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In this paper, we are concerned with the estimation of a proportion based on group testing data where
the prevalence of a disease is observed for groups of individuals. Based on the covariates measured on
all individuals in every group, we propose a local likelihood estimator of the prevalence probability as
a function of the covariate. We show that the proposed estimator has an asymptotic normal distribution.
Finite sample performance of the method is exhibited via some simulated examples and a real data analysis.
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1. Introduction

Group (pooled) testing arises frequently in scientific studies. Pooling specimens for the purpose
of estimating the prevalence of disease has proven to be an efficient method of reducing time and
cost associated with sampling. For example, rather than testing blood specimens collected from
individuals separately, group testing specifies that the specimens are first pooled and the resulting
pooled specimen is then tested for the existence of the characteristic. This type of testing has also
been used in pollution detection (Nagi and Raggi 1972; Wahed et al. 2006) and contamination
and toxicity studies (Lennon 2007).

In group testing studies, experimenters often collect data on auxiliary variables that are easy and
cost effective to measure. In most of these studies, the probability curve p(x) = P[Y = 1|X = x]
is of interest, where Y is the binary response and X is a covariate. Delaigle and Hall (2012)
proposed a nonparametric estimator of p(x) when the grouping mechanism is homogeneous, i.e.
groups are constructed using similar values of the covariate. In practice, constructing pools in this
manner may not be feasible. In this paper, we consider the case where individuals are grouped
randomly with observed binary responses of the form Y∗

j , j = 1, . . . , J , where Y∗
j = max1≤i≤nj Yij,

where Yij is the status of the ith individual in the jth pool. Yij’s are not observed although all the
accompanying covariates Xij, i = 1, . . . , nj, j = 1, . . . , J , are measured. Parametric analysis of
binary data of this type has been addressed by Bilder and Tebbs (2009) and Chen, Tebbs, and
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2 D. Wang et al.

Bilder (2009) among others. A thorough literature review followed by a nonparamtric estimation
method for p(x) based on a method of moment argument is presented by Delaigle and Meister
(2011). They obtained an expression for the pointwise asymptotic mean square error of their
estimator and provided a detailed bandwidth selection method. However, these authors did not
provide the asymptotic distribution of their estimator of p(x).

In this paper, we address the estimation of p(x) using a likelihood approach. We examine a
localisation procedure that provides an asymptotically normal estimator of p(x) which maintains
high finite sample accuracy. Our numerical results show that, for the examined examples, the
proposed procedure has the same type of finite sample properties compared with Delaigle and
Meister (2011) when group sizes are equal and the regression function p is smooth. However, when
the group sizes are not equal, our method appears to have better finite sample properties compared
with theirs. The same trend seems to be true when p(x) is more fluctuant. It is noteworthy that the
function p(x) may not be smooth in all situations. For example, when examining the probability
of an adverse reaction based on a drug dosage, the reaction probability can sharply increase or
even jump at certain dosage thresholds. In addition, unequal grouping is not uncommon when
one uses individuals in clusters of units in a system. For example, one may consider each class
as a group when there are multiple schools of different sizes and levels in a school system from
which the data are collected.

The remainder of this paper is organised as follows. In Section 2, we describe our procedure
and state the main asymptotic results. Section 3 is devoted to a simulation study and a real data
analysis followed by a short discussion. All the assumptions are listed in the appendix along with
the sketches of the proofs.

2. A semi-local likelihood method

We describe the proposed estimator followed by its properties in this section. We assume
(Yij, Xij), i = 1, . . . , nj; j = 1, . . . , J , are identical and independently distributed (i.i.d.) random
vectors. In what follows, we assume that all of the covariates, Xij’s, and the pool testing responses
Y∗

j ’s, as defined in the previous section, are available. For any fixed x, and a user-defined finite
bandwidth h, we define Ix = [x − h, x + h] and Zij = XijIx(Xij), where Ix(Xij) = 1 if Xij ∈ Ix, and
Ix(Xij) = 0 otherwise. Then the mixed probability density function of the Zs is given by

fZ(z) =
{∫

Ic
x

f (u) du if z = 0,

f (z) if z ∈ Ix \ 0,

where Ic
x is the complement of the set Ic

x , Ix \ 0 is the set Ix excluding 0 and f (·) is the density
function of an X. Then Yij|Zij = z is a Bernoulli random variable with P[Yij = 0|Zij = z] = r(z)
where

r(z) =
{

r1 if z = 0,

q(z) if z ∈ Ix \ 0,

with r1 = ∫
Ic
x

q(u)f (u) du/
∫

Ic
x

f (u) du and q(z) = 1 − p(z). It is easy to see that 0 < r1 ≤
supx q(x), and r1 → q∗ where q∗ = E[q(X)], as h → 0. Note that r(z) can also be written as

r(z) = r1−Ix(z)
1 × q(z)Ix(z).
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Now, we can write the log-likelihood of Y∗
j , j = 1, . . . , J , conditional on Zij’s as

1

N

J∑
j=1

{
(1 − Y∗

j )

nj∑
i=1

log r(Zij) + Y∗
j log

[
1 − exp

( nj∑
i=1

log r(Zij)

)]}
.

For small h and a fixed x, a Taylor expansion gives the following approximation:

log r(Zij) ≈ Ix(Xij)g(x) + Ix(Xij)g
′(x)(Xij − x) + (1 − Ix(Xij)) log r1

= Ix(Xij)θ1 + Ix(Xij)(Xij − x)θ2 + (1 − Ix(Xij))θ3, (1)

where g(·) = log q(·), θ1 = g(x), θ2 = g′(x), θ3 = log r1. Define θ = (θ1, θ2, θ3)
�, Xj =

(X1j, . . . , Xnjj)
� and X̃j = ∑nj

i=1(Ix(Xij), Ix(Xij)(Xij − x), 1 − Ix(Xij))
�. Equation (1) provides a

local linear approximation of log r(·) using the Xij in Ix, in the event that no Xij in Ix, then no local
linear approximation would be performed. Then, we can write the local log-likelihood as

l(θ) = 1

N

J∑
j=1

{(1 − Y∗
j )θ�X̃j + Y∗

j log[1 − exp(θ�X̃j)]}ωh(Xj, x), (2)

where ωh(Xj, x) = ∏nj

i=1 Kh(Xij − x)δx(Xij), δx(Xij) = Ix(Xij)/
∑nj

i=1 Ix(Xij), which is defined to be
0 if the denominator is 0, and Kh(·) = h−1K(·/h) for a symmetric and continuous density function
K(·).

Note that if p(·) has sufficient smoothness, we can use a local polynomial approximation for
g(x) in Equation (1) and estimate the derivatives of g up to a desired order. However, since in
practice the order of the smoothness of p(·) is usually unknown and the local linear estimator
behaves better than the local constant estimator (Fan and Gijbels 1996), we present the local
linear approximation case here.

The Hessian matrix of l(θ) is given by

l′′(θ) = − 1

N

J∑
j=1

Y∗
j exp(X̃�

j θ)

(1 − exp(X̃�
j θ))2

X̃jX̃�
j ωh(Xj, x).

Since l′′(θ) is negative definite with probability 1 when N → ∞, the local log-likelihood
Equation (2) has a unique maximiser with respect to θ with probability 1. Let θ̂ be the max-
imiser of l. Then the first component of θ̂ , ĝ(x), is our proposed estimator of g(x). Subsequently,
our estimator of p(x) is given by 1 − exp(ĝ(x)).

Remark 1 The log-likelihood of Y∗
j ’s conditional on Xij’s instead of Zij’s is

1

N

J∑
j=1

{
(1 − Y∗

j )

nj∑
i=1

log q(Xij) + Y∗
j log

[
1 − exp

( nj∑
i=1

log q(Xij)

)]}
.

One could suggest to estimate log q(x) by applying a local Poisson function, i.e. q(Xij) ≈ exp(θ1 +
θ2(Xij − x)) and then maximising the following local log-likelihood with respect to (θ1, θ2):

l̃(θ1, θ2) = 1

N

J∑
j=1

{
(1 − Y∗

j )

nj∑
i=1

(θ1 + θ2(Xij − x))

+Y∗
j log

[
1 − exp

( nj∑
i=1

(θ1 + θ2(Xij − x))

)]} nj∏
i=1

Kh(Xij − x).
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4 D. Wang et al.

When group sizes are larger than one, the product of kernel functions acts like a multivariate
kernel which results in a degraded estimation rate (Fan and Gijbels 1996). Moreover, if we take
K(·) to be a kernel function of compact support, such as the Epanechnikov kernel, once one
Kh(Xij − x) is zero, the whole product part is zero which impacts the contribution of other Xij’s
with nonzero values of Kh(Xij − x). Our truncated version rectifies this problem by counting every
Xij in the neighbourhood Ix. Thus, the use of Zij’s is more informative. One might argue to use
ωh(Xj, x) = K(‖Xj − x‖/h) in place of

∏nj

i=1 Kh(Xij − x) above. However, this still acts like a
multivariate kernel limiting its use.

The estimator θ̂ has very desirable (and expected) large sample properties under a set of mild
regularity conditions. We state these conditions in the appendix. In the following, we denote
by θ∗ = (θ∗

1 , θ∗
2 , θ∗

3 )� the value of θ calculated by the true p(x). The first theorem provides the
consistency of the estimator and the second theorem provides the large sample distribution of θ̂ .

Theorem 2.1 Under conditions 1–3 in the appendix we have

H(θ̂ − θ∗) −→p 0,

where H = diag{1, h, 1} and →p means converges in probability.

Theorem 2.2 Under the same conditions of the theorem above,
√

Nh(H(θ̂ − θ∗) − Biasθ ) −→d N(0, V−1
0 V1 V−1

0 ),

where →d means converges in distribution and Biasθ , V0 and V1 are defined in the appendix.

For any vector γ , let [γ ]1 be its first element, and for any matrix �, let [�]11 be its (1, 1)th
element. Then, we have

√
Nh(θ̂1 − θ∗

1 − [Biasθ ]1) −→d N(0, [V−1
0 V1V−1

0 ]11).

Our estimate of p(x) is p̂(x) = 1 − exp(θ̂1). Then p̂(x) − p(x) = −[exp(θ̂1) − exp(θ∗
1 )]. By the

delta method, we have

Corollary 2.3 Under conditions of Theorem 2, we have
√

Nh(p̂(x) − p(x) − B(x)) −→d N(0, V(x)),

where B(x) = −(1 − p(x))[Biasθ ]1 and V(x) = [1 − p(x)]2[V−1
0 V1V−1

0 ]11 with

[Biasθ ]1 = g(2)(x)μ2

2μ0
h2,

[V−1
0 V1V−1

0 ]11 = ν0

μ0

[
cμ0 + d

acμ2
0 + adμ0 − b2μ2

0

− b2dμ2
0

(acμ2
0 + adμ0 − b2μ2

0)
2

]
,

where μ0, μ2, ν0, a, b, c and d are defined in the appendix.

3. Empirical studies

In this section, we provide a simulation study followed by the analysis of a real data set to illustrate
our proposed method.

D
ow

nl
oa

de
d 

by
 [

C
le

m
so

n 
U

ni
ve

rs
ity

] 
at

 0
8:

15
 0

6 
Fe

br
ua

ry
 2

01
3 



Journal of Nonparametric Statistics 5

3.1. Bandwidth selection

It is well known that bandwidth selection is crucial in nonparametric estimation. To save
computational cost, we follow Delaigle and Meister (2011) to investigate a plug-in method.
Based on Theorem 2, we can write Bθ (x) = [Biasθ ]1 and Vθ (x) = [V−1

0 V1V−1
0 ]11 to emphasise

the dependence of these quantities on x , which are the bias and the asymptotic variance of estimat-
ing θ1 by θ̂1. A reasonable way to pick the bandwidth h is by minimising a weighted ‘asymptotic
mean-integrated-squared error’ given by

AMISE(h) =
∫ [

B2
θ (u) + Vθ (u)

Nh

]
ω(u) du,

with respect to h for a suitable weight function w. Here, we take w(u) = f (u). This gives

AMISE = μ2
2

4μ2
0

Bθh4 + V∗
θ

Nh
,

where Bθ = ∫
g(2)(x)f (x) dx, V∗

θ = ∫
Vθ (x)f (x) dx. Then, the optimal bandwidth is given by

h∗ =
(

V∗
θ μ2

0

Bθμ
2
2

)−1/5

N−1/5.

However, h∗ cannot be directly calculated since Bθ and V∗
θ are unknown. We can use

ĥ =
(

V̂θμ
2
0

B̂θμ
2
2

)−1/5

N−1/5,

by replacing V∗
θ and Bθ with the estimates V̂∗

θ and B̂θ given below.
We denote Gi as the number of groups of size ≥ i, where i = 1, . . . , maxj nj. For each fixed i, we

pick Xi,j, j = 1, . . . , Gi from each group and denote the order statistics by Xi,(1) < Xi,(2) < · · · <

Xi,(Gi). For a given estimator V̂θ (Xi,( j)) of Vθ (Xi,( j)), let V̂i = ∑Gi−1
j=1 V̂θ (Xi,( j))f̂ (Xi,( j))(Xi,( j+1) −

Xi,( j)), where f̂ (x) is a kernel density estimate of f (x). Then we can estimate V∗
θ by

V̂∗
θ =

maxj nj∑
i=1

wiV̂i,

where wi = √
Gi/

∑maxj nj

l=1

√
Gl. Now, it suffices to find a V̂θ (Xi,( j)). We start by deriving a

consistent estimate q̂∗ of q∗ by maximising the full likelihood of Y∗
j ’s given by

J∏
j=1

{Y∗
j (1 − q

nj∗ ) + (1 − Y∗
j )q

nj∗ }.

Note that γk (defined in the appendix) can be estimated by the proportion of the groups of size nk

among all the groups. In estimating the ratio q(Xi,( j))/(1 − qn(k)−1∗ q(Xi,( j))) which appears in Vk1

(defined in the appendix), we use J−1
k

∑
j:nj=n(k) (1 − Y∗

j ) to estimate the denominator since it is
required to be less than 1. Using the arguments of Delaigle and Meister (2011), the numer-
ator can be estimated by Nμ̂∗q̂

−nj∗ (1 − Y∗
j )/

∑J
j=1 njq̂

nj−1
∗ where μ̂∗ = N−1 ∑J

j=1 nj(1 − Y∗
j ).
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6 D. Wang et al.

Furthermore, Bθ can be estimated nonparametrically by

B̂θ =
maxj nj∑

i=1

G−1
i wi

Gi∑
j=1

{ĝ(2)
i (Xij)}2,

where the construction of ĝ(2)
i (x) is similar to Delaigle and Meister (2011) which is omitted here.

It is well known that nonparametric estimators are in general not stable near bound-
aries. We replace B̂θ and V̂θ by weighted versions (Gasser, Kneip, and Kohler 1991)
as B̂θ = ∑maxj nj

i=1 G−1
i wi

∑Gi
j=1{ĝ(2)

i (Xij)}2ωB(Xij) and V̂θ = ∑Gi−1
j=1 V̂θ (Xi,( j))f̂ (Xi,( j))(Xi,( j+1) −

Xi,( j))ωV (Xi,( j)), where ωB(x) and ωV (x) are two weight functions. Our suggestion is to take
ωB(x) = 1(q0.1,q0.9)(x) and ωV (x) = 1(q0.3,q0.7)(x), where 1(a,b)(x) is the indicator function (it equals
to 1 if a ≤ x ≤ b; otherwise 0), and qα is the α quantile of all the Xijs.

3.2. Numerical simulation

Our numerical studies were conducted to check the finite sample performance of the proposed
semi-local likelihood estimator of p(x). We considered the following models each with
X ∼ U[−1, 1] and X ∼ N(0, 0.52):

(1) p(x) = {sin(3πx/2) + 1.2}/[20 + 360x2{sign(x) + 1}],
(2) p(x) = sin2(π(x − 1)/2) cos2(1.5π(x − 1))/6,
(3) p(x) = cos2(πx)/8,
(4) p(x) = cos2(πx)/16 + x2/20.

The first model is similar to the model used in Delaigle and Meister (2011). The others are designed
to have relatively high fluctuant structure. For each model above, we considered both N = 5000
and 10,000. The group sizes for equal group size case were nj = 5 or 10. For the unequal group
sizes case, nj’s were randomly and uniformly chosen from {1, . . . , 5} or {1, . . . , 10}. We simulated
200 random samples of {(Xij, Y∗

j ), i = 1, . . . , nj, j = 1, . . . , J} for each setting of N , nj, p and

the distribution of X , where N = ∑J
j=1 nj, Y∗

j = max1≤i≤nj Yij and Yij’s are generated according
to a Bernoulli distribution with success probability p(Xij). The bandwidth, h, was selected using
the procedure outlined in Section 3.1. Based on this h, the estimator p̂(x), written LL (local
likelihood estimator), of p(x) was calculated. We also applied the method from Delaigle and
Meister (2011). These authors provided four ways for selecting the bandwidth, ROT, ROTω0 ,
PIω1 and PIω0 . The kernel K(·) was taken to be the standard normal density in all cases and
resulting estimates were truncated to be in [0, 1] since p(x) is a probability curve. We compared
our estimate with each of their four estimates based on the integrated-squared error (ISE) =∫ b

a {p̂(x) − p(x)}2 dx ≈ M−1(b − a)
∑M

i=1{p̂(ti) − p(ti)}2 for 200 replications, where [a, b] is the
interval of interest, and {ti, i = 1, . . . , M} is an even partition of [a, b]. Furthermore, to get a feel
for the pointwise behaviour of each estimator, we calculated the following pointwise mean square
error ratio (PMSER),

PMSER(ti) =
∑200

k=1{p̂k(ti) − p(ti)}2∑200
k=1{p̃k(ti) − p(ti)}2

, i = 1, . . . , M,

where p̂k is our estimator of p for the kth sample and p̃k denotes the estimators proposed by
Delaigle and Meister (2011).

In Tables 1–3, we provide a subset of our findings. The average and the standard deviation of the
200 ISEs corresponding to each estimator and the proportion of PMSER(ti) values < 1 among all
the ti’s for M = 300 for N = 10,000 are also given. The results for N = 5000 followed an almost
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Table 1. Simulation results for models 1–4 when group sizes are unequal and X follows uniform, N = 104.

nj Model LL ROT ROTω0 PIω1 PIω0

1–5 1 1.56 (0.76) 3.63 (1.22, 0.76) 4.21 (1.20, 0.77) 2.35 (0.94, 0.66) 1.95 (0.89, 0.67)
2 7.92 (2.21) 23.7 (1.43, 0.80) 24.4 (1.34, 0.80) 14.9 (2.15, 0.90) 11.8 (2.32, 0.92)
3 3.61 (1.82) 28.6 (4.79, 0.90) 30.7 (4.25, 0.91) 6.72 (2.60, 0.71) 4.56 (2.15, 0.72)
4 2.53 (1.16) 7.13 (1.29, 0.80) 7.65 (1.34, 0.81) 3.04 (1.23, 0.63) 2.62 (1.21, 0.63)

1–10 1 2.60 (1.40) 4.61 (1.66, 0.62) 5.12 (1.60, 0.65) 2.97 (1.38, 0.58) 2.80 (1.40, 0.65)
2 8.93 (3.01) 26.0 (2.30, 0.76) 26.6 (2.26, 0.76) 15.8 (3.28, 0.87) 12.3 (3.32, 0.88)
3 6.13 (2.86) 30.5 (5.52, 0.87) 32.8 (4.61, 0.87) 9.65 (3.59, 0.71) 7.64 (3.37. 0.71)
4 4.37 (2.19) 8.89 (2.24, 0.74) 9.47 (2.26, 0.76) 4.70 (2.26, 0.56) 4.52 (2.34, 0.61)

Note: The presented results are: 104 × MISE (104 × stdev, proportion of PMSER < 1).

Table 2. Simulation results for models 1–4 when group sizes are unequal and X follows normal, N = 104.

nj Model LL ROT ROTω0 PIω1 PIω0

1–5 1 3.57 (1.37) 8.80 (1.87, 0.87) 9.40 (1.68, 0.87) 4.58 (1.53, 0.85) 3.88 (1.49, 0.66)
2 19.7 (5.41) 33.1 (5.29, 0.82) 33.9 (5.40, 0.82) 23.0 (5.08, 0.77) 20.9 (5.40, 0.70)
3 15.1 (4.64) 40.7 (2.44, 0.95) 41.3 (1.90, 0.94) 22.0 (4.52, 0.88) 17.7 (4.64, 0.62)
4 8.26 (4.52) 14.6 (3.90, 0.74) 15.0 (3.75, 0.74) 8.79 (4.33, 0.56) 8.44 (4.52, 0.55)

1–10 1 3.47 (1.84) 9.17 (2.68, 0.82) 9.75 (2.56, 0.82) 4.26 (2.18, 0.81) 3.86 (2.19, 0.80)
2 19.0 (4.19) 30.9 (3.65, 0.84) 31.6 (3.79, 0.82) 21.3 (3.27, 0.74) 19.3 (3.35, 0.63)
3 11.2 (3.90) 41.5 (3.06, 0.90) 41.9 (2.77, 0.90) 17.7 (4.30, 0.87) 14.6 (4.18, 0.87)
4 4.99 (2.54) 12.53 (3.01, 0.83) 13.0 (2.9, 0.83) 6.28 (2.76, 0.79) 5.69 (2.55, 0.76)

Note: The presented results are: 104 × MISE (104 × stdev, proportion of PMSER < 1).

Table 3. Simulation results for models 1 and 3 when group sizes are equal, N = 104.

nj Model f (x) LL ROT ROTω0 PIω1 PIω0

5 1 U 2.22 (1.08) 3.87 (1.23, 0.50) 4.43 (1.22, 0.53) 2.67 (1.0, 0.43) 2.28 (1.0, 0.44)
N 4.59 (1.51) 8.92 (2.08, 0.78) 9.54 (1.94, 0.79) 5.22 (1.55, 0.58) 4.46 (1.47, 0.23)

3 U 5.56 (2.57) 29.8 (5.06, 0.87) 31.9 (4.38, 0.88) 8.76 (3.36, 0.59) 5.91 (2.79, 0.50)
N 19.8 (5.27) 41.2 (2.74, 0.91) 41.7 (2.47, 0.91) 26.3 (4.42, 0.81) 21.9 (4.58, 0.49)

10 1 U 3.89 (2.04) 5.28 (1.90, 0.40) 5.72 (1.80, 0.42) 3.71 (1.81, 0.34) 3.48 (1.91, 0.34)
N 5.94 (3.13) 10.2 (3.33, 0.72) 10.7 (3.27, 0.74) 6.01 (3.08, 0.47) 5.56 (3.13, 0.31)

3 U 11.7 (5.73) 32.8 (5.6, 0.77) 34.8 (4.99, 0.79) 13.9 (5.42, 0.50) 11.3 (5.38, 0.43)
N 16.9 (6.84) 42.8 (5.0, 0.85) 43.3 (4.74, 0.86) 24.5 (5.94, 0.80) 20.9 (6.21, 0.76)

Notes: The presented results are: 104 × MISE (104 × stdev, proportion of PMSER < 1). U and N denote uniform and normal, respectively.

identical pattern and are therefore not presented here. Additionally, global-integrated-squared
errors (GISE) = ∫ b

a {p̄(x) − p(x)}2 dx were compared, where p̄(x) = ∑200
k=1 p̂k(x)/200 which is

referred to as the average curve for each method.
From Tables 1 and 2, we can see that all means and standard deviations of 200 replications

using our method are smaller than the corresponding values for the methods in Delaigle and
Meister (2011) for the case of unequal groups. Moreover, the proportion of PMSER value
below 1 is greater than 50% in all such cases. For the case of equal groups, a summary is
presented in Table 3. The average ISE values and the pointwise mean square error values
indicate that the two methods are very similar in the case of equal group sizes. By compar-
ing the GISEs, our method seems to outperform the moment type estimator in all examined
cases, a few results are listed in Table 4. Plots of the averaged estimates of p(x), p̄(x), for
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8 D. Wang et al.

Table 4. 104× GISE for models 1–4 when all nj = 10, X is normal and N = 104.

Model LL ROT ROTω0 PIω1 PIω0

1 2.58 8.56 9.15 2.87 3.55
2 19.9 30.0 30.8 20.0 21.9
3 9.03 39.4 40.1 15.2 19.4
4 2.21 11.0 11.6 3.31 4.31
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Figure 1. Average curves: LL (− − −), best between ROT and ROTω0 (− · − · −), best between PIω1 and PIω0 (· · · ).
Left to right: model 1, X ∼ U[−1, 1], nj = 10, N = 10,000; model 4, X ∼ U[−1, 1], nj ∼ U{1, . . . , 10}, N = 5000.

all models reveal (see Figure 1 for models 1 and 4) that our estimator appears to be signifi-
cantly less biased over almost the entire support of X. When compared to the estimator proposed
in Delaigle and Meister (2011), it is worthwhile to point out that the bias in their estimators
becomes more prominent when p(x) is less smooth or more fluctuant. This suggests that our
method generally outperforms those proposed in Delaigle and Meister (2011) both globally and
locally.

3.3. Real data analysis

We also applied our method to two real data sets from 1999 to 2000 in the NHANES
study which were previously analysed by Delaigle and Meister (2011) and are available at
www.cdc.gov/nchs/nhanes/nhanes1999-2000/nhanes99_00.htm. The first data set contained two
variables: the age variable X and the test result YHBc which is a binary response taking values
0 and 1, indicating that the antibody to hepatitis B virus core antigen is absent or present in
the patient’s serum or plasma, respectively. The sample size was 7121, and X ranged from 6 to
85 years after removing the individuals with missing X or YHBc. The second data set contained
the age variable X, and a response variable YCL = 0 or 1, indicating the absence or presence of
genital chlamydia trachomatis infection in the urine of the patient, respectively. After removing
the missing values, X ranged from 12 to 40 years, and the sample size was 2042. Our goal is
to estimate the following two conditional probability curves: pHBc(x) = P(YHBc=1|X = x) and
pCL(x) = P(YCL=1|X = x).

To evaluate the performance of our method, in each case, we first applied the local linear
estimation based on all the (X , Y). The resulting estimator is denoted by p̃ and is treated as our

D
ow

nl
oa

de
d 

by
 [

C
le

m
so

n 
U

ni
ve

rs
ity

] 
at

 0
8:

15
 0

6 
Fe

br
ua

ry
 2

01
3 



Journal of Nonparametric Statistics 9

20 40 60 80

0.
00

0.
05

0.
10

0.
15

x

p(
x)

20 40 60 80

0.
00

0.
05

0.
10

0.
15

x
p(

x)

20 40 60 80

0.
00

0.
05

0.
10

0.
15

x

p(
x)

20 25 30 35 40

0.
00

0.
05

0.
10

0.
15

x

p(
x)

20 25 30 35 40

0.
00

0.
05

0.
10

0.
15

x

p(
x)

20 25 30 35 40

0.
00

0.
05

0.
10

0.
15

x
p(

x)

Figure 2. NHANES study: average curves (− − −) and confidence bands (− · − · −) for YHBC (Top) and YCL (Bottom).
Left to right: nj ∼ U{1, 2}, nj ∼ U{1, . . . , 5}, nj ∼ U{1, . . . , 10}.

reference curve. Then we artificially pooled the data randomly assigning individuals to groups
of size nj ∼ U{1, 2}, nj ∼ U{1, . . . , 5}, or nj ∼ U{1, . . . , 10}. In each of these aforementioned
cases, we calculated our estimator p̂ using the individual-level covariates and the simulated pool
responses. This process was then repeated 200 times for both infections on pooling strategy.
The average curve along with a two standard deviation pointwise confidence bands based on the
200 replications are presented in Figure 2. Here, the lower band was truncated at 0. From these
graphs, it appears that there is a large degree of agreement between our estimator and the reference
estimator.

Delaigle and Meister (2011) evaluated their estimator using the estimates corresponding to
quantiles of the integrated squared difference (ISD) values, and the estimate corresponding to the
median ISD value showed boundary bias. Since we have established the asymptotic normality
of our estimator, we prefer to use the average of the estimates with pointwise confidence bands
in assessing the estimation accuracy. The average of the 200 estimates shows minimal boundary
bias and the ideal curve is well within the pointwise confidence bounds.

4. Discussion

We have provided an effective way of estimating the regression function P[Y = 1|X] based on
group data. Our estimator seems to perform well in all possible sampling situations for a variety of
model functions. The proposed bandwidth selection procedure seems to provide very satisfactory
estimation results. An interesting extension of these ideas would be to test the equality of the
regression curves for different populations.
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Appendix 1. Regularity conditions

We first state some regularity conditions:

(1) supj nj < ∞.
(2) log q(x) has bounded second-order derivative in a neighbourhood of x, and f is positive and continuous in that

neighbourhood.
(3) Nh → ∞ and Nh5 is bounded.

This first condition is also used in Delaigle and Meister (2011). The next two are commonly used conditions on
smoothness.

Appendix 2. Notation

We now introduce some notations. Under condition 1, suppose there are only K different group sizes, denoted by
n(1), . . . , n(K). Let Jk be the number of groups of size n(k) and limN→∞ n(k)Jk/N = γk . Then

∑K
k=1 γk = 1. For easy nota-

tion, we suppose the data are ordered as follows: the first J1 groups are of size n1, the next J2 groups are of size n2, and so on
until the last JK groups are of size nK . Now, let a = ∑K

k=1 γkVk1, b = ∑K
k=1 γk(n(k) − 1)Vk1, c = ∑K

k=1 γk(n(k) − 1)2Vk1,
d = ∑K

k=1 γkVk0, and e = ∑K
k=1 γkVk2, where

Vk0 = n(k) exp(Ek0)

1 − exp(Ek0)
,

Vk1 = f (x) exp(Ek1)

1 − exp(Ek1)
,

Vk2 =
[

exp(Ek1)θ
∗
2 f (x)

(1 − exp(Ek1))2
+ exp(Ek1)f ′(x)

1 − exp(Ek1)

]
,

with Ekm = mθ∗
1 + (n(k) − m) log q∗. Further denote

V0 =
⎛
⎝aμ0 0 bμ0

0 aμ2 0
bμ0 0 cμ0 + d

⎞
⎠ , V1 =

⎛
⎝aν0 0 bν0

0 aν2 0
bν0 0 cν0

⎞
⎠ and Biasθ = V−1

0 bθ ,

where bθ = 2−1g(2)(x) · (aμ2 h2, eμ4 h3, bμ2 h2)�, μi = ∫ 1
−1 uiK(u) du and νi = ∫ 1

−1 uiK2(u) du.
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Appendix 3. Proof of Theorem 1

Let α = H(θ − θ∗), α̂ = H(θ̂ − θ∗) and Ũj = H−1X̃j . Put

l(α) = 1

N

J∑
j=1

{(1 − Y∗
j )(X̃�

j θ∗ + Ũ�
j α) + Y∗

j log[1 − exp(X̃�
j θ∗ + Ũ�

j α)]}ωh(Xj , x)

=
K∑

k=1

Jk

N
· 1

Jk

Jk−1+Jk∑
j=Jk−1+1

lj(α; k),

where J0 = 0 and lj(α; k) is the kernel-weighted likelihood corresponding to a pooled data of size n(k). Since l(α) is
strictly concave, it is sufficient to show that, for any given η > 0, there exists a small constant ε, such that

lim inf
N

P

{
sup

‖α‖=ε

l(α) < l(0)

}
= 1 − η.

By Taylor’s expansion around the origin, for any α with ‖α‖ = ε,

l(α) − l(0) = l′(0)�α + 1
2 α�l′′(0)α + R(α′), (A1)

with α′ lying between α and 0, and where

R(α′) = 1

6

∑
j,k,l

α′
jα

′
kα

′
l

∂3 l(α′)
∂αj∂αk∂αl

.

First, since for fixed k, lj(α; k), j = Jk−1 + 1, . . . , Jk−1 + Jk are i.i.d., we have

l′(0) =
K∑

k=1

Jk

N
· 1

Jk

Jk−1+Jk∑
j=Jk−1+1

l′j(0; k) →p

K∑
k=1

γk

n(k)
E[l′j(0; k)], (A2)

where

l′j(0; k) =
(

1 − Y∗
j

1 − exp(X̃�
j θ∗)

)
Ũjωh(Xj , x).

We know E[l′j(0; k)] = EZj {E[l′j(0; k)|Zj]} with Zj = (Z1j , . . . , Zn(k) j)
�. It is easy to see that E[l′j(0; k)|Zj = 0] = 0. When

some of the Zij’s are not zero, local linear approximation provides that

E[Y∗
j |Zj] = 1 − exp(X̃�

j θ∗) − exp(X̃�
j θ∗)

g(2)(x)

2

n(k)∑
i=1

Ix(Xij)(Xij − x)2{1 + o(1)}.

Applying Taylor’s expansion, E[l′j(0; k)] can be written as

EZj

[
g(2)(x)

2
·
{

exp(A)

1 − exp(A)
+ exp(A)θ∗

2

(1 − exp(A))2
· B{1 + o(1)}

}
Ũjh

− ∑n(k)

i=1 Ix(Xij)C

]
,

where A = ∑n(k)

i=1{Ix(Xij)θ
∗
1 + (1 − Ix(Xij))θ

∗
3 }, B = ∑n(k)

i=1 Ix(Xij)(Xij − x) and C = ∑n(k)

i=1(Xij − x)2{1 + o(1)}. Let Mm
be the event that only m of the Ix(Xij)s are zero (since Xs are i.i.d., without loss of generality, we assume Ix(X1j) = · · · =
Ix(Xmj) = 0). Then conditioning on Mm’s,

E[l′j(0; k)] = g(2)(x)

2

n(k)∑
m=1

(
n(k)

m

)
Pn(k)−m

x I(m)
k ,

where Px is the probability of an X falling out of Ix , i.e. Px = ∫
Ic
x

f (u) du, and

I(m)
k =

∫ x+h

x−h
· · ·

∫ x+h

x−h

{
exp(Am)

1 − exp(Am)
+ exp(Am)θ∗

2

(1 − exp(Am))2
· Bm{1 + o(1)}

}

× Cm

⎛
⎝ m

Bmh−1

n(k) − m

⎞
⎠ 1

h

m∏
i=1

f (Xij)K

(
Xij − x

h

)1/m

dX1j · · · dXmj ,

with Am = mθ∗
1 + (n(k) − m)θ∗

3 , Bm = ∑m
i=1(Xij − x) and Cm = ∑m

i=1(Xij − x)2{1 + o(1)}. By conditions 2 and 3,

h → 0. Then θ∗
3 → log q∗ and Px → 1. We can write I(1)

k = (μ2Vk1h2, μ4Vk2h3, (n(k) − 1)μ2Vk1h2)�. Simple integration
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12 D. Wang et al.

provides that for m > 1, I(m)
k = o(I(1)

k ). Hence

E[l′j(0; k)] = n(k)g(2)(x)I(1)
k

2
{1 + o(1)}. (A3)

By the assumption n(k)Jk/N → γk and Equation (A2), we can conclude that

l′(0) = bθ + op(1) = op(1). (A4)

Thus, with probability tending to 1,

|l′(0)�α| ≤ ε3. (A5)

For l′′(0), similarly

l′′(0) =
K∑

k=1

Jk

N
· 1

Jk

Jk−1+Jk∑
j=Jk−1+1

l′′j (0; k) →p

K∑
k=1

γk

n(k)
E[l′′j (0; k)], (A6)

where

l′′j (0; k) = Y∗
j exp(X̃�

j θ∗)
(1 − exp(X̃�

j θ∗))2
ŨjŨ�

j ωh(Xj , x).

When Zj = 0, ŨjŨ�
j = diag{0, 0, n(k)2} and ωh(Xj , x) = 1. Thus, as h → 0,

E[l′′j (0; k)|Zj = 0] → diag

{
0, 0,

n(k)2 exp(Ek0)

1 − exp(Ek0)

}
.

When some of Zij’s are not zero, using the same argument as above, we have

E[l′′j (0; k)] = n(k)

⎛
⎝ Vk1μ0 0 (n(k) − 1)Vk1μ0

0 Vk1μ2 0
(n(k) − 1)Vk1μ0 0 (n(k) − 1)2Vk1μ0 + Vk0

⎞
⎠ {1 + o(1)}.

By Equation (A2),

l′′(0) = −V0 + op(1). (A7)

Let λmin(V0) be the smallest eigenvalue of V0. Since V0 is positive definite, λmin(V0) is a positive number. Thus, with
probability tending to 1,

α�l′′(0)α ≤ −λmin(V0)ε
2. (A8)

Similarly, we can find that

|R(α)| = ε3Op(1). (A9)

Substituting Equations (A5), (A8) and (A9) into (A1), its sign is completely decided by the term of ε2 when ε is small
enough. This completes the proof of Theorem 1.

Appendix 4. Proof of Theorem 2

Continuing to use the notation introduced in the proof of Theorem 1, by Taylor’s expansion, we have 0 = l′(α̂) =
l′(0) + l′′(0)α̂ + Op(‖α̂‖2). Hence, by Equation (A7),

α̂ = −{−V0 + op(1)}−1l′(0). (A10)

It suffices to establish the asymptotic normality of l′(0). By Equation (A4), E[l′(0)] = bθ + o(1). For Var[l′(0)], we
have Var[l′(0)] = N−1 ∑K

k=1(Jk/N)Var[l′j(0; k)]. Since Var[l′j(0; k)] = E[l′j(0; k)l′j(0; k)�] − E[l′j(0; k)]E[l′j(0; k)]�, and
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Equation (A3) shows the rate of E[l′j(0; k)], we only need to find E[l′j(0; k)l′j(0; k)�] where

l′j(0; k)l′j(0; k)� =
(

1 − Y∗
j

1 − exp(X̃�
j θ∗)

)2

ŨjŨ�
j ω2

h(Xj , x).

Using similar argument as in the proof of Theorem 1, we have

Var[l′j(0; k)] = n(k) Vk1

h

⎛
⎝ ν0 0 (n(k) − 1)ν0

0 ν2 0
(n(k) − 1)ν0 0 (n(k) − 1)2ν0

⎞
⎠ {1 + o(1)}.

Combining with the assumption that Jk/N → γk/n(k), we have

Var[l′(0)] = N−1h−1V1 + o(N−1h−1). (A11)

By the Cauchy–Schwarz inequality, V1 is a singular matrix only when K = 1. To make the notation consistent, we treat a
constant as a degraded normal random variable with mean being itself and variance being 0. Applying the Cramér–Wold
device, we need to show that for any constant vector b �= 0,

√
Nh{b�l′(0) − b�El′(0)} −→D N{0, b�V1b}. (A12)

When K = 1 and b is linear to (−(n1 − 1), 0, 1)�, Var[√Nhb�l′(0)] → b�V1b = 0. Otherwise b�V1b is a positive
number. From Equation (A2) and for any fixed k, b�l′j(0; k)′s are i.i.d., the normality of Equation (A12) of b�l′(0) follows
from the central limit theory combining with Equations (A3) and (A11). Consequently, by Equation (A10), it completes
the proof.
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