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a b s t r a c t

The ordinal dominance curve (ODC) is a useful graphical tool to compare two population
distributions. These distributions are said to satisfy uniform stochastic ordering (USO) if
the ODC for them is star-shaped. A goodness-of-fit test for USO was recently proposed
when both distributions are unknown. This test involves calculating the Lp distance
between an empirical estimator of the ODC and its least star-shaped majorant. The least
favorable configuration of the two distributions was established so that proper critical
values could be determined; i.e., to control the probability of type I error for all star-
shaped ODCs. However, the use of these critical values can lead to a conservative test
and minimal power to detect certain non-star-shaped alternatives. Two new methods
for determining data-dependent critical values are proposed. Simulation is used to show
both methods can provide substantial increases in power while still controlling the
size of the distance-based test. The methods are also applied to a data set involving
premature infants. An R package that implements all tests is provided.

Published by Elsevier B.V.

1. Introduction

Two population distributions, whose distribution functions are denoted by F and G, are said to satisfy uniform
stochastic ordering (USO) if and only if {1 − F (t)}/{1 − G(t)} is nonincreasing over the support of G; we denote this
ordering by F ⪯USO G. When F and G are absolutely continuous, USO is also known as ‘‘hazard rate ordering’’, which is an
important characterization in reliability, survival analysis, econometrics, and actuarial science (Boland et al., 1994; Shaked
and Shanthikumar, 2007; El Barmi and McKeague, 2016; Balakrishnan et al., 2018; Whang, 2019). If X and Y are random
variables whose distribution functions are F and G, respectively, then an equivalent and straightforward interpretation of
F ⪯USO G is that pr(X > t|X > t0) ≤ pr(Y > t|Y > t0) for all t ≥ t0. Therefore, if one regards X and Y as survival times,
USO implies that all residual life distributions are stochastically ordered.

Because of its practical utility, inferential methods for distributions satisfying USO have received substantial attention
in the statistics literature. Rojo and Samaniego (1993) and Mukerjee (1996) proposed nonparametric estimators of distri-
bution functions satisfying a USO constraint. Arcones and Samaniego (2000) further examined the asymptotic properties
of these estimators and proposed a conservative goodness-of-fit testing procedure for USO when one distribution (e.g., G)
is known. Dykstra et al. (1991) constructed a likelihood ratio test to test the equality of several distribution functions
against a global USO alternative. El Barmi and McKeague (2016) and El Barmi (2016) later examined this same test by
using empirical likelihood methods.
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Fig. 1. Left: A star-shaped ODC R(u) with dotted secant lines passing through (1, 1). The slope of the secant lines, r(u) = {1 − R(u)}/(1 − u), is
nonincreasing in u. Right: Four star-shaped ODCs.

In this article, we consider testing H0 : F ⪯USO G versus H1 : F @⪯ USO G; i.e., a goodness-of-fit test for USO. Tang
et al. (2017) recently proposed a nonparametric test for H0 versus H1 when F and G are unknown, generalizing the earlier
work of Dardanoni and Forcina (1998), Park et al. (1998), and Arcones and Samaniego (2000) for two populations. The
approach in Tang et al. (2017) makes use of the ordinal dominance curve (ODC), which is a curve in [0, 1]2 given by
R = FG−1, where G−1(u) = inf{t : G(t) ≥ u} is the quantile function of G. When F and G satisfy USO, the corresponding
ODC R is ‘‘star-shaped’’ (Lehmann and Rojo, 1992), meaning that the slope of the secant line connecting (1, 1) and (u, R(u));
i.e., r(u) = {1− R(u)}/(1− u), is a nonincreasing function of u. Fig. 1 provides an illustration and examples of star-shaped
ODCs.

The large-sample test statistic in Tang et al. (2017) is based on the Lp distance between an empirical estimator of the
ODC and its least star-shaped majorant, with large distances indicating evidence against H0 : F ⪯USO G; see Section 2.
When independent random samples are taken from F and G, Tang et al. (2017) showed the least favorable configuration
among all star-shaped ODCs occurs when F = G, for all p ≥ 1. The ODC that arises when F = G is denoted by R0 and
satisfies R0(u) = u, for 0 ≤ u ≤ 1, the so-called equal distribution line. Therefore, critical values calculated by assuming
R = R0 provide an upper bound on the probability of type I error (asymptotically) for all star-shaped ODCs; i.e., for all
ODCs that satisfy H0.

Establishing the least favorable configuration provides a structured way to determine critical values for implementa-
tion; however, in finite samples, these critical values can lead to a conservative test and one with low power to detect
certain non-star-shaped alternatives. Therefore, we investigate approaches to calculate data-dependent critical values
instead. Our motivation is simple. If we can determine critical values by using a star-shaped ODC (possibly different than
R0) that also controls the probability of type I error asymptotically, the resulting test should be more powerful than the one
in Tang et al. (2017). In this article, we propose two data-dependent approaches to identify this ‘‘possibly more generous’’
configuration from which critical values can be obtained. Our simulation evidence suggests both methods can be highly
successful at increasing power while not unduly inflating the size of the test.

Subsequent sections of this article are organized as follows. In Section 2, we review the salient features of the ODC-
based test in Tang et al. (2017) and the calculation of critical values using the least favorable configuration. In Section 3,
we describe our data-dependent methods to determine new critical values. In Section 4, we provide simulation evidence
to investigate the finite-sample performance of our proposals. In Section 5, we implement our tests using data from a
study examining the effects of administering caffeine to premature infants. In Section 6, we conclude with a discussion.
Additional details and simulation evidence are provided in the Supplementary Material.

The methods in this article can be implemented using an R package we have created and placed on GitHub at
https://github.com/harrindy/TestUSO.

https://github.com/harrindy/TestUSO
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Fig. 2. Premature infant data. The empirical ODC Rmn is shown in black. The least star-shaped majorant MRmn is shown in blue. The equal distribution
line R0(u) = u is shown dotted. This data set is examined in Section 5. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

2. ODC-based test and the least favorable configuration

We review the most important aspects of the large-sample test in Tang et al. (2017). Suppose we have two samples
Xm = {X1, . . . , Xm} and Yn = {Y1, . . . , Yn} from unknown distributions F and G, respectively. All random variables are
assumed to be mutually independent, and we assume F and G have continuous densities.

Because USO between F and G holds if and only if R = FG−1 is star-shaped, the test for H0 : F ⪯USO G versus
H1 : F @⪯ USO G can be written equivalently as

H0 : R is star-shaped versus H1 : R is not star-shaped.

The test statistic in Tang et al. (2017) is given by

Mp
mn = {mn/(m + n)}1/2∥MRmn − Rmn∥p,

where ∥ · ∥p denotes the Lp norm, Rmn = FmG−1
n is the nonparametric maximum likelihood estimator of R under no

restriction (Hsieh and Turnbull, 1996), and MRmn is the least star-shaped majorant of Rmn; i.e., the smallest star-shaped
function in [0, 1]2 that is at least as large as the empirical ODC Rmn. A closed-form expression for calculating MRmn is
provided in Tang et al. (2017). Fig. 2 displays the estimates Rmn and MRmn for the premature infant data we examine in
Section 5.

Because Mp
mn measures a scaled distance between the two estimates Rmn and MRmn, it is easy to see that large values

of Mp
mn will lead to the rejection of H0. The challenging part is to determine what is meant by ‘‘large’’. Under certain

assumptions which govern how sample sizes m and n increase without bound, Tang et al. (2017) proved that the limit
of prR∈H0

(Mp
mn ≥ t) is at its maximum value when F = G, for all p ≥ 1; i.e., the equal distribution line R0(u) = u is

the least favorable configuration for the large-sample test of H0 versus H1. Therefore, critical values cα,p calculated using
R0 maximize the (asymptotic) probability of type I error over all ODCs R which satisfy H0, that is, rejecting H0 when
Mp

mn ≥ cα,p provides an asymptotic size α decision rule. For different values of α and p, Tang et al. (2017) approximated
these critical values by simulating the large-sample distribution of Mp

mn under R0 and tabled selected values in their
supplementary article.

3. More powerful ODC-based tests

We propose two new approaches for selecting critical values when testing H0 : F ⪯USO G versus H1 : F @⪯ USO G.
Both are ‘‘data-dependent’’, meaning that critical values are determined by using the observed data Xm = {X1, . . . , Xm}

and Yn = {Y1, . . . , Yn}. Ultimately, the goal of both approaches is to let the data identify a star-shaped configuration R∗,
possibly different than R0, that enhances our power to detect non-star-shaped alternatives while still maintaining the
proper size. Critical values are then determined by using this new configuration R∗.
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3.1. The antitonized slope (AS) method

The defining feature of a star-shaped ODC R is that its slope function r(u) = {1 − R(u)}/(1 − u) is nonincreasing for
u ∈ [0, 1). This serves as the foundation for our first approach, which we call the antitonized slope (AS) method. Specifically,
we use antitonic regression to estimate r(u) from the observed data and then create a star-shaped configuration from this
estimate. An outline of the AS method is below.

Step 1: Calculate the empirical ODC Rmn from the observed data Xm and Yn.

Step 2: For i = 1, . . . , n − 1, calculate

rmn,i =
1 − Rmn

( i
n

)
1 −

i
n

,

the n − 1 secant line slopes for the empirical ODC Rmn.

Step 3: Calculate the antitonic regression of the slopes in Step 2; i.e., minimize
n−1∑
i=1

(rmn,i − ωi)2 subject to 1 ≥ ω1 ≥ · · · ≥ ωn−1 ≥ 0.

Denote the (constrained) minimizers by ω̂1, . . . , ω̂n−1. These solutions estimate r(i/n), i = 1, . . . , n − 1, subject to
the constraint that R is star-shaped.

Step 4: Linearly interpolate the n + 1 points{
(0, 0),

(
1
n
, R̂AS

(
1
n

))
, . . . ,

(
n − 1
n

, R̂AS

(
n − 1
n

))
, (1, 1)

}
,

where

R̂AS

(
i
n

)
= 1 −

(
1 −

i
n

)
ω̂i,

for i = 1, . . . , n − 1. This builds a piecewise linear star-shaped curve, which we denote by R̂AS.

We use the star-shaped configuration R∗
= R̂AS to produce critical values similarly to how Tang et al. (2017) did so

by using R0. Specifically, we generate random samples X †
m = {X†

1 , . . . , X†
m} from R̂AS via inverse transform sampling and

Y†
n = {Y †

1 , . . . , Y †
n } from a U(0, 1) distribution and calculate the test statistic (Mp†

mn,1) from these simulated data. We then
repeat this procedure a large number of times (say, L) and select the 1− α quantile from {Mp†

mn,l}
L
l=1. Denote this quantile

by cASα,p. The AS method’s decision rule is to reject H0 when the test statistic Mp
mn ≥ cASα,p.

Our simulation results in Section 4 suggest the AS method performs quite well. In terms of power, using this method
to determine critical values is guaranteed to provide a consistent test. This is true because the same ODC-based test is
consistent when using the critical value cα,p from Tang et al. (2017) and cASα,p can never exceed cα,p. Furthermore, if a
non-star-shaped R ∈ H1 is ‘‘close’’ to H0, yet differs greatly from R0, the new critical value cASα,p can be much smaller than
cα,p which will lead to large gains in power.

The AS method also does a good job at controlling the size. Recall that Tang et al. (2017) showed the non-degenerate
part of the large-sample distribution of Mp

mn under H0 depends on

(a) regions where R ∈ H0 is non-strictly star-shaped; i.e., those regions where r(u) = {1 − R(u)}/(1 − u) does not
change, and

(b) the specific value of r(u) over those regions.

When the samples Xm and Yn are from R0, the antitonic regression of the slopes in Step 3 produces an excellent estimator
of r0(u) = {1 − R0(u)}/(1 − u). Furthermore, our use of linear interpolation in Step 4 produces a configuration whose
non-strictly star-shaped region is very often [0, 1]; i.e., R̂AS = R0, or a collection of non-strictly star-shaped regions whose
union is nearly [0, 1]. Therefore, the limiting distribution of Mp

mn calculated at R̂AS and the one at R0 will be identical or at
least very similar. On the other hand, when the samples arise from R ∈ H0 −{R0}, antitonizing the slopes still provides an
excellent estimator of r(u). However, linear interpolation will generally produce a much wider non-strictly star-shaped
region than the true R (which may have no such regions). Therefore, the limiting distribution of Mp

mn calculated at R̂AS will
be stochastically larger than the one calculated at R, and, hence, the probability of type I error is automatically controlled.

Perhaps the nicest feature of the AS method is that it is straightforward to implement. The most challenging part is
performing the antitonic regression in Step 3; however, this can be easily done by using the well known pool-the-adjacent-
violators algorithm (Robertson et al., 1988) which we implement using the OrdMonReg package in R. The upshot is that,
even when the sample sizes are large, determining R̂AS is nearly instantaneous. With this in mind, we now move to our
second data-dependent method which utilizes the bootstrap to select a new configuration R∗.
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3.2. The resample and tune (RT) method

Our second method bootstraps the observed data Xm = {X1, . . . , Xm} and Yn = {Y1, . . . , Yn} to construct resampled
versions of the least star-shaped majorant MRmn. Note that our use of the bootstrap in this article is not to approximate
the distribution of the test statistic Mp

mn. In fact, this is not possible because M, when viewed as an operator on functions,
is not always Hadamard directionally differentiable (Tang et al., 2017); for more details on this issue, see Dümbgen (1993)
and Fang and Santos (2019). Instead, we use bootstrapping only to identify an initial candidate set of star-shaped ODCs.
We then introduce a tuning parameter to select a new configuration R∗ which controls the size of the ODC-based test.
We call our second approach the resample and tune (RT) method. An outline of this method is below.

Step 1: Generate B bootstrap samples of Xm and Yn from the empirical distributions Fm and Gn, respectively. Denote the
bth bootstrap version of the least star-shaped majorant by MR∗

mn,b, for b = 1, . . . , B.

Step 2: For each b = 1, . . . , B, calculate the slope

r∗

b

(
i
n

)
=

1 − MR∗

mn,b

( i
n

)
1 −

i
n

,

for i = 0, 1, . . . , n − 1. For each i, calculate the 1 − γ quantile of the B slopes {r∗

b (i/n)}
B
b=1. Denote this quantile by

r̃γ (i/n).

Step 3: Sort the quantiles {r̃γ (i/n)}n−1
i=0 in Step 2 in descending order to obtain {̂rγ

RT(i/n)}
n−1
i=0 .

Step 4: Linearly interpolate the n + 1 points{
(0, 0),

(
1
n
, R̂γ

RT

(
1
n

))
, . . . ,

(
n − 1
n

, R̂γ

RT

(
n − 1
n

))
, (1, 1)

}
,

where

R̂γ

RT

(
i
n

)
= 1 −

(
1 −

i
n

)
r̂γ

RT

(
i
n

)
,

for i = 1, . . . , n − 1. This builds a piecewise linear star-shaped curve, which we denote by R̂γ

RT.

If one wanted to select γ a priori (e.g., γ = 0.05, etc.), the star-shaped configuration R̂γ

RT could then be used to produce
critical values in the same way as R̂AS was used in Section 3.1. That is, one could sample X †

m = {X†
1 , . . . , X†

m} from R̂γ

RT
and Y†

n = {Y †
1 , . . . , Y †

n } from a U(0, 1) distribution a large number of times (say, L) and select cRTα,p(γ ), the 1 − α quantile
of the collection of test statistics {Mp†

mn,l}
L
l=1 calculated from X †

m and Y†
n . The decision rule would be to reject H0 when

Mp
mn ≥ cRTα,p(γ ).
It is important to understand how selecting γ can influence the star-shaped configuration identified by the RT method.

To gain insight, refer to Fig. 3 which displays the empirical ODC Rmn for the premature infant data we examine in
Section 5. Using B = 1000 bootstrap samples, we plot 999 star-shaped configurations R̂γ

RT (in blue), one for each choice
of γ ∈ {0.001, . . . , 0.999}. Note that choosing γ to be large (i.e., 1 − γ small) produces a star-shaped configuration far
away from R0, which would produce a much smaller critical value than the one in Tang et al. (2017). This would greatly
improve the power of the test, but the probability of type I error would almost surely be inflated when R = R0 (or even
near R0). On the other hand, selecting γ to be small (i.e., 1− γ large) would likely do an acceptable job at controlling the
probability of type I error; however, it may offer only a small improvement in power.

Instead of selecting γ beforehand and determining R∗
= R̂γ

RT from it, an anonymous referee has suggested that one
could actually view γ as a ‘‘tuning parameter’’ which can be selected perspicaciously to provide a potentially better
configuration. Following this recommendation, our goal becomes to select γ in such a way that controls the size of the
test yet also offers as much power gain as possible. We now describe an approach on how to make this selection.

Tuning parameter selection
Let Ui = Fm(Xi) for i = 1, . . . ,m and Vj = Gn(Yj) for j = 1, . . . , n, where Fm and Gn are empirical distribution functions

of Xm and Yn, respectively. Let 0 < γ1 < · · · < γT < 1 be a grid on [0, 1].

Step TP1: Generate B bootstrap samples using Um = {U1, . . . ,Um} and Vn = {V1, . . . , Vn}. Denote the bth bootstrap
version of the least star-shaped majorant by MR∗∗

mn,b, for b = 1, . . . , B.

Step TP2: For each b = 1, . . . , B, calculate the slope

r∗∗

b

(
i
n

)
=

1 − MR∗∗

mn,b

( i
n

)
1 −

i
n

,

for i = 0, 1, . . . , n−1. For each i and t = 1, . . . , T , calculate the 1−γt quantile of the B slopes {r∗∗

b (i/n)}Bb=1. Denote
these quantiles by r̃∗γt (i/n).
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Fig. 3. Premature infant data. The empirical ODC Rmn is shown in black. The 999 dot-dashed curves (shown in blue) denote R̂γ

RT , as γ varies from
0.001 to 0.999 by 0.001. The equal distribution line R0(u) = u is shown dotted. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Step TP3: For each t = 1, . . . , T , sort the quantiles {r̃∗γt (i/n)}n−1
i=0 in descending order to obtain {̂r∗γt

RT (i/n)}n−1
i=0 . Let γ̂ denote

the largest γt that solves

r̂∗γt
RT

(
n − 1
n

)
= 1.

We select γ = γ̂ and use this value in Steps 2, 3, and 4 of the RT method.

Several comments are in order. First, regardless of the true R that generates the observed data Xm and Yn, the
transformed samples Um and Vn are both approximately U(0, 1) and hence arise from a configuration close to R0. Therefore,
when F = G, the collection of ordered slopes {̂rγt

RT(i/n)}
n−1
i=0 based on the observed data and the collection {̂r∗γt

RT (i/n)}n−1
i=0

based on the transformed data should be similar−especially for large sample sizes. Second, the selection of γ̂ in Step TP3
is made strategically. For each value of γt , t = 1, . . . , T , the slopes {̂r∗γt

RT (i/n)}n−1
i=0 form a nonincreasing sequence in [0, 1].

Therefore, if r̂∗γt
RT ((n−1)/n) = 1, then it must be true that r̂∗γt

RT (i/n) = 1, for i = 1, . . . , n−1. Applying linear interpolation
in Step 4 of the RT method with any such value of γt will produce the equal distribution line R0 (or a configuration
extremely close to R0), and the probability of type I error will be controlled when R = R0. Finally, by choosing γ̂ to be the
largest value of γt where r̂∗γt

RT ((n − 1)/n) = 1, we are attempting to combine the ‘‘best of both worlds’’. This choice not
only controls the size of the test but, as we illustrated in Fig. 3, a large value of γ also boosts the power when R ∈ H1.

When selecting γ = γ̂ in the manner described above, Steps 2, 3, and 4 of the RT method identify the star-shaped
configuration R∗

= R̂γ̂

RT, and the decision rule is to reject H0 when Mp
mn ≥ cRTα,p(γ̂ ). The 1−α quantile cRTα,p(γ̂ ) is determined

by simulating the distribution of Mp
mn under R̂γ̂

RT.

4. Simulation evidence

We use simulation to evaluate our proposed data-dependent methods. To assess size properties, we use the equal
distribution line R0 and the four star-shaped ODCs R1, R2, R3 and R4 shown in Fig. 1 (right). These four ODCs are members
of a larger family of star-shaped ODCs described in the supplement to Tang et al. (2017). All simulation results are based
on 1000 Monte Carlo data sets. To generate these data sets, we sample Xm from Ri, i = 0, 1, . . . , 4, using inverse transform
sampling and Yn from a U(0, 1) distribution. AS and RT critical values are determined using the configurations R̂AS and
R̂γ̂

RT, respectively, which are identified for each data set separately. We use B = 1000 bootstrap samples for the RT method
and L = 1000 for both methods to simulate cASα,p and cRTα,p(γ̂ ), respectively. The critical value from Tang et al. (2017), cα,p,
is based on the asymptotic distribution of Mp

mn under R0.
Table 1 displays the results for sample sizes m = n ∈ {50, 100, 150, 200}, distances p ∈ {1, 2, ∞}, and significance

level α = 0.05. Of primary interest is the performance of AS and RT when F = G; i.e., when R = R0. This is true because
if either method cannot control the probability of type I error at the least favorable configuration, then any power gains



D. Wang, C.-F. Tang and J.M. Tebbs / Computational Statistics and Data Analysis 144 (2020) 106898 7

Table 1
Simulation results. Estimated probability of rejecting H0 : F ⪯USO G when α = 0.05 and p ∈ {1, 2, ∞} for different sample sizes (m, n). The equal
distribution line configuration is R0 . The remaining ODCs R1, . . . , R4 are shown in Fig. 1 (right). The results are presented in this order: Tang et al.
(2017), AS (Section 3.1), and RT (Section 3.2). Size estimates (under R0) outside the margin of error are shown bolded.
ODC p m = n = 50 m = n = 100 m = n = 150 m = n = 200

Tang AS RT Tang AS RT Tang AS RT Tang AS RT

R0

1 0.063 0.051 0.053 0.071 0.057 0.059 0.056 0.050 0.051 0.061 0.058 0.061
2 0.063 0.055 0.056 0.063 0.058 0.058 0.055 0.051 0.051 0.059 0.057 0.059
∞ 0.041 0.048 0.048 0.033 0.048 0.052 0.035 0.046 0.047 0.041 0.055 0.058

R1

1 0.022 0.020 0.015 0.011 0.019 0.010 0.011 0.025 0.013 0.009 0.024 0.010
2 0.027 0.024 0.024 0.023 0.032 0.023 0.019 0.031 0.019 0.018 0.037 0.027
∞ 0.031 0.036 0.037 0.023 0.036 0.039 0.026 0.038 0.036 0.031 0.042 0.041

R2

1 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.000 0.000 0.000
2 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.004 0.001 0.000 0.006 0.000
∞ 0.000 0.007 0.003 0.001 0.007 0.001 0.002 0.014 0.004 0.000 0.014 0.006

R3

1 0.012 0.019 0.009 0.005 0.027 0.010 0.009 0.027 0.013 0.003 0.030 0.010
2 0.022 0.028 0.020 0.016 0.033 0.027 0.014 0.034 0.022 0.013 0.038 0.029
∞ 0.025 0.033 0.033 0.021 0.038 0.038 0.025 0.040 0.033 0.028 0.041 0.039

R4

1 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.006 0.000 0.000 0.006 0.000
2 0.000 0.003 0.000 0.000 0.005 0.000 0.000 0.013 0.001 0.000 0.011 0.001
∞ 0.000 0.008 0.001 0.001 0.016 0.003 0.001 0.023 0.011 0.000 0.024 0.007

would be at best specious. Note that with 1000 data sets, the margin of error in the probability of type I error estimates
when F = G, assuming a 99 percent confidence level, is approximately 0.018. Therefore, any estimate (under R0) outside
0.050±0.018 suggests the method is not conferring the nominal size. The results in Table 1 demonstrate that, regardless
of which distance is used, both data-dependent methods for determining critical values are successful at controlling the
size of the ODC-based test. Furthermore, for the star-shaped ODCs R1, R2, R3 and R4, the rejection rates for AS and RT are
often less conservative than when using the fixed critical values in Tang et al. (2017).

We now provide a detailed power comparison which illustrates the potential benefit of using our sample-based
methods. Fig. 4 displays four sequences of ODCs. Each sequence is indexed by a parameter δ whose ODC when δ = 0
is star-shaped, and increasing the value of δ produces non-star-shaped ODCs that ‘‘move farther away’’ from H0. The
mathematical expressions for each sequence are complex, so we relegate these to the Supplementary Material. A summary
of each sequence is provided below.

• The first sequence (Fig. 4, upper left) is created by rotating the line segment AB on the equal distribution
configuration R0 (which corresponds to δa = 0) counter-clockwise towards the segment A1B1, where δa = 9. The
second sequence (Fig. 4, upper right) is created analogously except one rotates AB (δb = 0) clockwise to A2B2 (δb = 9).
All ODCs in both sequences, excluding the δa = 0 and δb = 0 members, are non-star-shaped.

• The third sequence (Fig. 4, lower left) starts with the ODC labeled with segment CD (δc = 0), which is star-shaped.
As δc increases, the sequence moves towards the ODC labeled with C1D1. ODCs corresponding to δc ∈ {1, . . . , 9} are
not star-shaped. Each ODC in this sequence is at least as large as the equal distribution configuration R0; i.e., F and
G satisfy usual stochastic ordering but not USO when δc > 0.

• The fourth sequence (Fig. 4, lower right) starts with R0 (δd = 0). The δd = 1 ODC connects the points labeled (1, 1),
K, H, E, and (0, 0), which admits a very small non-star-shaped region. As δd increases, this region increases in size;
e.g., the δd = 9 ODC connects (1, 1), K, H1, E1, and (0, 0). Similar to the third sequence, F and G satisfy usual stochastic
ordering but not USO when δd > 0.

Fig. 5 displays the power results for distances p ∈ {1, 2, ∞}, significance level α = 0.05, and sample sizesm = n = 100.
The same figures for m = n = 50 and m = n = 200 are given in the Supplementary Material. As in the previous
investigation examining size, all powers are estimated by using 1000 simulated data sets. Our results in Fig. 5 are depicted
by using ‘‘power curves’’, which are formed by letting the corresponding δ parameter in each ODC sequence increase from
0 to 9 (see Fig. 4). Each subfigure contains three curves—one for the AS method (Section 3.1), one for the RT method
(Section 3.2), and one using the fixed critical values in Tang et al. (2017).

The first and second rows in Fig. 5 correspond to the δa and δb ODC sequences, respectively, whose δ = 0 members
coincide with the equal distribution line R0. When comparing the data-dependent approaches, the AS method does best
for the δa sequence while the RT method is preferred for the δb sequence. Because of the shape of the δb sequence, the
AS method will usually identify R∗

= R̂AS = R0 as its configuration; hence, its power gains are at best minimal when
compared to Tang et al. (2017). For the δa sequence, the largest gains in power are seen for the L1 distance statistic
(i.e., p = 1; Fig. 5, left); for the δb sequence, all three distances provide similar results.

Perhaps the most promising results are observed with the δc and δd ODC sequences whose δ > 0 members represent
stochastic ordering between F and G; i.e., 1−F (t) ≤ 1−G(t), but not USO. For these cases in Fig. 5 (bottom two rows), the
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Fig. 4. ODC sequences. Each sequence is indexed by a parameter δa (upper left), δb (upper right), δc (lower left), and δd (lower right). In each subfigure,
10 ODCs are plotted corresponding to values of δa, δb, δc , δd ∈ {0, 1, . . . , 9}. Explicit formulas for each sequence are given in the Supplementary
Material.

RT approach is preferred among the data-dependent methods, and both AS and RT can offer enormous gains in power.
This finding is especially encouraging on practical grounds. For example, suppose a researcher is confident that F and
G already satisfy stochastic ordering but wants to assess whether F and G satisfy USO−a much stronger condition. Our
results suggest that both AS and RT can be highly successful at discriminating between these two orderings, especially
when compared to the conservative testing procedure in Tang et al. (2017).

5. Premature infant data

Cox et al. (2015) describe a retrospective study that examined the impact of administering caffeine to premature infants
in Columbia, South Carolina. The primary goal of the investigation was to assess whether treating infants with caffeine
was associated with an increased risk of developing necrotizing enterocolitis, a harmful medical condition characterized
by bacterial infection and inflammation of the intestines. A secondary goal was to determine if exposing infants to caffeine
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Fig. 5. Simulation results. Estimated power curves for sample sizes m = n = 100 and α = 0.05. The top row corresponds to the δa ODC sequence;
the second row corresponds to the δb sequence; the third row corresponds to the δc sequence; the bottom row corresponds to the δd sequence.
Results are shown for distances p = 1 (left), p = 2 (middle), and p = ∞ (right). AS curves (Section 3.1) are shown in blue using circles; RT curves
(Section 3.2) are shown in blue using triangles. The dot-dashed lines in red correspond to using the fixed critical values in Tang et al. (2017). The
same figures for m = n = 50 and m = n = 200 are given in the Supplementary Material.

simultaneously conferred beneficial outcomes, such as reducing the time spent in the neonatal intensive care unit (NICU)
and reducing the risk of apnea (due to underdeveloped lungs) and extubation failure.

To illustrate our data-dependent methods for selecting critical values when testing against USO, we use the same set
of infants analyzed by Tang et al. (2017). Let X and Y denote the times from admission to discharge from the NICU for
those infants treated with caffeine and for those not treated with caffeine, respectively. Our data set consists of m = 127
infants from the caffeine group and n = 277 infants from the no-caffeine group. As in Tang et al. (2017), we treat these
groups as independent random samples from F and G, respectively. All infants were alive at the time of discharge from
the NICU, that is, no times were censored.

Using the fixed critical values cα,p from the least favorable configuration R0, Tang et al. (2017) showed H0 : F ⪯USO G
would not be rejected at any reasonable significance level. Therefore, it is of interest to determine if our data-dependent
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Fig. 6. Premature infant data. The empirical ODC Rmn is shown in black. The data-dependent configurations R̂AS and R̂γ̂

RT (labeled AS and RT) are
shown dashed and dot-dashed, respectively, in blue. The equal distribution line R0(u) = u is shown dotted.

Table 2
Premature infant data analysis. Test statistics for testing H0 : F ⪯USO G versus H1 :

F A⪯ USO G and critical values for p ∈ {1, 2, ∞} when α = 0.05. Critical values are presented
in this order: Tang et al. (2017), AS (Section 3.1), and RT (Section 3.2).
Distance Test statistic Critical values

Tang AS RT

p = 1 M1
mn = 0.170 0.580 0.251 0.382

p = 2 M2
mn = 0.263 0.676 0.380 0.517

p = ∞ M∞
mn = 0.949 1.353 1.071 1.190

methods might reject H0, because the corresponding critical values are likely to be smaller. In Fig. 6, we display the star-
shaped configurations identified by AS and RT, respectively. The configuration R̂γ̂

RT was determined by using B = 1000
bootstrap samples, and the tuning parameter was selected to be γ̂ = 0.012. For α = 0.05, critical values cAS0.05,p and
cRT0.05,p(γ̂ ) were found by simulating the distribution of the test statisticMp

mn L = 1000 times under R̂AS and R̂γ̂

RT, respectively,
and then selecting the 95th percentiles of these empirical distributions. This was done for values of p ∈ {1, 2, ∞}.

Table 2 shows the results. Based on the selected configurations in Fig. 6, it is not surprising that the AS method provides
the smallest critical values, followed by the RT method, and that the critical values calculated from R0 are the largest.
However, when α = 0.05, we still fail to reject H0 : F ⪯USO G using either data-dependent method. This reaffirms and, in
fact, strengthens the conclusion in Tang et al. (2017). That is, these data suggest the time to discharge for infants treated
with caffeine is uniformly stochastically smaller than the time to discharge for infants not treated with caffeine.

6. Discussion

We have presented two data-dependent approaches to calculate improved critical values for the nonparametric test of
H0 : F ⪯USO G versus H1 : F @⪯ USO G presented in Tang et al. (2017). The AS method uses antitonic regression to estimate
the ODC of F and G under H0, whereas the RT method uses bootstrapping to select a potentially more generous star-shaped
configuration. Both methods are shown to confer the nominal size in our simulation study, and both can provide large
gains in power when compared to using the fixed critical values in Tang et al. (2017). For practical implementation, our R
package TestUSO automates the entire process of performing the test, including determining the AS and RT configurations
and critical values. This package is hosted at the GitHub address given in Section 1.

It may be possible to modify our AS and RT methods in an effort to improve the power even more, but any attempt
at this may be computationally overwhelming and ultimately not helpful. For example, the antitonic regression step in
the AS method (Step 3) could be altered to minimize

∑n−1
i=1 (rmn,i − ωi)2wi, where the wi’s are user-specified weights (our

Step 3 uses wi = 1 for each i). A different configuration of these weights might produce a more powerful star-shaped
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configuration from which to select critical values. Of course, any ‘‘optimal’’ selection would almost surely depend on the
true R, and it is unclear if all possible weight selections would control the size. In addition, one could generalize the RT
method by selecting a different value of γ at each point 1/n, . . . , (n−1)/n in Step 2 and then order different quantiles in
Step 3. This would certainly produce a different configuration than selecting R̂γ

RT based on a common quantile. However,
the complexity involved with selecting n − 1 tuning parameters, say γ (1), . . . , γ (n−1), may not be worth the effort when
compared to the approach we have taken.

A more promising avenue for future research may be to borrow ideas from the econometrics literature examining
tests for likelihood ratio ordering (LRO), a stronger stochastic order arising when R = FG−1 is concave (Carolan and
Tebbs, 2005; Beare and Moon, 2015). Similar to our problem, fixed critical values from the least favorable configuration
can be used; however, the resulting goodness-of-fit test for LRO is conservative and lacks power to detect non-concave
alternatives. Beare and Shi (2019) overcome this problem by estimating a ‘‘contact set’’ associated with R (R concave)
and then formulating a bootstrap procedure to calculate more generous critical values. We believe this approach could
be attempted to improve the power of the test in Tang et al. (2017), but overwhelming technical challenges could arise
because the least star-shaped majorant operator M does not enjoy certain differential properties.
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