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a b s t r a c t

In this paper we are concerned with detecting the true structure of a varying-coefficient
partially linear model. The first issue is to identify whether a coefficient is parametric.
The second issue is to select significant covariates in both nonparametric and parametric
portions. In order to simultaneously address both issues, we propose to combine local
linear smoothing and the adaptive LASSO and penalize both the coefficient functions and
their derivatives using an adaptive L1 penalty. We give conditions under which this new
adaptive LASSO consistently identifies the significant variables andparametric components
alongwith estimation sparsity. Simulated and real data analysis demonstrate the proposed
methodology.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Semiparametric regression models have recently gained much popularity due to their flexibility of nonparametric
modeling and explanatory power of parametric modeling. Let Y be a response associated with covariates (U,W, Z). Further,
denote E(Y |U = u,W = w, Z = z) = µ(u,w, z). The varying-coefficient partially linear model (VCPLM) assumes that

µ(u,w, z) = w⊤α(u) + z⊤θ, (1)

where α(·) is a vector consisting of unknown coefficient functions and θ is a vector of unspecified regression coefficients.
We do not specify the lengths of these vectors at this point except that there are a total of p components, some of which
can be zero. In the sequel when we rewrite (1) in a suitable form, we shall define the lengths of each coefficient vector. The
term w⊤α(u) is referred to as the nonparametric component and the term z⊤θ is called the parametric component. The
structure of model (1) covers many existing parametric, semiparametric or nonparametric models, such as linear models,
partially linear models [13], semi-varying coefficient models [23,6] varying coefficient models [14,2] and nonparametric
regression models [4]. Different model structures warrant different estimation procedures. Thus, it is important to find out
which model structure is the most suitable for the given data. Our proposed methodology provides a general framework of
model structure detection for the VCPLM.

Variable selection plays a fundamental role in statistical model detection. It is well-known that missing significant
coefficients would result in huge estimation bias; and including spurious coefficients would degrade the estimation
efficiency. In parametric variable selection, traditional methods such as AIC, BIC, the best subset selection, etc., suffer
from huge computational burden [7]. In order to simultaneously select the significant variables and estimate the unknown
regression coefficients, Tibshirani [20] investigated the LASSO method which shrinks estimates with an L1 penalty. Based
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on a non-concave penalized likelihood, Fan and Li [7] proposed a family of shrinkage methods using the smoothly clipped
absolute deviation (SCAD) penalty which achieves the oracle properties. Zou [25] remedied the possible inconsistencies
in selection by LASSO using adaptive weights in the L1 penalty. Alternative shrinkage methods have been discussed by
Breiman [1], Fu [11], Yuan and Lin [22] and Zou and Li [26] among others.

Extending these shrinkage ideas to the VCPLM is challenging due to the complexity of the nonparametric construction.
Li and Liang [18] presented a variable selection method in generalized varying-coefficient partially linear models where
they use the SCAD method to select parametric coefficients and use a generalized likelihood ratio test for identifying
nonparametric coefficient functions. Another possible approach is the spline based selectionmethod [24,15]. Recently,Wang
and Xia [21] have studied a nonparametric variable selectionmethod for a varying coefficientmodel based on local-constant
kernel smoothing and the group LASSO (referred to as KLASSO), which enjoys the asymptotic estimation sparsity and the
same efficiency as the oracle estimator. However, the computational burden of solving the group LASSO is very high [22]
and without local linear smoothing the estimation accuracy may be impacted [5].

Besides variable selection, parametric component detection is important to discover the underlying structure of the
VCPLM. Since the optimal parametric estimation rate is root n and the optimal nonparametric estimation rate is n2/5,
treating a parametric component as a nonparametric function would be inefficient. Hypothesis testing has been developed
for parametric component detection in varying coefficient models for testing if an αj(·) is an unknown constant by Fan and
Zhang [8] whose test was based on maximum deviation. Fan et al. [10] constructed generalized likelihood ratio tests for
the same hypothesis testing problem. In an attempt to simultaneously select variables, detect parametric components, and
estimate regression coefficients, we investigate a new shrinkagemethod combining local linear smoothing and the adaptive
LASSO.

In our approach we assume that θ in model (1) is also a vector consisting of unknown functions of u. Then we define a
p-vector β(u) by suitably rearranging the components of the vector (α⊤(u), θ⊤)⊤ of all the coefficients in (1). Our objective
is to determine which components of β(u) are nonzero functions or nonzero constants. For any given index u, we apply the
adaptive LASSO to estimate components of β(u) from a locally weighted least squares. In contrast to [21]’s local-constant
approach, we use a local linear approximation to each component of β(·) [5,9]. A typical assumption in the inference for
varying coefficient models is that the coefficient functions are smooth (second order derivative is bounded). Continuing to
make this assumption, we propose to detect a parametric component by detecting if a varying coefficient function has a zero
derivative. Hence, we penalize not only the coefficients but also the derivatives with random uniform (in u) weights. Under
this setting, we show the correct model sparsity and consistency in identifying all the components. Furthermore, the oracle
properties of the nonzero coefficient function estimators are established. Moreover, our simulations show that by solving
the adaptive LASSO problem using the popular Least Angle Regression (LARS) procedure [3], the proposed method provides
significant computational efficiency over the KLASSO method. The application of the proposed method to Boston Housing
Data reveals that a prior analysis using varying coefficientsmight havemissed an important feature of a coefficient function.
That is, a coefficient function that shows up as nonzero in [21]’s analysis might in fact be a step function.

The paper is organized as follows. In Section 2, we provide the new estimation procedure and its theoretical properties
and its implementation. In Section 3, simulated numerical experiments and a real data analysis are reported followed by a
discussion in Section 4. All technical proofs are relegated to the Appendix.

2. Methodology

Suppose {(Yi,Ui,Wi, Zi), i = 1, . . . , n} constitutes a random sample generated from model (1). We have

Yi = W⊤

i α(Ui) + Z⊤

i θ + εi, i = 1, . . . , n

where the components of α(·) are all smooth functions with bounded second order derivatives, a commonly used technical
assumption; εi’s are the error terms satisfying E(εi|Ui,Wi, Zi) = 0 and Var(εi|Ui,Wi, Zi) = σ 2(Ui). Here we assume that
there are exactly r component functions of the α(u) and exactly q − r , q ≥ r , components of the θ vector are nonzero.
Without loss of generality, let β(u) be the p-vector that is a permutation of the components of (α⊤(u), θ⊤)⊤ where its first
r components are the nonzero functions of the α(·) vector, the next q − r components are the nonzero components of
the θ vector followed by p − q zeros. We denote the corresponding permutation of (W⊤

i , Z⊤

i )⊤ by Xi. Then, without prior
information on the partial linear structure, model (1) can be written as a varying coefficient model,

Yi = X⊤

i β(Ui) + εi. (2)

Denote the true value of βj(·) as β∗

j (·). Then, our assumptions on α(·) and θ give us that for j > q, β∗

j (·) = 0 and for k > r ,
β∗

′

k (·) = 0. Let B1 = {1, . . . , q}, B2 = {1, . . . , r}. Then, detecting themodel structure of (1) is equivalent to identifying these
two sets.

2.1. Uniform adaptive LASSO

Sincemodel (2) is simply a varying coefficientmodel, we adopt [9]’s estimation procedure. For any index value u ∈ [0, 1],
we employ the local linear smoothing technique, i.e. β(Ui) ≈ β(u) + (Ui − u)β ′(u) [5], to estimate β(u) and β ′(u) by
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minimizing the locally weighted least squares

Ln

β(u), β ′(u)


=

n
i=1


Yi − X⊤

i β(u) − X⊤

i β ′(u) (Ui − u)
2

Kh(Ui − u) (3)

with respect to β(u) and β ′(u), where Kh(·) = K(·/h)/h, K(·) is a kernel function and h is a bandwidth. We denote
the minimizer of (3) by (β̃(u), β̃ ′(u)) and let Uu = diag (U1 − u, . . . ,Un − u), X = (X1, . . . , Xn)

⊤, Du = (X,UuX/h),
Wu = diag (Kh(U1 − u), . . . , Kh(Un − u)), and Y = (Y1, . . . , Yn)

⊤. Then it can be shown that (β̃⊤(u), hβ̃
′
⊤(u))⊤ =

(D⊤
u WuDu)

−1D⊤
u WuY .

Now, we define the adaptive LASSO estimator (β̂
(n)
λ,γ (u), β̂

′(n)
λ,γ (u)) for each u in [0, 1] as the minimizer of the convex

function

Qn

β(u), β ′(u)


= Ln


β(u), β ′(u)


+ λn

p
j=1

|βj(u)|
wj

+ γn

p
j=1

|β ′

j (u)|

vj
(4)

where λn ≥ 0, γn ≥ 0 are the tuning parameters, wj’s and vj’s are all user determined positive random quantities free of u
(depending on n) satisfying the properties: (1) for j ∈ B1 and k ∈ B2, as n → ∞, wj and vk converge in probability to two
positive numbers; (2) for j ∉ B1, there exists a sequence α1n such that α1n/

√
log n → ∞, α1nwj = Op(1) as n → ∞; (3) for

k ∉ B2, there exists a sequence α2n such that α2n/
√
log n → ∞, α2nvk = Op(1), as n → ∞. Note that the conditions on the

weightswj’s and vj’s accommodate different degrees of smoothness of βj(·)’s and their derivatives. In Section 2.3we provide
a suitable set of wj’s and vj’s based on (β̃(Ut), β̃

′(Ut)), t = 1, . . . , n. Under this adaptive penalty setting, since the adaptive
weights of the above L1 penalty are set to be free of u, we can show that this procedure can consistently identify the uniform
sparsity in β∗(·) and β∗

′

(·) (see Theorem 2 below). We refer to this setting as uniform adaptive LASSO (ULASSO). Moreover,
for the purpose of selecting nonzero coefficients only, we can simply set γn = 0 and in identifying only the parametric
components we can set λn = 0 and minimize the corresponding Q . For notational convenience we write β̂

(n)
λ,γ (u) = β̂

(n)
λ (u)

and β̂
′(n)
λ,γ (u) = β̂

′(n)
γ (u) to emphasize thatλn is the shrinkage parameter for the coefficients and γn is the shrinkage parameter

for the derivatives of coefficients. Similar notations are used in Section 2.3 for B̂1λ and B̂2γ .

2.2. Technical assumptions and theoretical properties

In this section, we first present a few technical assumptions followed by the uniform consistency, the uniform sparsity
and the pointwise asymptotic normality of the ULASSO estimator.

C1. The density function f of U is positively bounded away from 0 on [0, 1] and has bounded second order derivative.
C2. The second order derivatives of {β∗

j (·), j = 1, . . . , p} are bounded.
C3. The kernel function K(·) is a symmetric density function with a compact support.
C4. The p × p matrix Γ (u) = E(XiXT

i |Ui = u) is non-singular for each u ∈ [0, 1]; and its elements have bounded second
order derivatives. The function E(∥Xi∥

4
|Ui = u) is bounded.

C5. The function σ 2(u) = E(ε2
i |Ui = u) has bounded second order derivative.

C6. There is an s > 2 such that E|Xij|
2s < ∞ and E|Yi|

2s < ∞.

Remark 1. Following [16], (C1) assures that the distance between two consecutive index variables is at most of order
Op(log n/n). For an arbitrary u ∈ [0, 1], let ũ = argmin{Ut :1≤t≤n}|Ut − u|. Combining with (C2), it is seen that both
|β∗(ũ) − β∗(u)| and |β∗

′

(ũ) − β∗
′

(u)| are of the same order as |ũ − u|, which is Op(log n/n). Since the estimation rates
of the coefficient function and its derivative are n−2/5 and n−1/5, respectively, both of which converge to zero substantially
slower than log n/n, it suffices to approximate the entire coefficient curve β∗(·) and the entire derivative cure β∗

′

(·) by
{β∗(Ut) : 1 ≤ t ≤ n} and {β∗

′

(Ut) : 1 ≤ t ≤ n}. This allows us to focus only on the index observations instead of the whole
index interval [0, 1].

Now we state two asymptotic results regarding the ULASSO estimator. We begin with a uniform consistency result for
the estimated coefficient functions and their derivatives.

Theorem 1. Let h ∝ n−1/5. Suppose conditions (C1)–(C6) hold.When hλn/
√
nh log n → 0, and γn/

√
nh log n → 0 as n → ∞,

the ULASSO estimator satisfies

sup
u

β̂(n)
λ (u) − β∗(u)

 = Op(cn) and sup
u

hβ̂ ′(n)
γ (u) − hβ∗

′

(u)
 = Op(cn),

where cn =
√
log(1/h)/(nh) and ∥ · ∥ is the Euclidean norm.



120 D. Wang, K.B. Kulasekera / Journal of Multivariate Analysis 112 (2012) 117–129

This theorem shows that the ULASSO estimator is uniformly consistent and the next theorem shows the ULASSO
estimator has oracle properties [7] for suitably chosen λn and γn.

Theorem 2 (Oracle Properties). Let h ∝ n−1/5. Suppose conditions (C1)–(C6) hold.When hλn/
√
nh → 0, hλnα1n/

√
nh log n →

∞, γn/
√
nh → 0, and γnα2n/

√
nh log n → ∞ as n → ∞, we have

1. P

supu

β̂(n)
λ,Bc1

(u)
 = 0, supu

β̂ ′(n)
γ ,Bc2

(u)
 = 0


→ 1;

2.
√
nh

β̂

(n)
λ,B1

(u) − β∗

B1
(u) −

1
2h

2µ2β
∗
′′

B1
(u)


→
d N


0, ν0σ

2(u) [f (u)Γ (u)]−1
11


, for any u ∈ (0, 1);

3.
√
nh3


β̂

′(n)
γ ,B2

(u) − β∗
′

B2
(u)


→
d N


0, ν2σ

2(u)

µ2

2f (u)Γ (u)
−1
22


, for any u ∈ (0, 1),

where νi =

uiK 2(u)du, µi =


uiK(u)du. Here dB represents the subvector of the elements of a vector d according to set B and

[A]11 represents the first q × q submatrix and [A]22 represents the first r × r submatrix of a p × p matrix A.

2.3. Implementation and tuning parameter selection

In applications it is impossible to perform the ULASSO method for all u ∈ [0, 1]. Following Remark 1, it is sufficient for
us to focus only on the index sample {Ut , t = 1, . . . , n}. Hence we minimize the convex function

1
n

n
t=1

Ln(β(Ut), β
′(Ut)) + λn

p
j=1

1
wj


n

t=1
|βj(Ut)|

n

+ γn

p
j=1

1
vj


n

t=1
|β ′

j (Ut)|

n

 (5)

with respect to β(Ut) and β ′(Ut) for t = 1, . . . , n and let (β̂
(n)
λ (Ut), β̂

′(n)
γ (Ut)), t = 1, . . . , n be the minimizer. Then β̂

(n)
λ (ũ)

is the proposed shrinkage estimator of β∗(u). Now, denote B̂1λ = {j :
n

t=1 |β̂
(n)
λ,j (Ut)| ≠ 0}where β̂

(n)
λ,j (Ut) is the jth element

of β̂(n)
λ (Ut) and B̂2γ = {j :

n
t=1 |β̂

′(n)
γ ,j (Ut)| ≠ 0} where β̂

′(n)
γ ,j (Ut) is the jth element of β̂

′(n)
γ (Ut). The two sets B̂1λ and B̂2γ are

taken as the estimators of B1 and B2 respectively. Since the derivative of an insignificant coefficient is zero, we suggest using
B̂2γ ∩ B̂1λ for estimating B2 in finite sample applications to improve accuracy. The following theorem shows that these two
sets can consistently identify B1 and B2 respectively and that β̂

(n)
λ can consistently estimate β∗.

Theorem 3. Let h ∝ n−1/5. Suppose conditions (C1)–(C6) hold. When hλn/
√
nh → 0, and γn/

√
nh → 0, as n → ∞, we have

1
n

n
t=1

β̂(n)
λ (Ut) − β∗(Ut)

2 = Op(n−4/5);

1
n

n
t=1

β̂ ′(n)
γ (Ut) − β∗

′

(Ut)

2 = Op(n−2/5).

If in addition hλnα1n/
√
nh log n → ∞, and γnα2n/

√
nh log n → ∞ are satisfied as n → ∞, then

P(B̂1λ = B1, B̂2γ = B2) → 1.

In the formulation in (5), for each j, our method groups βj(Ut)’s, t = 1, . . . , n, by the L1 norm, whereas KLASSO groups
them by L2 norm (

n
t=1 β2

j (Ut)/n)1/2 [21]. A major advantage in our approach is the computational burden for the group
LASSOwould increase dramatically as the number of predictors (which is np in this case) increases [22]. In addition, the LQA
algorithm used in a L2 problem of this type essentially produces a ridge estimator that is forced to become sparse depending
on an arbitrary criteria. The L1 approach avoids both these issues.

Remark 2. The ULASSO estimator achieves the optimal estimation rate for all the nonparametric coefficient functions.
Nevertheless, when B1 ≠ B2, there exist q − r parametric components. For j ∈ B1 ∩ Bc

2, β
∗

j (·) = β∗

j , a nonzero constant.
Its optimal estimation rate should be

√
n, which cannot be achieved by this estimation procedure. However, the proposed

method above can identify the structure of the set B1∩Bc
2. Then the inefficiencies can be remedied by choosing an appropriate

estimation procedure for a resulting VCPLM [13,23,6].

For suitable wj’s and vj’s and h ∝ n−1/5, we have to choose tuning parameters, λn and γn, for the coefficient function
part and the derivative part, respectively. In what follows, we set α1n = n2/5, α2n = n1/5, wj = (

n
i=1 β̃2

j (Ui)/n)1/2 and
vj = (

n
i=1 β̃

′2
j (Ui)/n)1/2. It is easy to check that the requirements for wj’s and vj’s are satisfied. For these settings, we find
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the suitable rates for these two tuning parameters as λn · n−3/5
→ 0, γn · n−2/5

→ 0, and min(λn, γn) · n−1/5/
√
log n → ∞.

We observe that these conditions in fact allow λn = γn.
In practice it is preferred to select the tuning parameters λn and γn based on data. To this end, we propose a two

dimensional BIC selector [21]. We define

BIC(λ, γ ) = log {RSS(λ, γ )} + DF(λ, γ ) ×
log(nh)

nh
, (6)

where RSS(λ, γ ) is defined as

RSS(λ, γ ) = n−2
n

t=1

n
i=1


Yi − X⊤

i β̂
(n)
λ (Ut) − X⊤

i β̂
′(n)
γ (Ut)(Ui − Ut)

2
Kh(Ui − Ut),

and 0 ≤ DF(λ, γ ) ≤ 2p is the sum of the numbers of elements in B̂1λ and B̂2γ both of which depend on each pair of (λ, γ ).
Define (λ̂, γ̂ ) to be the minimizer of (6) over a suitable two dimensional interval. Now, let B̂1λ̂, B̂2γ̂ be the estimators of B1

and B2, respectively, identified via the resulting ULASSO estimator denoted by (β̂
(n)
λ̂

(Ut), β̂
′(n)
γ̂

(Ut)), t = 1, . . . , n. The next
theorem assures that the tuning parameters selected by this BIC continue to identify the true model and the true set of
parametric components consistently.

Theorem 4 (Selection Consistency). Let h ∝ n−1/5. Suppose conditions (C1)–(C6) hold. As n → ∞, we have

P(B̂1λ̂ = B1, B̂2γ̂ = B2) → 1.

One may find the minimizer (λ̂, γ̂ ) by a suitable minimization procedure such as an optimal gradient search. However,
in our simulations we chose λn = γn in light of the comments following Remark 2.

3. Numerical experiments

In this section we provide simulation results followed by the results of a real data analysis.

3.1. Simulation results

To evaluate the finite sample performance of the proposed ULASSO method, we conducted a simulation study similar
to [21]. We carried out 1000 simulations in each case. We examined 18 different simulation settings created using three
sample sizes n = 200, 300 and 400, two distributions for the index variable U coupled with three models:

Model 1: β(u) = (4u, 2 sin(2πu), 1, 0, 0, 0, 0)⊤;
Model 2: β(u) = (exp(2u), 2 cos(2πu), 2 sin2(2πu), 0, 0, 0, 0)⊤;
Model 3: β(u) = (8u(1 − u), 0.8, 1, 1.2, 0, 0, 0)⊤.

The distributions ofUk were chosen to be eitherUnif [0, 1], or Beta(4, 1), a highly asymmetric distribution. In eachmodel,
Xk = (xk1, . . . , xk7)⊤ where xk1 = 1 and (xk2, . . . , xk7)⊤ were generated from amultivariate normal distribution with mean
vector 0 and cov(xki, xkj) = 2−|i−j| for 2 ≤ i, j ≤ 7. εk is simulated from N(0, σ 2

e ), where σe = 1.5. As one can see, Model 1 is
a varying coefficient partially linear model with B1 = {1, 2, 3} and B2 = {1, 2}; Model 2 is a varying coefficient model with
B1 = B2 = {1, 2, 3}; Model 3 is a partially linear model with B1 = {1, 2, 3, 4} and B2 = {1}. All simulations were conducted
using the package R.

In each simulation, we first use the leave-one-out cross-validation to select the optimal bandwidth by fitting an
unpenalized estimator, (β̃(Uk), β̃

′(Uk)), with the Epanechnikov kernel K(t) = 0.75(1 − t2)+. The same bandwidth is used
for the BIC selector (6).

To compare the performance of ULASSO and KLASSO, we perform both methods in each simulation. First, we classify the
result of variable selection (i.e. nonzero coefficient selection): 1. underfitted (at least one true nonzero variable is missing);
2. correctly fitted; 3. overfitted (all the significant variables are identified while at least one spurious variable is included).
The percentages of experiments in each category by ULASSO and KLASSO are presented in Table 1 under VS. Similarly, we
can partition the results for detecting the true coefficient functions and parametric components into these categories. Here
a correct selection means that the procedure identified both types correctly, an underfitting indicating missing at least
one true function or a coefficient etc. These percentages are given under the heading VS & PCD in Table 1. To evaluate the
estimation accuracy, we consider the following relative estimation error (REE),

REE =

n
k=1

p
j=1

β̂(n)
λ,j (Uk) − β∗

j (Uk)


n

k=1

p
j=1

β̄(n)
j (Uk) − β∗

j (Uk)

 ,



122 D. Wang, K.B. Kulasekera / Journal of Multivariate Analysis 112 (2012) 117–129

Table 1
VS: variable selection; PCD: parametric components detection; O: overfitted; C: correctly fitted; U: underfitted.

f (u) n VS by ULASSO VS by KLASSO VS & PCD MREE
O C U O C U O C U

Model 1

Unif[0, 1] 200 0.02 0.97 0.01 0.00 0.99 0.01 0.03 0.94 0.03 1.023
300 0.01 0.98 0.01 0.00 1.00 0.00 0.03 0.96 0.01 0.989
400 0.00 1.00 0.00 0.00 1.00 0.00 0.01 0.99 0.00 0.936

Beta[4, 1] 200 0.07 0.91 0.02 0.01 0.95 0.04 0.08 0.89 0.03 0.729
300 0.04 0.96 0.01 0.01 0.98 0.01 0.04 0.94 0.02 0.699
400 0.00 0.99 0.00 0.00 0.99 0.00 0.01 0.98 0.01 0.624

Model 2

Unif[0, 1] 200 0.05 0.94 0.01 0.01 0.98 0.01 0.05 0.91 0.04 0.999
300 0.04 0.96 0.00 0.01 0.99 0.00 0.04 0.94 0.02 0.978
400 0.02 0.98 0.00 0.01 0.99 0.00 0.02 0.98 0.00 0.923

Beta[4, 1] 200 0.09 0.89 0.02 0.03 0.93 0.04 0.09 0.88 0.03 0.796
300 0.07 0.92 0.01 0.01 0.96 0.03 0.07 0.91 0.02 0.691
400 0.02 0.98 0.00 0.01 0.98 0.01 0.03 0.96 0.01 0.605

Model 3

Unif[0, 1] 200 0.03 0.97 0.00 0.02 0.98 0.00 0.03 0.96 0.01 1.011
300 0.01 0.99 0.00 0.01 0.99 0.00 0.01 0.99 0.00 1.002
400 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.986

Beta[4, 1] 200 0.08 0.92 0.00 0.06 0.93 0.01 0.08 0.88 0.04 0.924
300 0.05 0.95 0.00 0.04 0.96 0.01 0.06 0.93 0.01 0.857
400 0.02 0.98 0.00 0.02 0.98 0.00 0.03 0.97 0.00 0.806

where β̄(n)(u) is either the unpenalized ULASSO estimator or the KLASSO estimator. The median REE values (denoted as
MREE) with respect to the KLASSO estimator are also summarized in Table 1.

As one can see from Table 1, for every model, the percentage of correct selection (when tuning parameters are chosen by
the BIC criterion) of the significant variables and parametric components (VS & PCD) is very high and it increases steadily
as the sample size increases. If we focus only on the variable selection part, the percentage of correctly fitted models by
ULASSO is slightly smaller than that by KLASSO for sample sizes 200 and 300 in few cases. This perhaps results from the
slower estimation rate for the derivative possibly affecting the accuracy of the BIC selector. However, the correct model
always appeared in ULASSO shrinkage path sets B̂1λ and B̂2λ for some λ, that λ value was not always picked by the BIC. The
MREE with respect to unpenalized estimators (not given here) is much smaller than 1 for all cases. The MREE (with respect
to the KLASSO estimator) is slightly smaller than 1 in almost all cases for uniformly distributed index variables. However,
the MREE for Beta(4, 1) is smaller than 1 and decreasing with n in all examined models. Hence it is reasonable to suggest
that the ULASSO with local linear smoothing remedies estimation issues caused by the distribution of the index variable
while maintaining very satisfactory selection frequencies for all component types.

For n = 200, setting λn = γn and using the corresponding BIC for both KLASSO and ULASSO, the computing time for
KLASSO is about 9 times that of ULASSO per simulation for the above models. Furthermore, in our simulations we noticed
that the optimal λn selected via our version of BIC for ULASSO is much smaller than that selected viaWang and Xia’s [21] BIC
for KLASSO. The selection consistency via KLASSO requires their tuning parameter λn to be between the orders n11/10 and
n7/10 and our λn and γn need to be between orders n4/10 and n2/10√log n, perhaps forcing a wider search for KLASSO’s BIC
than ULASSO’s BIC. This can degrade KLASSO’s computational efficiency. As our detailed simulations exhibit, taking λn = γn
in ULASSO has little impact in the selection probabilities and the estimation efficiency. We also noticed that the LQA in
KLASSO converges at different speeds depending on the tuning parameter value tested in their BIC.

To show that ULASSO can havemuch superior performance in some situations comparedwith KLASSO,we considered the
model β(u) = (β1(u), 2, 0, 0, 0, 0, 0)⊤ where β1(u) is such that β1(u) = 0 for u < 0.9, β1(u) is a third degree polynomial
in [0.9, 1] satisfying β1(0.9) = β ′

1(0.9) = β ′′

1 (0.9) = 0 and β1(1) = 20. We took n = 200 and generated the covariate
X and the errors same as above, while U is from Beta(4, 1). We fixed the range of λn to be [0, 3n11/10

] for both BICs. In 200
simulations, the proportion of correctly fitted models via KLASSO was 0.34 while ULASSO’s identification rate was 94% with
a MREE = 0.680.

3.2. Boston housing data

Wenow illustrate the ULASSOmethod by an application to the BostonHousing Data, which has been analyzed by Fan and
Huang [6] and Wang and Xia [21] among others. We take MEDV (median value of owner-occupied homes in 1000 United
States dollar) as Y , the response, and LSTAT (the percentage of lower status of the population) as U , the index variable. The
covariates includes INT (the intercept), CRIM (per capita crime rate by town), NOX (nitric oxides concentration parts per 10
million), RM (average number of rooms per dwelling), AGE (proportion of owner-occupied units built prior to 1940), TAX
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Fig. 1. The ULASSO estimates of the relevant coefficients.

(full-value property-tax rate per 10,000) and PTRATIO (pupil teacher ratio by town). They are denoted by X1, X2, . . . , X7,
respectively.

Then a varying coefficient model

Y =

7
j=1

X⊤

j βj(U) + ε

is fitted by our method. Before applying the proposed shrinkage procedure, we transform themarginal distribution of Y and
Xj, j = 2, . . . , 7, to be approximately N(0, 1) via the method of Box–Cox transformation and the marginal distribution of
U is transformed to be U[0, 1]. The method of leave-one-out cross-validation without penalization suggested an optimal
bandwidth ĥ = 0.2809. By using this bandwidth, the BIC selector picks the optimal tuning parameters as λ̂ = 5.074, γ̂ =

5.054. The resulting ULASSO estimators indicate that X1 (INT), X2 (CRIM), X4 (RM) and X7 (PTRATIO) are significant. This is
the same as the conclusion in [21]. However, the result of parametric component detection further tells that the coefficient
functions β4(·) and β7(·) should be constant.

Thenonparametric curve estimates (the solid lines) are presented in Fig. 1. To confirm thatNOX, AGE andTAXare spurious
variables and that RM and PTRATIO are in fact parametric components, following [8] we construct the 90% simultaneous
confidence bands (the dashed lines) of the unpenalized estimators of β3(·), β5(·) and β6(·) (Fig. 2) and the 90% simultaneous
confidence bands (the dashed lines) of the nonzero ULASSO estimators [21] in Fig. 1. It can be seen that all the simultaneous
confidence bands in Fig. 2 almost cover the complete zero line. In addition, in Fig. 1, for PTRATIO, we can draw a constant
straight line within its simultaneous confidence bands, suggesting that it is reasonable to consider that β7(·) is a constant.
However, for RM, its simultaneous confidence bands indicate that β4(·) is not constant. We believe the following argument
explains this discrepancy. Although our theory holds under the assumption that all the true coefficient functions should have
bounded second order derivatives everywhere, we estimate these coefficient functions only at the sampled index values.
In this real application, the true β4(·) is perhaps not continuous. Yet, the results of parametric component detection tells
us that the derivatives of this true coefficient function is zero at all the observed index values suggesting a step function
behavior for the coefficient function β4(·).

As observed in Fig. 1, the estimated β4(u) curve by ULASSO is zero when u is greater than some number a. In this
application we chose a to be the smallest Ui such that β̂

(n)
λ,4(Ui) = 0 which equals to 0.6025429. Consequently, we chose

to fit the given data to the following model via the profile least-squares estimation method [6]

Y = β1(U) + X2β
⊤

2 (U) + X⊤

4 β4(U) + X⊤

7 β7 + ε, (7)



124 D. Wang, K.B. Kulasekera / Journal of Multivariate Analysis 112 (2012) 117–129

Fig. 2. The unpenalized estimates of the irrelevant coefficients.

Fig. 3. Box plot of 100 RPE numbers.

where β4(u) = β41, if u < a; β4(u) = 0, if u ≥ a. The resulting estimate of β41 is 0.341. To compare with the model
suggested by Wang and Xia [21]

Y = β1(U) + X2β
⊤

2 (U) + X⊤

4 β4(U) + X⊤

7 β7(U) + ε. (8)

We randomly split the data into two equal sized groups and use one group to estimate and the other group to predict. The
relative prediction error

RPE =


|Yi − Ŷi|
|Yi − Ȳi|

is calculated, where the summation is over the second group and Ȳi is the predicted value of the ith observation undermodel
(8). We repeated this calculation 100 times. In Fig. 3 a box plot of the resulting 100 RPE numbers is presented. Here 86% of
the RPE values are below 1. Thus model (7) appears to fit the Boston Housing data better than model (8) suggesting that for
high percentages of lesser status, the room variable may have a diminishing impact on median home values.

4. Conclusion

We have proposed the ULASSO shrinkage method for simultaneously identifying the constant coefficients, selecting
variables and estimating the unknown coefficients in the VCPLM. The proposed method has very desirable selection
properties and estimation efficiency while being computationally thrifty. It compares well with existing methods which
only target the variable selection. Our data analysis suggest that the proposed method is able to reveal hidden features of
the coefficient functions such as step behavior. In addition, the ULASSO method has all the desirable asymptotic properties
of a shrinkage method.
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Appendix

Lemma 1. Let (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed randomvectors, where the Yi’s are scalar random
variables. Further assume that E|y|s < ∞ and supx


|y|sf (x, y)dy < ∞, where f denotes the joint density of (X, Y ). Let K be a

bounded positive functionwith a bounded support, satisfying a Lipschitz condition. Given that n2ε−1h → ∞ for some ε < 1−s−1,
we have

sup
x

1n
n

i=1

[Kh(Xi − x)Yi − E{Kh(Xi − x)Yi}]

 = Op (cn) .

Proof. For the proof we refer the reader to [19]. �

In what follows, we let ν(u) = (β⊤(u), hβ ′⊤(u))⊤ and rewrite Ln(β(u), β ′(u)) as
Ln(ν(u)) = (Y − Duν(u))⊤Wu(Y − Duν(u));

and Qn(β(u), β ′(u)) as

Qn(ν(u)) = Ln(ν(u)) + λn

p
j=1

|νj(u)|
wj

+ γn

p
j=1

|νp+j(u)|
hvj

.

Similarly, denote ν̂
(n)
λ (u) = (β̂

(n)⊤
λ (u), hβ̂ ′(n)⊤

γ (u))⊤ which is the minimizer of Qn(ν(u)), ν∗(u) = (β∗⊤(u), hβ∗
′
⊤(u))⊤,

ν̃(u) = (β̃⊤(u), hβ̃
′
⊤(u))⊤ and define λmin(A) and λmax(A) as the minimum and maximum eigenvalue of a matrix A,

respectively. Further, we denote λmin
= min(1, µ2) · infu λmin(Γ (u)f (u)), λmax

= max(1, µ2) · supu λmax(Γ (u)f (u)).
Proof of Theorem 1. We only need to show that

sup
u

∥ν̂
(n)
λ (u) − ν∗(u)∥ = Op(cn).

Following [7], consider the ball BC = {ν(u) : ν(u) = ν∗(u) + cnr, ∥r∥ ≤ C}, C > 0. Note that for each u, Qn(ν(u)) is strictly
convex. It is sufficient to show that, for any given δ > 0, there exists a large constant C (does not depend on u), such that

P


inf
∥r∥=C

Qn(ν
∗(u) + cnr) > Qn(ν

∗(u)) for every u


≥ 1 − δ.

This implies that, with probability 1 − δ, for each u, there exists a minimum in the ball BC . Hence, for each u, the
minimizer ν̂

(n)
λ (u) must satisfy that ∥ν̂

(n)
λ (u) − ν∗(u)∥ = Op(cn). Furthermore, since C does not depend on u, we must

have supu ∥ν̂
(n)
λ (u) − ν∗(u)∥ = Op(cn).

Now, for any u define

R1 =
h

log 1/h


Qn


ν∗(u) +


log 1/h

nh
r


− Qn(ν

∗(u))


.

When j ∉ B1 and k ∉ B2, ν∗

j (u) = 0 and ν∗

p+k(u) = 0. Some simplifications show that

R1 ≥
r⊤D⊤

u WuDur
n

− 2
r⊤

√
log 1/h

·


h
n
D⊤

u Wu(Y − Duν
∗(u))

+


j∈B1

hλn

(log 1/h)wj

ν∗

j (u) +


log 1/h

nh
· rj

− |ν∗

j (u)|



+


j∈B2

γn

(log 1/h)vj

ν∗

p+j(u) +


log 1/h

nh
· rp+j

− |ν∗

p+j(u)|


.
= R2.

Let λmin
n = infu λmin(

D⊤
u WuDu

n ). Then

R2 ≥ ∥r∥2λmin
n − 2∥r∥ ·

1
√
log 1/h

sup
u




h
n
X⊤Wu(Y − Duν

∗(u))


−

hλn
√
nh log 1/h

·

√
2p

min
j∈B1

wj
∥r∥ −

γn
√
nh log 1/h

·

√
2p

min
j∈B2

vj
∥r∥

.
= R3.
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When ∥r∥ = C ,

R3 = λmin
n × C2

− 2C ×
1

√
log 1/h

sup
u




h
n
D⊤

u Wu(Y − Duν
∗(u))


− C ×

 hλn
√
nh log 1/h

·

√
p

min
j∈B

wj
+

γn
√
nh log 1/h

·

√
p

min
j∈B2

vj
∥r∥


.
= Hn(C).

Clearly, Hn(C) does not depend on u and,

Hn(C) > 0 ⇒ ∀u, inf
∥r∥=C

Qn(ν
∗(u) + cnr) > Qn(ν

∗(u)).

Then it suffices to show that ∀δ > 0, there exists a large constant C , such that

P(Hn(C) > 0) ≥ 1 − δ. (9)

Since λmin > 0 by (C4) and,

D⊤
u WuDu

n
→

p


Γ (u)f (u) 0
0 µ2Γ (u)f (u)


uniformly in u, we have

λmin
n →

p λmin. (10)

Since 
h
n
D⊤

u Wu(Y − Duν
∗(u)) =


h
n
D⊤

u Wuε +


h
n
D⊤

u Wu

X⊤

1 (β∗(U1) − β∗(u) − β∗
′

(u)(U1 − u))
...

X⊤

n (β∗(Un) − β∗(u) − β∗
′

(u)(Un − u))

 ,

it is sufficient to show each term in the right side is uniformly Op(
√
log 1/h) by applying Lemma 1 to each term. Then, we

have

sup
u




h
n
D⊤

u Wu(Y − Duν
∗(u))

 = Op(

log 1/h). (11)

Furthermore, by the definition ofwj and vj, minj∈B1 wj andminj∈B2 vj converge in probability to two positive constants. Since
hλn/

√
nh log n → 0 and γn/

√
nh log n → 0, it provides us that

hλn
√
nh log 1/h

·

√
p

min
j∈B1

wj
= op(1), and

γn
√
nh log 1/h

·

√
p

min
j∈B2

vj
= op(1). (12)

Combining (10)–(12), if we choose a sufficiently large C , the second and third term of Hn(C) are dominated by its first term.
This proves (9) and completing the proof. �

Proof of Theorem 2. We first prove the pointwise asymptotic normality part. Let r̂ (n)
u =

√
nh(ν̂(n)

λ (u) − ν∗(u)). Then

r̂ (n)
u = argmin

ru
h

Qn


ν∗(u) +

ru
√
nh


− Qn(ν

∗(u))


.
= argmin

ru
Vn(ru)

where

Vn(ru) =
r⊤
u D⊤

u WuDuru
n

− 2

√
h

√
n
r⊤

u D⊤

u Wu(Y − Duν
∗(u)) +

p
j=1

hλn
√
nhwj

√
nh
ν∗

j (u) +
ruj

√
nh

− |ν∗

j (u)|


+

p
j=1

γn
√
nhvj

√
nh
ν∗

p+j(u) +
ru,p+j
√
nh

− |ν∗

p+j(u)|


.
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Denote I1n, I3n and I4n as the first, third and fourth terms of the right side of the last equation respectively, and I2n =

h1/2n−1/2D⊤
u Wu(Y − Duν

∗(u)). For I1n, we know

I1n →
p r⊤

u


Γ (u)f (u) 0

0 µ2Γ (u)f (u)


ru.

Since the true coefficients have bounded second order derivatives, we can write

I2n =

√
h

√
n
D⊤

u Wu


X⊤

1
β∗

′′

(u)
2

(U1 − u)2

...

XT
n
β∗

′′

(u)
2

(Un − u)2

 (1 + op(1)) +

√
h

√
n
D⊤

u Wuε

.
= I21n + I22n.

Applying Lemma 1 we have

I21n →
p

d
2
µ2Γ (u)β∗

′′

(u)f (u)
0


,

where d is the limit of
√
nh5. For I22n, the expectation of I22n is zero, and its covariance matrix is

Cov(I22n) →
p


ν0Γ (u)σ 2(u)f (u) 0
0 ν2Γ (u)σ 2(u)f (u)


.
= Σ(u).

Thus, for each u, I22n →
d W ∼ N(0, Σ(u)). Now,

I3n =

p
j=1

hλn
√
nhwj

√
nh
β∗

j (u) +
ruj

√
nh

− |β∗

j (u)|


.

If j ∈ B1, we know that wj = Op(1) and hλn/
√
nh → 0. At the same time,

√
nh(|β∗

j (u) + ruj/
√
nh| − |β∗

j (u)|) →

ruj sign(β∗

j (u)). Hence

hλn
√
nhwj

√
nh
β∗

j (u) +
ruj

√
nh

− |β∗

j (u)|


→
d 0.

If j ∉ B1 which means β∗

j (u) = 0, then
√
nh(|β∗

j (u) + ruj/
√
nh| − |β∗

j (u)|) = |ruj|. Since α1nwj = Op(1) and
hλnα1n/

√
nh log n → ∞, we have

hλn
√
nh · α1nwj

·
α1n

√
log n

·

log n ·

√
nh
β∗

j (u) +
ruj

√
nh

− |β∗

j (u)|


→
d
∞.

A similar result holds for I4n. Let B = {1, . . . , q, p + 1, . . . , p + r}. Hence, for every ru, Vn(ru) →
d V (ru), where

V (ru) =


r⊤

uBf (u)


[Γ (u)]11 0
0 [µ2Γ (u)]22


ruB − 2r⊤

uB

d
2
µ2f (u)[Γ (u)β∗

′′

(u)]B1
0


−2r⊤

uB[W ]B if ruj = 0∀j ∉ B
0 otherwise.

Since V (·) is convex, following the epi-convergence results of [12,17], we have

r̂ (n)
u →

d r̂u = argmin
ru

V (ru).

Finally, the distribution of r̂u proves the asymptotic normality part.
To prove the uniform sparsity, it suffices to show that

P

sup
u

ν̂(n)
λ,Bc (u)

 = 0


→ 1.
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For any j ∉ B, we know that the event {supu |ν̂
(n)
λ,j (u)| = 0} is equivalent to the event {∀u, ν̂(n)

λ,j (u) = 0}. Denoted this by A1n.
By the KKT condition, A1n can be implied by the following event, denoted by A2n,

sup
u

ejD⊤

u Wu


Y − Duν̂

(n)
λ (u)

 <


λn

wj
, j ∈ {q + 1, . . . , p}

γn

hvj−p
, j ∈ {p + r + 1, . . . , 2p},

where ej is a 1 × 2p vector with jth component being 1 while others being 0. Then it suffices to show that P(A2n) →

1. We multiply h1/2n−1/2 at both sides of the above inequality. For j ∈ {q + 1, . . . , p}, since α1nwj = Op(1) and
hλnα1n/

√
nh log n → ∞, we can see that h1/2n−1/2λn/(wj

√
log n) →

p
∞. Similarly, for j ∈ {p + r + 1, . . . , 2p}, we can

show (nh)−1/2γn/(vj−p
√
log n) →

p
∞. Then, we only need to show that, for j ∉ B,

sup
u




h
n
ejD⊤

u Wu


Y − Duν̂

(n)
λ (u)

 = Op


log n


.

This follows by noting

sup
u




h
n
ejD⊤

u Wu


Y − Duν̂

(n)
λ (u)

 ≤ sup
u

ej


h
n
DT
uWu(Y − Duν

∗(u))


+ sup

u

ejD⊤
u WuDu

n

√
nh

ν̂

(n)
λ (u) − ν∗(u)


and using (11), along with Theorem 1. �

Proof of Theorem 3. The proof of the first part is similar in spirit to that of [21] and hence omitted. Then the consistent
identification of B1 and B2 can be implied from part 1 of Theorem 2. �

Proof of Theorem 4. Since B2 ⊂ B1, it is equivalent to prove that

P


B̂1λ̂ = B1,


j :

n
t=1

|β̂
′(n)
γ̂ ,j | ≠ 0


= B2


→ 1.

Without a confusion in the notation, we rewrite B̂2γ = {j :
n

t=1 |β̂
′(n)
γ ,j | ≠ 0}. Let R = {(λ, γ ) : λ ≥ 0, γ ≥ 0}. By

Theorem 3, we know that as n → ∞, the probability of the existence of (λ, γ ), such that B̂1λ = B1 and B̂2γ = B2, in
R would go to 1. Then, we can partition R into three sets R+ = {(λ, γ ) : BT ( Bλ,γ }; R0 = {(λ, γ ) : BT = Bλ,γ };
R− = {(λ, γ ) : BT ) Bλ,γ }, corresponding to overfitted (all the correct objectives plus at least one incorrect objective is
included); correctly fitted; underfitted (at least one correct objective is missing) respectively. Let λn = γn = n1/5 log n, by
the comments following Remark 2 we know P(B̂1λn = B1, B̂2γn = B2) → 1. Then the theorem can be proved by comparing
infR−

BIC(λ, γ ), infR+
BIC(λ, γ ) with BIC(λn, γn). We only present the proof of underfitted case here. The proof of overfitted

case is similar to that of [21].
For an arbitrary (λ, γ ) ∈ R−, RSS(λ, γ ) can be written as

RSS(λ, γ ) = RSS(0, 0) + R(λ, γ ),

where R(λ, γ ) = n−1n
t=1{ν̃(Ut)− ν̂

(n)
λ (Ut)}

⊤Σ̂(Ut){ν̃(Ut)− ν̂
(n)
λ (Ut)}with Σ̂(u) = D⊤

u WuDu/n. Note that the underfitting
may be for B1 or B2. If it is in fitting B1, without loss of generality we assume β̂

(n)
λ,1(Ut) = 0, t = 1, . . . , n. We know that

λ̂min
= min{λmin(Σ̂(Ut)), t = 1, . . . , n} →

p λmin > 0. By Theorem 3, we have

R(λ, γ ) ≥ λ̂min 1
n

n
t=1

β̃1(Ut)

2
→

p λminE{β∗2
1 (Ut)} > 0.

If the underfitting is in B2, without loss of generality we assume β̂
′(n)
γ ,1 (Ut) = 0, t = 1, . . . , n. Then

R(λ, γ ) ≥ λ̂min


1
n

n
t=1

hβ̃ ′(Ut) − hβ̂
′(n)
γ (Ut)

2

≥ λ̂min 1
n

n
t=1

hβ̃ ′

1(Ut)

2 = Op(h2).
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For RSS(λn, γn), we also have RSS(λn, γn) = RSS(0, 0) + R(λn, γn). Since λ̂max
= max{λmax(Σ̂(Ut)), t = 1, . . . , n}

→
p λmax > 0, then

R(λn, γn) ≤ λ̂max


1
n

n
t=1

ν̃(Ut) − ν∗(Ut)
2 +

1
n

n
t=1

ν̂(n)
λ (Ut) − ν∗(Ut)

2
= Op(n−4/5). (13)

The last convergence part in (13) is due to the results of Theorem 3. Hence, combining the fact RSS(0, 0) → E[σ 2(U)] > 0
and the definition of BIC(λ, γ ), we have that

inf
R−

BIC(λ, γ ) − BIC(λn, γn) ≥ log{RSS(0, 0) + Op(n−2/5)} − log{RSS(0, 0) + Op(n−4/5)} − 2p × Op


log(nh)

nh


≥

Op(n−2/5) − Op(n−4/5)

Op(1) + Op(n−2/5)
− 2p × Op


log n
n4/5


> 0 (14)

holds with probability converging to 1 as n → ∞. �
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