and

Hudgens, 2009), and other algorithms outside the H(n1 : n2 : · · · : nS) family365

described in Section 2.

Our evaluations of case identification algorithms do not require one to as-

sume anything about the sensitivity and specificity of testing pools, because

operating characteristics are estimated directly from the biomarker distribu-

tions themselves. Our approach also does not force one to assume that testing370

results are conditionally independent given the true statuses of the individuals

being tested. This assumption is required under classical evaluations because

pools formed throughout the testing process can contain common individuals.

Litvak et al. (1994) have described scenarios where the conditional indepen-

dence assumption is reasonable empirically; however, there is a large body of375

evidence in the diagnostic testing literature suggesting that this assumption

may be too restrictive. Finally, because the framework described in this article

incorporates Monte Carlo simulation, it would be straightforward to generalize

our evaluations to allow for unequal disease probabilities pi, say, which may

arise when covariate information is available on individuals (McMahan et al.,380

2012a; 2012b). For this same reason, our approach could also be extended to ac-

22



commodate individual disease statuses that are correlated (Lendle et al., 2012)

or to applications where biomarkers are measured for multiple diseases (Tebbs

et al., 2013).

Throughout this article, we have assumed that the biomarker distributions385

for positive and negative individuals, fC̃+ and fC̃− , respectively, and the mea-

surement error density fε are known exactly. This assumption may be pro-

hibitive in applications where biomarker and measurement error information is

not available (e.g., in surveillance studies, etc.). It should be possible to esti-

mate these distributions with continuous group testing responses on pools and390

individuals, although this would require the development of new deconvolution

methods and hence we leave this to future work. In lieu of perfect knowledge

about these distributions, an anonymous referee has suggested that one could

perform a sensitivity analysis to assess the impact of misspecifying fC̃+ , fC̃− , or

fε. This is straightforward to accomplish within the framework outlined in this395

article because our methods make use of Monte Carlo simulation. In Appendix

E in the Supplementary Material, we provide an example showing how such an

analysis could be implemented.
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