
Lifetime Data Anal
https://doi.org/10.1007/s10985-018-9425-8

Reliability analysis of load-sharing systems
with memory

Dewei Wang1 · Chendi Jiang1 ·
Chanseok Park2

Received: 1 January 2017 / Accepted: 15 February 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract The load-sharing model has been studied since the early 1940s to account
for the stochastic dependence of components in a parallel system. It assumes that, as
components fail one by one, the total workload applied to the system is shared by the
remaining components and thus affects their performance. Such dependent systems
have been studied in many engineering applications which include but are not limited
to fiber composites, manufacturing, power plants, workload analysis of computing,
software and hardware reliability, etc. Many statistical models have been proposed
to analyze the impact of each redistribution of the workload; i.e., the changes on
the hazard rate of each remaining component. However, they do not consider how
long a surviving component has worked for prior to the redistribution. We name such
load-sharing models as memoryless. To remedy this potential limitation, we propose a
general framework for load-sharing models that account for the work history. Through
simulation studies, we show that an inappropriate use of the memoryless assumption
could lead to inaccurate inference on the impact of redistribution. Further, a real-data
example of plasma display devices is analyzed to illustrate our methods.
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1 Introduction

The load-sharingmodel is commonly used to analyze the reliability of a parallel system
which consists of multiple identical components. In this system, all the components
are connected parallel to share the total workload. Such reliability systems are widely
applied in real applications. For example, electric generators are organized in parallel in
a power plant to share the electrical load; cables are connected in parallel to undertake
the stress of a suspension bridge. In these systems, components eventually fail one by
one. As a failure occurs, the load taken by the failed component will be redistributed
to the remaining components and hence affects their lifetime distribution.

To account for the load-share process, various load-sharing rules have been pro-
posed. Daniels (1945) described how the break-up of an individual fiber could increase
the strain on others within a bundle. Because the threads of fibers are of equal length
and clamped at each end, it is natural to assume that all the threads have the same load-
extension till the occurrence of a breakpoint. The assumption of equal load-extension
has been adopted again in Coleman (1957a, b), Rosen (1964). This common assump-
tion, that all the functional components are sharing the same amount of load, is referred
to as the equal load-sharing rule. Other load-sharing rules have also been studied in
the literature.We refer readers to Birnbaum and Saunders (1958), Harlow and Phoenix
(1978), Phoenix (1978), Phoenix and Tierney (1983), Lee et al. (1995), Harlow (1997),
Durham et al. (1997). In this article, we proceed under the equal load-sharing rule.
Extending the method to other load-sharing rules is not difficult.

Under the equal load-sharing rule, Kim and Kvam (2004) provided a pioneering
work to make the parametric inference of the reliability of the system. The lifetime of
individual components is assumed to be exponentially distributed; i.e., the individual
hazard rate is constant. Singh et al. (2008) relaxed the assumption of constant rate and
considered that after a certain number of component failures, the hazard rates increase
linearly in time. Park (2010) considered a more general load-sharing model which
contains the models of Kim and Kvam (2004), Singh et al. (2008) as special cases.
The maximum likelihood estimators are studied under both exponential and Weibull
distributions. Further, Park (2013) developed an expectation-maximization algorithm
that can handle a larger class of distributions in a computationally efficient fashion.
Besides parametric methods, nonparametric reliability analysis has also been studied;
see, e.g., Kvam and Peña (2005).

All the aforementioned works assume that, after each component failure, the life-
time of surviving components follow a new distribution regardless of how long they
have already worked for. We characterize load-sharing models under this assumption
as memoryless. However, this memoryless assumption may not be reasonable in prac-
tice. For example, let us consider two identical and independent load-sharing systems.
Suppose the first failure in the first system occurs much later than the one in the sec-
ond system. Memoryless load-sharing models suggest that the remaining components
in both systems have the same lifetime distribution, even the remaining components
in the first system have worked for a longer time; i.e., accumulated more hazard or
suffered from more stress. By doing so, the ignored hazard or stress are then forced to
be taken into account by parameters that are used to model the impact of the workload
redistribution. Consequently, it would overestimate those parameters. In this article,
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our goal is to make the first attempt to help practitioners obtain correct inference on
the reliability by tracking the hazard accumulated on surviving components prior to
each failure.

Towards this end, we start with a general framework in Sect. 2. This framework is
built by characterizing the lifetime distribution of functioning components between
each two consecutive failures. We focus on two perspectives: the potential impact of
a workload redistribution and the hazard accumulated till the redistribution. Various
models, such as the Hawkes process (Hawkes 1971) or the Cox proportional hazard
model (Cox 1972), could be used as special cases under our general framework. In
order to analytically track the cumulated hazard, Sect. 3 focuses on two approaches.
The first one measures hazard using the total time that components have worked for.
After a failure occurred, as along as the surviving components have worked for the
same amount of time, the distributions of their remaining lifetime are identical. We
namemodels of this type by load-sharing models with recent memory. The second one
uses cumulative hazard functions (CDF) to sequentially track the full work history of
each component.We namemodels of the second type by load-sharing models with full
memory. In Sect. 4, a general likelihood function is provided for defining themaximum
likelihood estimator (MLE). The likelihood could be applied to any parametric hazard
rate functions. The estimator enjoys asymptotic normality as expected. We further
illustrate the generality by considering Weibull, gamma, log-normal, and Gompertz
distributions in Sect. 5. Detailed algorithms for data generation, a method for finding
initial values to compute, and a final search for the MLE are included in the web-
based supplementary materials. Numerical results reveal the consequence of ignoring
cumulated hazard prior to each component failure. A real data set is analyzed to
reveal the advances of our approaches in Sect. 6. Sect. 7 concludes the article with a
discussion. R codes are available in the web-based supplementary materials.

2 The general model

Consider a parallel system of size J , where the size is defined to be the number
of components in the system. We assume that the system works under a constant
load and the equal load-sharing rule applies throughout. That is, at any time, the
entire load is distributed equally to the functioning components. As time goes by,
components eventually fail one by one. We do not consider replacing or repairing
failed components. However, designing an effective maintenance plan could be an
interesting future topic (see Sect. 7). Let S j be the time when the j th failure occurs,
where j = 1, . . . , J . We assume that the J failures occur at distinctive moments and
the whole system stops after all the J components fail. In other words, we can observe
all the S j ’s and 0 = S0 < S1 < S2 < · · · < SJ < ∞. We say that the system is at the
j th stage when it is between S j−1 and S j , for j = 1, . . . , J .
In the first stage, all components are functioning. Denote the lifetime of each com-

ponent by U1k , k = 1, . . . , J . Since the J components are working in parallel to share
the same amount of load,we assume thatU11, . . . , U1J are independent and identically
distributed (iid) random variables with a hazard rate function λ1(u) for u ∈ (0,∞).
We call λ1(·) the initial hazard rate of a load-sharing system of size J . Of course, the
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first failure occurs at time S1 = T1 = min{U11, . . . , U1J }. It is worthwhile to point
out that the purpose of this section is to generally describe our model of load-sharing
systems. The notation we used in this section are kept as general as possible. For exam-
ple, the initial hazard rate λ1(·) may involve some unknown parameters, say θ ; i.e.,
more accurately, λ1(·) should be written as λ1(·|θ). Such notation will be discussed
in Sect. 4.

Once S1 occurs, the second stage begins. The entire workload is immediately redis-
tributed to the remaining J − 1 components. This redistribution might affect the
lifetime distribution of each surviving component. Denote {U2k, k = 1, . . . , J −1} to
be the remaining lifetime of the J −1 components. Under the equal load-sharing rule,
we do not use the subscript k to label each component. In other words, our notation
does not force the first failed component to be the J th one. We assume that, given
T1, {U21, . . . , U2,J−1} are iid with the hazard rate being λ2(u | T1) for u ∈ (0,∞).
The length of the second stage of the system is then T2 = min{U21, . . . , U2,J−1} and
S2 = S1 + T2.

When the j th stage starts; i.e., after the ( j − 1)th component failure at S j−1,
we denote the remaining lifetime of the J − j + 1 functioning components by
{U jk, k = 1, . . . , J − j + 1}. Similarly, we assume that, given (T1, . . . , Tj−1),
{U j1, . . . , U j,J− j+1} are iid random variables with the hazard rate function being
λ j (u | T1, . . . , Tj−1) for u ∈ (0,∞). Then the length of the j th stage of the system is

Tj = min{U j1, . . . , U j,J− j+1} and S j = S j−1 + Tj = ∑ j
l=1 Tl . We name the vector

(T1, . . . , Tj−1)
� as the work history of the J − j + 1 components. The reliability of

the system entirely depends on the J hazard rate functions; i.e.,

Stage 1 : T1 = min{U11, . . . , U1J }, where U11, . . . , U1J
iid∼ λ1(u), u > 0;

...

Stage j : Tj = min{U j1, . . . , U j,J− j+1}, (1)

where U j1, . . . , U j,J− j+1 | (T1, . . . , Tj−1)
i id∼ λ j (u | T1, . . . , Tj−1), u > 0;

...

Stage J : TJ = UJ1, where UJ1 | T1, . . . , TJ−1
i id∼ λJ (u | T1, . . . , TJ−1), u > 0,

whereU1, . . . , Uk
iid∼ λ(·)meansU1, . . . , Uk are iid random variables with the hazard

rate function λ. The notation λ j (· | T1, . . . , Tj−1) involves two levels of meaning.
First, we let λ j (·) change with j to account for the impact from the redistribution of
workload. Second, the term (T1, . . . , Tj−1) allows us to incorporate the work history
of the remaining components.

This general framework in (1) includes many meaningful models as special cases.
For example, one could view each redistribution of workload as an arrival of event
that would affect the rate of the rest reloading. This is similar to the “self-exciting”
feature of the seminal Hawkes process proposed by Hawkes (1971). This process
has been used for modeling the arrivals of earthquakes (Hawkes and Adamopoulos
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1973; Ogata 1998), gang violence (Mohler et al. 2011), trade orders (Fonseca and
Zaatour 2014), or bank defaults (Aït-Sahalia et al. 2015). The term “self-exciting”
means that each arrival in the process would increase the rate of future arrivals for a
certain amount of time. Learning from this idea, one could set λ j (u | T1, . . . , Tj−1) =
λ1(u + S j−1) + ∑ j−1

l=1 ν∗(u + S j−1 − Sl), for u > 0 and j ≥ 2, where ν∗(·) plays
the same role as the “self-exciting” function in Hawkes processes and u + S j−1 − Sl

accounts for the impact of the lth arrival (redistribution) to the current status. Another
interesting design of λ j ’s is to apply the popular Cox proportional hazard model (Cox
1972); i.e., λ j (u | T1, . . . , Tj−1) = λ1(u) exp(ν j0 + ν j1T1 + · · · + ν j, j−1Tj−1) for
u > 0 and j ≥ 2, where ν jk’s are some unknown constants that could be sequentially
estimated. These examples could yield fruitful research surrounding parallel systems.
In the next section, we focus a new design of λ j ’s due to its great ability in tracking
the hazard accumulated in each stage.

3 A specific design

Denote r j (u) to be the initial hazard rate of a load-sharing system of size J − j + 1
for j = 1, . . . , J . Our new design consists of the following hazard rate functions. For
u > 0, we let

λ1(u) = r1(u) and λ j (u | T1, . . . , Tj−1) = r j (u + κ j (T1, . . . , Tj−1)), (2)

where j = 2, . . . , J , and κ j is a j-dimensional non-negative function. The term κ j ’s
accounts for the work history that could impact the individual hazard rate after the
( j − 1)th failure.

Obviously, the simplest configuration of κ j ’s would be

κ j (T1, . . . , Tj−1) = 0, for j = 2, . . . , J ; (3)

i.e., the work history does not affect the lifetime distribution of remaining components
at all. This new model includes existing models as special cases as aforementioned in
Sect. 1. For example, Kim and Kvam (2004) set λ1(·) = θ and λ j (· | T1, . . . , Tj−1) =
γ jθ for j = 2, . . . , J ; Kvam and Peña (2005) set λ j (u | T1, . . . , Tj−1) = γ jλ1(u)

for j = 2, . . . , J where λ1(u) is a smooth unknown function. Singh et al. (2008)
considered the same setting as in Kim and Kvam (2004) but λ j (u | T1, . . . , Tj−1) =
γ jθu when j gets larger than a certain number s. More generally, Park (2010, 2013)
considered and λ j (u | T1, . . . , Tj−1) = λ j (u) for j > 1, where λ j (u) are unknown
up to several parameters. In all these studies, the work history affects nothing to
the hazard rate of the next stage. We name such models with (3) as memoryless
load-sharing models (MLSM). Using the term “memoryless” does not force all the
individual lifetime U jk’s to be exponentially distributed. It only means that κ j ’s are
zero.

The first row of Fig. 1 plots an example to illustrate the hazard rates of a MLSM.
In this example, the load-sharing system consists of three components. The three
component failures occurred at time S1, S2, and S3. The length of the first, second,
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κ2 T1 κ3 κ2 + T2 κ3 + T3

r1(u)

r2(u)

r3(u)

(c)

0 S1 S2 S3

r1(u)

r2(u)

r3(u)

(a)

0 T1 T3 T2

r1(u)

r2(u)

r3(u)

(b)

0 S1 S2 S3

(d)

0 S1 S2 S3

(f)

0 S1 S2 S3

Fig. 1 An illustration of the construction of the hazard rate for each stage under the MLSM (the first row),
the LSMRM (the second row), and the LSMFM (the last row) for a load-sharing system of size 3. The three
component failure times are S1 = T1, S2 = S1 + T2, and S3 = S2 + T3. Arrows are used to show how
each model considers the work history. Part (a) describes how the MLSM ignores the work history and the
resulting observed hazard rates are plotted in part (b). Part (c) describes how the LSMRM considers the
work history and part (d) summarizes the resulting hazard rates. Part (e) describes how the LSMFM tracks
the work history, in which we write κ2 = κ2(T1) and κ3 = κ3(T1, T2) for notational simplicity, and part
(f) displays the resulting hazard rates

and last stage are T1 = S1, T2 = S2 − S1, and T3 = S3 − S2, respectively. In the
first stage. All three components worked under the hazard rate r1(u) from the starting
time u = 0 to T1. At T1, the workload was reloaded to two components. With two
components undertaking all, the individual hazard rate was boosted from r1(·) to r2(·).
However, regardless of the fact that the two components have already worked for time
T1, the MLSM assumes that the second stage should be counted from 0 to T2 under
the curve r2(·). Similarly, for the last stage, the MLSM assumes that the hazard rate
corresponding to the remaining lifetime of the last component should be counted from
0 to T3 under r3(·), no matter how large S2 is. The arrows in Fig. 1a highlight how the
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work history is ignored, and Fig. 1b summarizes the observed hazard rates concluded
by the MLSM.

In order to incorporate the work history, we propose two approaches. The first one
sets

κ j (T1, . . . , Tj−1) =
j−1∑

l=1

Tl; (4)

i.e., λ j (u | T1, . . . , Tj−1) = r j (u + ∑ j−1
l=1 Tl) for j = 2, . . . , J . It is because that,

after the ( j − 1)th failure, all the surviving components have already worked for
time

∑ j−1
l=1 Tl . We name the model in (4) as load-sharing models with recent memory

(LSMRM). The word “recent” means that the function κ j is related only with the work

history (T1, . . . , Tj−1)
� by the summation

∑ j−1
l=1 Tl regardless of how much hazards

were accumulated in each stage.
The second row of Fig. 1 illustrates how hazard rates are constructed in a LSMRM.

When the first component failure happened at time S1 = T1, the individual hazard rate
was increased from r1(·) to r2(·). Because the remaining components have already
worked for time S1, their hazard rates in Stage 2 are counted from S1 to S2 under
curve r2(·), rather than from 0 to T2 in the MLSM. Similarly, the hazard rate of the
functioning component in Stage 3 started from r3(S2) and ended at r3(S3). The arrows
in Fig. 1c indicate that how the previous work times are considered in the LSMRM,
and Fig. 1d plots the corresponding observed hazard rates.

Now a natural question arises. Suppose we have two identical and independent
load-sharing systems A and B, both of which are of size three. We denote the lengths
of the first and second stages of system A to be TA1 and TA2, respectively, and denote
those of system B to be TB1 and TB2, respectively. Consider the case that TA1 is much
larger than TB1 but TA1 + TA2 and TB1 + TB2 are equal (or very close). Under the
LSMRMassumption, the last component in both systems should have the same hazard
rate function. However, prior to the second failure, a large proportion of time of the last
component in A was spent when the load was shared by three components, while in B
was spent with only two components. Thus, the hazard rate of the last component in A
should be less than the one in B. Such difference cannot be reflected by the LSMRM.

Our second choice of κ j ’s is designed to track the cumulated hazard sequentially.
The last rowof Fig. 1 explains the essential idea. The initial stage remains the same; i.e.,
every componentworked from0 to thefirst component failure timeT1 under hazard rate
r1(·). The differences appear at the beginning of Stage 2. Let R j (t) = ∫ t

0 r j (u)du, t >

0; i.e, the cumulative hazard function corresponding to the hazard rate r j (·). Rather than
counting from 0 to T2 in the MLSM, or from S1 to S2 in the LSMRM, we count from
κ2(T1) to κ2(T1)+T2, where κ2(T1) satisfies R2(κ2(T1)) = R1(T1); i.e., the area under
r1(u) from 0 to T1 is the same as the area under r2(·) from 0 to κ2(T1), or equivalently,

κ2(T1) = R−1
2 (R1(T1)).

In other words, working from 0 to T1 under r1(·) is the same as working from 0
to κ2(T1) under r2(·). At the moment S2, the cumulated hazard of the only suriving
component is then R1(T1) + R2(κ2(T1) + T2) − R2(κ2(T1)) = R2(κ2(T1) + T2).
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Consequently, one could think that the last component has worked from time 0 to time
κ3(T1, T2) under r3(·), where

κ3(T1, T2) = R−1
3 (R2(κ2(T1) + T2)).

Thus, the observed length of Stage 3 should be counted starting from κ3(T1, T2) and
ending at κ3(T1, T2)+ T3. The arrows in Fig. 1e illustrates how to track the cumulated
hazard step by step, and Fig. 1f plots the hazard rates based on the observed values of
S1, S2, and S3.

In general, one could sequentially construct our final choice of κ j ’s with

κ j (T1, . . . , Tj−1) = R−1
j (R j−1(κ j−1(T1, . . . , Tj−2) + Tj−1)). (5)

To ensure the existence of the inverse of R j , we assume that r j (·)’s are positive
differentiable functions, which is a mild assumption in reliability analysis. For load-
sharing models characterized by (5), we name them by load-sharing models with full
memory (LSMFM).

We recognize that the construction of (5) shares a similar spirit with the cumulative
exposure model proposed by Nelson (1980) for the step-stress accelerated life testing.
We refer readers to Zhao and Elsayed (2005) and references therein for more detailed
discussion. Herein, we would like to point out that the time to change the stress in the
step-stressmodel is fixed by designers before the experiment, while in our scenario, the
redistribution of the workload occurs randomly in terms of which working component
is and when it fails; i.e., S1, . . . , SJ are random. Such randomness further increases
the difficulty for estimation.

4 Estimation

In order to keep the maximum flexibility of our approach, we assume that each indi-
vidual hazard rate function r j (·) involves unknown parameters. Collect all unknown
parameters into a vectorβ and denote the length ofβ by p. For notational convenience,
we rewrite r j (·) = r j (· | β) for j = 1, . . . , J , and the true memory configuration
κ j (T1, . . . , Tj−1) = κ j (T1, . . . , Tj−1 | β) for j = 2, . . . , J . For example, models in
Kim and Kvam (2004) and Singh et al. (2008) can be summarized by

r1(·) = r1(· | θ), and r j (·) = γ j r1(· | θ), for j = 2, . . . , J, (6)

where parameter θ defines the initial individual hazard rate r1(·) and γ =
(γ2, . . . , γJ )� is a vector of the the load-share parameters that characterizes the impact
of each redistribution of workload. In this case, we have β = (θ�, γ �)�.

To estimate β, we first derive the joint probability density function of (T1, . . . , TJ )

using hazard rates introduced in (2). It is easy to see that

prβ(T1 > t) =
J∏

k=1

prβ(U1k > t) = exp

{

−J
∫ t

0
r1(u | β)du

}

,
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which yields the marginal probability density function of T1 being

fT1(t | β) = Jr1(t | β) exp

{

−J
∫ t

0
r1(u | β)du

}

.

For j ≥ 2, we have

prβ(Tj > t | T1 = t1, . . . , Tj−1 = t j−1)

=
J− j+1∏

k=1

prβ(U jk > t | Ti1 = t1, . . . , Ti, j−1 = t j−1)

= exp

[

−(J − j + 1)
∫ t

0
r j (u + κ j (t1, . . . , t j−1 | β) | β)du

]

.

Then, the conditional probability density function of Tj given (T1 = t1, . . . , Tj−1 =
t j−1) is

fTj |T1=t1,...,Tj−1=t j−1(t | β) = (J − j + 1)r j (t + κ j (t1, . . . , t j−1 | β) | β)

× exp

[

−(J − j + 1)
∫ t

0
r j (u + κ j (t1, . . . , t j−1 | β) | β)du

]

.

for j = 2, . . . , J . Finally, the joint probability density function of (T1, . . . , TJ ) is

f (t1, . . . , tJ | β) = J !
J∏

j=1

(

r j (t j + κ j (t1, . . . , t j−1 | β) | β)

× exp

[

−(J − j + 1)
∫ t j

0
r j (u + κ j (t1, . . . , t j−1 | β) | β)du

] )

(7)

where t j > 0 for j = 1, . . . , J and κ1 = 0.
Suppose that we observe n independent and identically-distributed load-sharing

systems of size J until all systems fail. We record all the component failures of each
system by {0 = Si0 < Si1 < Si2 < · · · < Si J < ∞, i = 1, . . . , n}, where Si j

is the j th component failure time of the i th system. Denote Ti j = Si j − Si, j−1 for
j = 1, . . . , J . Then using (7), we can write the log-likelihood function by

�n(β) = n log(J !) +
n∑

i=1

J∑

j=1

log r j (Ti j + κ j (Ti1, . . . , Ti, j−1 | β) | β)

−
n∑

i=1

J∑

j=1

(J − j + 1)
∫ Ti j

0
r j (u + κ j (Ti1, . . . , Ti, j−1 | β) | β)du. (8)

Consequently, we define our estimator β̂n to be the maximizer of �n(β) with respect
to β. The following theorem discusses the asymptotic normality of β̂n .
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Theorem 1 Denote the true value of β by β0. Under regularity conditions (A1)–(A3)
in the Appendix, we have

√
n(β̂n − β0)

d→ N (0, I(β0)
−1), as n → ∞,

where
d→ means convergence in distribution, 0 is a vector of zeros, and I(β) is the

Fisher information matrix defined in the regularity condition (A2).

The proof of Theorem1 follows standard arguments for the asymptotic properties of
maximum likelihood estimators (Lehmann 1983). For the purpose ofmaking statistical
inference, such as computing confidence intervals. It is important to obtain an estimator
of the asymptotic covariance matrix. This could be done using the inverse of the
Hessian matrix of the log-likelihood function; i.e.,

Î(β̂n) = −1

n

∂2�n(β)

∂β∂β�
∣
∣
∣
β=β̂n

.

Based on the consistency of β̂n , we have Î(β̂n) converge in probability to I(β0) as n
goes to infinity. Further, for any real-valued matrix D with rank τ > 0 and number of
columns being p, an asymptotic 100(1 − α)% confidence region of D�β could be

{D�β : n(β̂n − β)�D{D�Î(β̂n)−1D}−1D�(β̂n − β) ≤ χ2
τ (α)} (9)

where χ2
τ (α) is the upper αth quantile of a chi-square distribution with degrees of

freedom τ . Especially, an asymptotic 100(1 − α)% confidence region for the kth
component of β could be obtained by setting D being a binary vector whose kth
element is one and others are zero.

5 Numerical studies

In this section, we conduct a simulation study to explore the finite sample performance
of the proposed methods. We focus on the model setting in the form of (6); i.e., the
initial individual hazard rate r1(·) = r1(· | θ) and r j (·) = γ j r1(· | θ) for j > 1. The
parameters in the vector β = (θ�, γ �)�, where γ = (γ2, . . . , γJ )� are called the
load-share parameters. We consider the following choices for the initial hazard rate
r1(· | θ), where θ = (θ1, θ2)

�:

• r1(·) is the hazard rate of a Weibull distribution with shape θ1 = 1.5 and scale
θ2 = 0.3;

• r1(·) is the hazard rate of a gamma distributionwith shape θ1 = 2 and rate θ2 = 10;
• r1(·) is the hazard rate of a log-normal with the log mean θ1 = −1.8 and the log
standard deviation θ2 = 0.5;

• r1(·) is the hazard rate of a Gompertz distribution with shape θ1 = 3 and rate
θ2 = 1.
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Fig. 2 The four choices of r1(·) considered in Sect. 5

The shape of these choices are plotted in Fig. 2. For the load-share parameters in
γ , we consider:

• γ j = 1 for j = 2, . . . , J ;
• γ j = J/(J − j + 1) for j = 2, . . . , J .

The first choice of γ emulates the scenario in which the redistribution of workload
to fewer components does not increase the hazard rate. In addition, when all γ j ’s
are all one, the LSMRM and LSMFM are equivalent; i.e., (4) and (5) are the same.
For the second setting for γ , we consider the case where the monotone load-sharing
rule applies; i.e., 1 ≤ γ2 ≤ · · · ≤ γJ . From each combination of r1(·) and γ , we
consider J = 3 and generate a random sample {(Ti1, . . . , Ti3) : i = 1, . . . , n} from
the LSMFM. This allows us to investigate the consequence of an inappropriate use of
the memoryless assumption. Further, when all γ j ’s are one, the LSMFM reduces to
the LSMRM. We can further see the performance of the LSMRM.

We consider various sample sizes; i.e., n ∈ {50, 100, 200}. The data generation
mechanism is included in Web Appendix A. Using each generated sample, we esti-
mate β under the three model assumptions; i.e., the MLSM, the LSMRM, and the
LSMFM, where estimates are obtained by maximizing (8) with κ j ’s in (3), (4), and
(5), respectively. The numerical search for β̂ could be problematic if the initial values
of β were wrongly specified. We have provided a sequential method for obtaining
good initial values along with a completed set of R codes in Web Appendix B.

We repeat the process of generating samples and estimating β for 5000 times.
Tables 1, 2, 3 and 4 provide summary statistics of the 5000 estimates of β obtained
under each of the three models across all considered sample sizes for the Weibull and
gamma distributions, respectively. Results for the log-normal and Gompertz distribu-
tions are of a similar pattern and thus included in Web Appendix C.
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Recall that when γ j = 1, for j = 2, . . . , J , the LSMRM and LSMFM are equiv-
alent. From Tables 1 and 3, we see that as n increases, both methods exhibit a sharp
decreasing trend in bias and MSE. The empirical coverage probabilities for 95% con-
fidence intervals, constructed using (9), are a little off when n is small but increase
to their nominal level quickly when n gets larger. Moreover, we can see the average
lengths of 95% confidence intervals from the LSMRM are smaller than the ones from
the LSMFM. This is reasonable since the log-likelihood function under the LSMRM is
of a much simpler format; i.e., it does not have to calculate the inverse of a cumulative
hazard function as in (5). The estimates under theMLSM behave poorly. For example,
the empirical coverage probabilities decrease to 0 quickly as n increases. More impor-
tantly, because the MLSM does not account for the work history, it leads to large
estimates of γ which falsely suggest a monotone load-sharing rule holds. In other
words, the MLSM has to use large estimates of γ j ’s to account for the accumulated
hazard prior to each component failure.

When γ j = J/(J − j + 1), for j = 2, . . . , J , a monotone load-sharing rule holds
and the LSMRM and LSMFM become different. Since samples are generated from
the LSMFM, the LSMFM estimators perform well as expected (see Tables 2 and 4).
The LSMRM model produces nominal coverage probabilities for θ , but low ones for
γ . This pattern suggests that the LSMRM is able to well estimate the initial hazard
rate r1(·). However, due to its wrong specification of the work history, the LSMRM
cannot correctly estimate the load-share parameter γ j ’s. The MLSM again behaves
poorly for estimating β in every aspect. Similar patterns can be found for the log-
normal and the Gompertz distributions as provided in Web Appendix C. We have also
considered the cases where J > 3. Results are very similar so we omitted them for
brevity.

6 Real data analysis

In manufacturing, electronic displays such as plasma display devices (PDPs) can
be viewed as an example of load-sharing systems. Pixels are connected together to
produce luminosity and PDP failure occurs when the luminosity decreases below a
certain threshold. The stress changes triggered by the degradation of one area of the
PDP surface can certainly affect the luminosity of other areas. Kvam and Peña (2005)
provided a study where twenty PDPs were tested for luminosity degradation. On each
PDP, there are three luminosity sensors spaced evenly across the device to monitor
3 different areas of the surface. The moment of each occurrence of degradation of
luminosity was recorded. These failure moments can be modeled using load-sharing
models. In this section, we model the data using (6). We consider r1(· | θ) to be
the hazard rate function of a Weibull distribution with shape parameter θ1 and scale
parameter θ2. Let θ = (θ1, θ2)

�, and r j (·) = γ j r1(·) for j = 2, 3 where γ =
(γ2, γ3)

�. Our goal is to estimate β = (θ�, γ �)�.
Three models, the MLSM, LSMRM and LSMFM, are used to estimate β. A sum-

mary of the estimates is presented in Table 5. One can see that the estimates obtained
via the LSMRM and LSMFM methods are very close. The reason might be that the
estimates of γ2 and γ3 are close to 1 and thus (4) and (5) are nearly the same. One
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Table 1 Simulation results for Weibull (shape = θ1, scale = θ2) and γ2 = γ3 = 1

n Method Measure θ1 = 1.5 θ2 = 0.3 γ2 = 1 γ3 = 1

50 MLSM Mean(MSE) 1.253(0.068) 0.331(0.002) 1.634(0.522) 1.991(1.151)

SE(LCI) 0.081(0.318) 0.040(0.157) 0.328(1.284) 0.405(1.588)

95% Cov 0.171 0.963 0.558 0.231

LSMRM Mean(MSE) 1.539(0.020) 0.297(0.001) 0.998(0.054) 0.984(0.072)

SE(LCI) 0.131(0.515) 0.030(0.117) 0.225(0.881) 0.263(1.032)

95% Cov 0.982 0.923 0.927 0.917

LSMFM Mean(MSE) 1.540(0.020) 0.297(0.001) 1.002(0.082) 0.987(0.102)

SE(LCI) 0.133(0.522) 0.030(0.116) 0.273(1.070) 0.313(1.226)

95% Cov 0.946 0.921 0.922 0.915

100 MLSM Mean(MSE) 1.242(0.070) 0.332(0.002) 1.611(0.428) 1.977(1.035)

SE(LCI) 0.057(0.222) 0.029(0.112) 0.228(0.894) 0.285(1.115)

95% Cov 0.016 0.889 0.165 0.012

LSMRM Mean(MSE) 1.519(0.009) 0.298(0.000) 0.997(0.025) 0.993(0.035)

SE(LCI) 0.092(0.359) 0.021(0.083) 0.159(0.623) 0.188(0.736)

95% Cov 0.983 0.953 0.945 0.943

LSMFM Mean(MSE) 1.520(0.009) 0.298(0.000) 0.999(0.037) 0.995(0.049)

SE(LCI) 0.093(0.364) 0.021(0.083) 0.192(0.754) 0.223(0.875)

95% Cov 0.948 0.944 0.940 0.938

200 MLSM Mean(MSE) 1.237(0.071) 0.333(0.001) 1.603(0.391) 1.966(0.974)

SE(LCI) 0.040(0.157) 0.020(0.080) 0.160(0.629) 0.200(0.784)

95% Cov 0.000 0.675 0.008 0.000

LSMRM Mean(MSE) 1.511(0.004) 0.299(0.000) 0.999(0.013) 0.994(0.018)

SE(LCI) 0.064(0.253) 0.015(0.059) 0.113(0.441) 0.133(0.521)

95% Cov 0.980 0.955 0.954 0.947

LSMFM Mean(MSE) 1.511(0.004) 0.299(0.000) 1.000(0.019) 0.995(0.025)

SE(LCI) 0.065(0.255) 0.015(0.059) 0.136(0.533) 0.158(0.618)

95% Cov 0.953 0.941 0.939 0.936

Presented summary statistics include the sample mean (Mean), the empirical mean squared error (MSE),
the averaged standard error (SE), the averaged length of 95% confidence intervals (LCI), and estimated
coverage probability for 95% confidence intervals (95% Cov)

might notice that the standard error of the estimate under the LSMRM is smaller than
the ones under the LSMFM. This is expected because the LSMRM and LSMFM are
mathematically equivalent when γ j = 1 for all j , but the LSMRM has a simpler form
of the likelihood function which leads to more numerically stable estimates. However,
similarly to the results in the simulation section, the estimates obtained via the MLSM
method suggest the monotone load-sharing rule might hold.We believe this is because
the MLSM does not account for the work history.
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Table 2 Simulation results for Weibull (shape = θ1, scale = θ2), γ2 = 1.5 and γ3 = 3

n Method Measure θ1 = 1.5 θ2 = 0.3 γ2 = 1.5 γ3 = 3

50 MLSM Mean(MSE) 1.253(0.068) 0.331(0.002) 2.298(0.878) 5.009(5.105)

SE(LCI) 0.081(0.318) 0.040(0.157) 0.463(1.815) 1.012(3.966)

95% Cov 0.172 0.965 0.687 0.523

LSMRM Mean(MSE) 1.539(0.020) 0.297(0.001) 1.390(0.111) 2.420(0.681)

SE(LCI) 0.133(0.522) 0.030(0.117) 0.305(1.195) 0.589(2.307)

95% Cov 0.985 0.929 0.883 0.742

LSMFM Mean(MSE) 1.539(0.019) 0.297(0.001) 1.518(0.171) 3.028(0.678)

SE(LCI) 0.133(0.522) 0.030(0.116) 0.393(1.541) 0.804(3.150)

95% Cov 0.954 0.928 0.932 0.930

100 MLSM Mean(MSE) 1.243(0.070) 0.332(0.002) 2.255(0.680) 4.900(4.097)

SE(LCI) 0.057(0.223) 0.029(0.112) 0.321(1.257) 0.698(2.737)

95% Cov 0.015 0.881 0.317 0.137

LSMRM Mean(MSE) 1.521(0.010) 0.298(0.000) 1.386(0.059) 2.419(0.510)

SE(LCI) 0.093(0.364) 0.021(0.084) 0.215(0.843) 0.416(1.630)

95% Cov 0.980 0.942 0.878 0.652

LSMFM Mean(MSE) 1.520(0.009) 0.299(0.000) 1.504(0.077) 3.000(0.324)

SE(LCI) 0.093(0.364) 0.021(0.083) 0.275(1.076) 0.562(2.201)

95% Cov 0.949 0.937 0.940 0.938

200 MLSM Mean(MSE) 1.238(0.070) 0.333(0.001) 2.236(0.594) 4.860(3.703)

SE(LCI) 0.040(0.157) 0.020(0.079) 0.224(0.880) 0.489(1.917)

95% Cov 0.000 0.683 0.040 0.004

LSMRM Mean(MSE) 1.512(0.005) 0.299(0.000) 1.385(0.036) 2.421(0.421)

SE(LCI) 0.065(0.256) 0.015(0.059) 0.152(0.595) 0.294(1.153)

95% Cov 0.981 0.952 0.845 0.484

LSMFM Mean(MSE) 1.511(0.004) 0.299(0.000) 1.499(0.038) 2.995(0.160)

SE(LCI) 0.065(0.255) 0.015(0.059) 0.193(0.757) 0.396(1.552)

95% Cov 0.950 0.938 0.940 0.944

Presented summary statistics include the sample mean (Mean), the empirical mean squared error (MSE),
the averaged standard error (SE), the averaged length of 95% confidence intervals (LCI), and estimated
coverage probability for 95% confidence intervals (95% Cov)

To see which method performs the best in terms of modeling the reliability of the
load-sharing system, we compare the prediction of the lifetime of each PDP using the
obtained estimates. The lifetime of the i th PDP is Si3. Using an estimate of β, we
can compute an estimate of E[Si3], denoted by Ê[Si3]. Then we calculated the mean
prediction relative error (MRE) given by

MRE = 1

20

20∑

i=1

∣
∣
∣
∣
Si3 − Ê[Si3]

Si3

∣
∣
∣
∣ .
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Table 3 Simulation results for Gamma (shape = θ1, rate = θ2) and γ2 = γ3 = 1

n Method Measure θ1 = 2 θ2 = 10 γ2 = 1 γ3 = 1

50 MLSM Mean(MSE) 1.345(0.446) 5.729(19.44) 1.712(0.633) 1.917(0.994)

SE(LCI) 0.121(0.474) 1.068(4.188) 0.343(1.343) 0.387(1.516)

95% Cov 0.011 0.077 0.472 0.264

LSMRM Mean(MSE) 2.092(0.111) 10.790(7.10) 1.001(0.052) 0.996(0.060)

SE(LCI) 0.304(1.193) 2.384(9.346) 0.220(0.863) 0.238(0.932)

95% Cov 0.975 0.973 0.931 0.932

LSMFM Mean(MSE) 2.095(0.117) 10.796(7.45) 1.008(0.072) 1.002(0.073)

SE(LCI) 0.310(1.217) 2.425(9.507) 0.257(1.007) 0.262(1.028)

95% Cov 0.957 0.960 0.924 0.923

100 MLSM Mean(MSE) 1.330(0.457) 5.577(20.09) 1.693(0.536) 1.907(0.896)

SE(LCI) 0.084(0.330) 0.738(2.891) 0.239(0.938) 0.272(1.067)

95% Cov 0.000 0.004 0.084 0.016

LSMRM Mean(MSE) 2.046(0.047) 10.373(2.81) 1.001(0.024) 1.000(0.029)

SE(LCI) 0.209(0.821) 1.626(6.374) 0.156(0.611) 0.169(0.663)

95% Cov 0.976 0.972 0.954 0.945

LSMFM Mean(MSE) 2.047(0.049) 10.375(2.90) 1.005(0.033) 1.003(0.035)

SE(LCI) 0.214(0.837) 1.654(6.482) 0.181(0.710) 0.186(0.729)

95% Cov 0.953 0.956 0.943 0.935

200 MLSM Mean(MSE) 1.319(0.467) 5.496(20.53) 1.679(0.489) 1.890(0.827)

SE(LCI) 0.059(0.231) 0.515(2.020) 0.168(0.658) 0.191(0.748)

95% Cov 0.000 0.000 0.001 0.000

LSMRM Mean(MSE) 2.021(0.022) 10.178(1.38) 1.001(0.013) 0.998(0.015)

SE(LCI) 0.146(0.572) 1.130(4.429) 0.110(0.432) 0.119(0.468)

95% Cov 0.974 0.971 0.951 0.954

LSMFM Mean(MSE) 2.022(0.023) 10.180(1.43) 1.002(0.017) 0.999(0.018)

SE(LCI) 0.149(0.583) 1.149(4.504) 0.128(0.501) 0.131(0.514)

95% Cov 0.951 0.949 0.940 0.941

Presented summary statistics include the sample mean (Mean), the empirical mean squared error (MSE),
the averaged standard error (SE), the averaged length of 95% confidence intervals (LCI), and estimated
coverage probability for 95% confidence intervals (95% Cov)

The MRE results are also included in Table 5. Surprisingly, there are no significant
differences among the three methods. The reason might be that each method has four
parameterswhich give enoughflexibility to capture themean lifetime. This observation
leads us to considermore informative statistics of the reliability.Weproceed to consider
predicting the time between two consecutive component failures; i.e., (T1, T2, T3)�.
In real applications, with the knowledge of Tj ’s, one can design a suitablemaintenance
procedure to keep the entire system away from completely breaking down.
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Table 4 Simulation results for Gamma (shape = θ1, rate = θ2), γ2 = 1.5 and γ3 = 3

n Method Measure θ1 = 2 θ2 = 10 γ2 = 1.5 γ3 = 3

50 MLSM Mean(MSE) 1.329(0.464) 5.585(20.44) 2.471(1.202) 5.324(6.572)

SE(LCI) 0.110(0.432) 0.994(3.898) 0.499(1.956) 1.078(4.224)

95% Cov 0.003 0.041 0.565 0.405

LSMRM Mean(MSE) 2.129(0.120) 10.995(7.42) 1.406(0.104) 2.532(0.548)

SE(LCI) 0.304(1.191) 2.383(9.342) 0.303(1.186) 0.576(2.260)

95% Cov 0.982 0.978 0.894 0.787

LSMFM Mean(MSE) 2.103(0.112) 10.820(6.99) 1.523(0.160) 3.015(0.613)

SE(LCI) 0.302(1.183) 2.373(9.302) 0.384(1.504) 0.767(3.005)

95% Cov 0.955 0.955 0.931 0.928

100 MLSM Mean(MSE) 1.316(0.475) 5.470(20.98) 2.416(0.953) 5.241(5.532)

SE(LCI) 0.077(0.302) 0.691(2.709) 0.344(1.350) 0.748(2.934)

95% Cov 0.000 0.001 0.151 0.047

LSMRM Mean(MSE) 2.077(0.052) 10.570(3.23) 1.399(0.056) 2.543(0.377)

SE(LCI) 0.209(0.818) 1.625(6.368) 0.213(0.835) 0.410(1.606)

95% Cov 0.982 0.979 0.878 0.731

LSMFM Mean(MSE) 2.051(0.048) 10.395(2.99) 1.506(0.074) 3.013(0.298)

SE(LCI) 0.207(0.811) 1.615(6.332) 0.268(1.049) 0.541(2.120)

95% Cov 0.951 0.949 0.939 0.939

200 MLSM Mean(MSE) 1.307(0.484) 5.404(21.34) 2.401(0.868) 5.183(5.013)

SE(LCI) 0.054(0.211) 0.484(1.897) 0.242(0.948) 0.523(2.049)

95% Cov 0.000 0.000 0.005 0.000

LSMRM Mean(MSE) 2.052(0.025) 10.381(1.50) 1.401(0.033) 2.540(0.294)

SE(LCI) 0.145(0.570) 1.130(4.430) 0.151(0.591) 0.289(1.135)

95% Cov 0.987 0.983 0.865 0.599

LSMFM Mean(MSE) 2.025(0.022) 10.211(1.36) 1.506(0.037) 2.995(0.147)

SE(LCI) 0.144(0.565) 1.124(4.406) 0.189(0.740) 0.380(1.490)

95% Cov 0.950 0.951 0.943 0.942

Presented summary statistics include the sample mean (Mean), the empirical mean squared error (MSE),
the averaged standard error (SE), the averaged length of 95% confidence intervals (LCI), and estimated
coverage probability for 95% confidence intervals (95% Cov)

Table 5 The plasma display device study

Method θ1 θ2 γ2 γ3 MRE

MLSM 1.418(0.143) 10.38(1.742) 2.799(0.896) 3.420(1.083) 0.332

LSMRM 1.840(0.256) 9.189(1.213) 1.300(0.450) 1.188(0.497) 0.333

LSMFM 1.835(0.257) 9.277(1.215) 1.507(0.672) 1.229(0.680) 0.332

Presented results include the value of the MLE with an estimated standard error in the parenthesis. The last
column shows the MRE results
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Fig. 3 The plasma display device study. Displayed figures are the boxplots of the PRE1’s (left), PRE2’s
(middle), and PRE3’s (right) using the MLSM, denoted by (M), the LSMRM, denoted by (R), and the
LSMFM, denoted by (F)

Motivated by this, we first randomly split the data into two parts; one of size 15
as the training set and the rest 5 objects as the testing set. Using the training set, we
fit the model to obtain an estimate of β. Then for each observation (Ti1, Ti2, Ti3)

� in
the testing dataset, we use the estimates to predict E(Ti1), E(Ti2 | Ti1) and E(Ti3 |
Ti2, Ti1).We denote the corresponding predictions by Ê(Ti1), Ê(Ti2 | Ti1) and Ê(Ti3 |
Ti2, Ti1), respectively. The accuracy is then evaluated through the following three
prediction relative errors:

PRE1 = 1

5

5∑

i=1

∣
∣
∣
∣
Ti1 − Ê[Ti1]

Ti1

∣
∣
∣
∣ , PRE2 = 1

5

5∑

i=1

∣
∣
∣
∣
Ti2 − Ê[Ti2 | Ti1]

Ti2

∣
∣
∣
∣ ,

and

PRE3 = 1

5

5∑

i=1

∣
∣
∣
∣
Ti3 − Ê[Ti3 | Ti1, Ti2]

Ti3

∣
∣
∣
∣ .

Weperformed the process of randomly splitting the data, estimating based on the train-
ing, and then predicting the testing dataset for 1000 times under all the three models.
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For j = 1, 2, 3, denote PRE j (M), PRE j (R), and PRE j (F) as the PRE j obtained using
the MLSM, LSMRM, and LSMFM, respectively. In Fig. 3, we present the boxplot of
the 1000 values of PRE j (M), PRE j (R), and PRE j (F), for j = 1, 2, 3. One can see that
in terms of predicting Ti1, three methods basically performed the same. The difference
between the LSMRM and LSMFM is minimum. The result is reasonable since our
point estimates of γ indicate γ2 = γ3 = 1, in which case, the models LSMRM and
LSMFM become the same. In terms of predicting the second component failure given
the first failure time; i.e., E(Ti2 | Ti1), both the LSMRM and LSMFM perform better
than the MLSM. For E(Ti3 | Ti2, Ti1), both the LSMRM and LSMFM produce more
robust prediction. These results indicate that, with the consideration of previous work-
ing time, both LSMRM and LSMFM are able to produce more informative prediction
than the traditional memoryless models.

7 Discussion

In this article, we believe that after each component failure, the changes in the hazard
rate of functioning components come from the redistribution of the total load and also
the work history. The fact that traditional load-sharing models do not take account of
the work history motivated us to consider a general framework of load-sharing models
with memory. We have discussed potential researches within this general framework
by using the “self-exciting” idea of Hawkes processes and the Cox proportional hazard
models in Sect. 2. Thenwe proposed two classes of load-sharingmodels withmemory:
the LSMRM and the LSMFM. The maximum likelihood estimator is developed. We
carried out extensive Monte Carlo simulations and analyzed a real data example to
illustrate the new methods. We would like to point out that, instead of using the
Hessian matrix, one could also study the generalized pivotal quantity (Weerahandi
1993) to improve the accuracy of confidence interval estimation. This could be an
interesting future topic. Moreover, we did not consider the model selection between
the two models with memory or any kind of goodness-of-fit testing, all of which could
be interesting topics along with this research avenue. Our mainly study herein is to
compare the proposed models with the traditional memoryless models. One important
message from our study is that, if one applied an memoryless model and the resulting
estimates implied a monotone load-sharing rule, it might be due to the neglect of the
work history.

Throughout the article, we assume that the load is equally distributed to function-
ing components and the entire system works till the last component fails. For future
investigations, the load-sharing models with memory can also be studied under a local
load-sharing rule; i.e., components closer to the failed one undertake more load, or
when the system fails if k out of J components failed. Furthermore, one could also
consider that the load-sharing system keeps expanding along with the time; for exam-
ple, more generators are added in a power plant or more computers are connected in a
computing system. In these applications, the number of components actually increases
with time. Finally, our real data analysis reveals an interesting result; i.e., when the
system is not memoryless, the memory could help build informative prediction for all
the failure moments. Motived by these observations, an attractive future topic could be
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to build up a cost-effective maintenance plan for large complex load-sharing systems
by considering work history.

Acknowledgements This work was partially supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (No. NRF-2017R1A2B4004169). We would like to thank an
Associate Editor and two anonymous referees for their constructive suggestions that have greatly improved
the presentation of this article.

Appendix

We present the regularity conditions for the asymptotic properties of β̂n in Theorem 1.

(A1) The model f (T1, . . . , TJ | β) has a common support and is identifiable; i.e.,
f (T1, . . . , TJ | β1) = f (T1, . . . , TJ | β2) if and only if β1 = β2. Furthermore,
the first and second derivatives of log f satisfy the equations

Eβ

[
∂ log f (T1, . . . , TJ | β)

∂β

]

= 0

and

Eβ

[

−∂2 log f (T1, . . . , TJ | β)

∂β∂β�

]

= Eβ

[
∂ log f (T1, . . . , TJ | β)

∂β

∂ log f (T1, . . . , TJ | β)

∂β�

]

.

(A2) The Fisher information matrix

I(β) = Eβ

[
∂ log f (T1, . . . , TJ | β)

∂β

∂ log f (T1, . . . , TJ | β)

∂β�

]

is finite and positive definite at β0.
(A3) Denote the parameter space for β by �. There exists an open subset ω ⊂ �

such that β0 ∈ ω and ∂3 f (T1, . . . , TJ | β)/(∂βl1∂βl2∂βl3) exists for β ∈ ω and
almost all (T1, . . . , TJ ). In addition, there exist functions Ml1,l2,l3 such that

∣
∣
∣
∣
∂3 f (T1, . . . , TJ | β)

∂βl1∂βl2∂βl3

∣
∣
∣
∣ ≤ Ml1,l2,l3(T1, . . . , TJ )

where Eβ0
[Ml1,l2,l3(T1, . . . , TJ )] < ∞ for all l1, l2, l3.

There regularity conditions guarantee the asymptotic normality of the maximum like-
lihood estimator (Lehmann 1983). The proof of Theorem 1 is standard and hence
omitted.
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