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This article develops a two-sample nonparametric goodness-of-fit (GOF) test for uniform stochastic ordering
(USO) when observations are taken in pairs. We propose a data-driven critical value that controls the type I error
and yields a consistent test. A simulation study illustrates the finite-sample performance of our test. All the proofs
are included in the supplemental file.
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1. Introduction

A random variable X is smaller than Y in uniform stochastic ordering, denoted by X � Y throughout
this article, if pr(X > t |X > t0) ≤ pr(Y > t |Y > t0) for all t > t0. Let F and G be the distribution
functions of X and Y , respectively. When F and G are absolutely continuous, USO is also known as
hazard rate ordering, an important characterization in reliability, econometrics, actuarial sciences, and
biomedical studies (see, e.g., Dykstra [6], Navarro and Shaked [10], Da and Ding [3], Balakrishnan et
al. [2]).

Acknowledging USO when it exists improves inference. For example, nonparametric estimators of
F and G subject to a USO constraint are more efficient than unrestricted estimators when the constraint
is true (Rojo and Samaniego [12,13], Mukerjee [9], Arcones and Samaniego [1]). On the other hand,
wrongly acknowledging USO could compromise inference by inducing a large bias.

Nonparametric GOF tests for USO started from discrete settings (Dardanoni and Forcina [4], Park
et al. [11]). Arcones and Samaniego [1] offered a one-sample test for continuous data. Tang et al.
[14] proposed a two-sample GOF test that targets specifically at the situation where X and Y are
independent.

In this article, we extend the two-sample test in Tang et al. [14] to account for paired observations
where X and Y are likely not independent. Though our test statistic remains the same, we use a dif-
ferent way to find a data-driven critical value. We show that our critical value controls the type I error
asymptotically and yields a consistent test regardless of the correlation between X and Y . Moreover,
when X and Y are independent, our simulation shows that the new test is more powerful than the one
in Tang et al. [14].

1.1. Hypotheses and test statistic

The hypotheses of our GOF test are H0 : X � Y versus H1 : not H0. As introduced in Tang et al. [14],
X � Y holds if and only if the ordinal dominance curve (ODC) R = FG−1 is star-shaped, that is,
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the slope function, r(u) = {1 − R(u)}/(1 − u), of the secant line from the point (1,1) to (u,R(u)) is
non-increasing in u ∈ [0,1) (see Figure 1 in Tang et al. [14] for an illustration). Following their work,
we assume that the joint density of (X,Y ) is continuous and that the first derivative of R is bounded
over [0,1]. Denote the parameter space of R by �, the collection of non-decreasing and continuously
differentiable functions from [0,1] to [0,1]. Then, the hypotheses can be expressed equivalently as

H0 : R ∈ �0 = {θ ∈ � : θ is star-shaped} versus H1 : R ∈ � \ �0.

Let the data be {(Xi, Yi)
T}ni=1, n independent and identically distributed copies of (X,Y )T. We use

the same test statistic as in Tang et al. [14], written by

Mn,p = n1/2‖MRn − Rn‖p,

for 1 ≤ p ≤ ∞, where n1/2 is a normalizing constant, ‖ · ‖p denotes the Lp norm, Rn is an unrestricted
estimator of R, and MRn is a restricted estimator with respect to H0. Specifically, Rn = FnG

−1
n is the

empirical ODC, where Fn(x) is the empirical distribution function of X, and G−1
n (u) is the empirical

quantile function of Y ; MRn(u) is the smallest star-shaped function that is at least as large as Rn

calculated by MRn = 1 − (1 − u) inf0≤v≤u[{1 − Rn(v)}/(1 − v)] for u ∈ [0,1) and MRn(1) = 1.
The operator M is called the least star-shaped majorant operator. Large values of Mn,p are evidence
against H0.

1.2. Non-differentiability

Let D = M − I , where I is the identity operator; i.e., IR = R. Lemma 5 in Tang et al. [14] showed
that neither M nor D is Hadamard directionally differentiable at R ∈ �0 unless R is of a special shape.
The non-differentiability brings two unique difficulties to locate a valid critical value.

First, the non-differentiability does not permit the use of the functional delta method to derive the
asymptotic distribution of Mn,p under H0. Lemma 1.1 implies that n1/2(Rn − R) converges weakly to
a stochastic process TR,C as n → ∞. The TR,C satisfies

TR,C(u) = BC

{
R(u),1

} − R′(u)BC(1, u)

for u ∈ [0,1] where {BC(u, v) : 0 ≤ u,v ≤ 1} is a mean-zero Gaussian process satisfying (1.1) and R′
is the derivative of R. This lemma is similar to Theorem 2.2 in Hsieh and Turnbull [8] with X and Y

now being dependent. For any R ∈ �0, DR = 0. The term MRn −Rn in Mn,p equals DRn −DR. If D
is Hadamard directional differentiable at R with a derivative dDR , then Lemma 1.1 easily implies that
n1/2(MRn −Rn) converges weakly to dDRTR,C . Unfortunately, the differentiability does not hold for
all R ∈ �0.

Lemma 1.1. Let C be the bivariate copula induced by the joint distribution of X and Y . There exists a
sequence of mean-zero Gaussian processes, {B(n)

C (u, v) : 0 ≤ u,v,≤ 1}∞n=1, with covariance structure

cov
{
B(n)

C (u1, v1),B(n)
C (u2, v2)

} = C(u1 ∧ u2, v1 ∧ v2) − C(u1, v1)C(u2, v2), (1.1)

where u ∧ v = min(u, v), such that the following holds almost surely,

lim
n→∞ sup

0≤u≤1

∣∣n1/2{Rn(u) − R(u)
} − [

B(n)
C

{
R(u),1

} − R′(u)B(n)
C (1, u)

]∣∣ = 0.
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Second, the non-differentiability prevents the standard bootstrap from estimating the sampling dis-
tribution of Mn,p and thus brings difficulty to find a valid critical value. As discussed by Dümbgen
[5] and further investigated by Fan and Santos [7], standard bootstrap inference does not work with
operators that are not Hadamard directionally differentiable. Therefore, it is not surprising to see that
by sampling the observed pairs with replacement, bootstrap versions of Mn,p failed to estimate the
sampling distribution of Mn,p .

These two challenges also presented when X and Y are independent. Tang et al. [14] pointed out that
weak convergence of n1/2(MRn −Rn) is not a necessary prerequisite to derive the limiting distribution
of Mn,p and obtained the distribution without using the functional data method. Furthermore, they
identified the least favorable configuration to compute a valid critical value. Though using the least
favorable configuration controls the probability of type I error, it yields a quite conservative test and
weakens the power of the test. Moreover, when X and Y are dependent, it is not clear whether the
least favorable configuration still exists or not. In this article, we follow Tang et al. [14] to address the
first challenge for paired observations, but provide a different critical value which not only works for
dependent cases but also improves the power of the test when X and Y are truly independent.

2. Critical value

Now we explain the construction of our new critical value. We start with the limiting distribution of
Mn,p under the null hypothesis. This helps us quantify the probability of type I error asymptotically.
For every R ∈ �0, we follow Tang et al. [14] to partition [0,1] into a non-strictly star-shaped region S1

and a strictly star-shaped region [0,1] \ S1. If S1 is not empty, we can write S1 as a union of pairwise
disjoint intervals of the form [ak, bk] for 0 ≤ ak < bk ≤ 1.

Theorem 2.1. For R ∈ �0, if S1 = ∅, define DS1TR,C(u) = 0 for all u ∈ [0,1]; if S1 = ∪k[ak, bk],
define

DS1TR,C(u) =
∑

k

[
(1 − u) sup

ak≤v≤u

{TR,C(v)

1 − v

}
− TR,C(u)

]
I (ak ≤ u ≤ bk)

for u ∈ [0,1) and DS1TR,C(1) = 0. The Mn,p converges in distribution to ‖DS1TR,C‖p for 1 ≤ p ≤ ∞
as n → ∞.

When C is the independence copula, or equivalently, X and Y are independent, Theorem 2.1 sim-
plifies to Theorem 1 in Tang et al. [14]. The simplified version facilitates the finding of Theorem 2 in
Tang et al. [14] that the unique least favorable configuration is R0, where R0 satisfies R0(u) = u for all
u ∈ [0,1] and is known as the equal distribution line (i.e., R0 holds when F = G). It means that, when
X and Y are independent,

lim
n→∞ prR∈�0

(Mn,p > t) ≤ lim
n→∞ prR=R0

(Mn,p > t);

that is, controlling the type I error at R0 controls the type I error at all R ∈ �0. When C is not the
independence copula, the dependence between X and Y makes the identification of the least favorable
configuration very challenging.

The following theorem suggests an alternative way to control the type I error.
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Theorem 2.2. Let LR,C(u) = BC{R(u),1} − r(u)BC(1, u) for u ∈ [0,1]. If R is star-shaped,

lim
n→∞ pr(Mn,p > t) ≤ pr

(‖D[0,1]LR,C‖p > t
)

(2.1)

for all p ∈ [1,∞] and all t ∈ R, where

D[0,1]LR,C(u) =
[
(1 − u) sup

0≤v≤u

{LR,C(v)

1 − v

}
−LR,C(u)

]
I (0 ≤ u < 1),

where the inequality in (2.1) becomes equality only when R = R0.

When R ∈ �0, letting the critical value be c, Theorem 2.2 reveals that the probability of type I error
pr(Mn,p > c) is asymptotically bounded by pr(‖D[0,1]LR,C‖p > c). Therefore, there is no need to find
the least favorable configuration to bounded the type I error. If we can estimate the distribution of
‖D[0,1]LR,C‖p , taking the 1 − α quantile of the estimator suffices to control the size of the test to be
no larger than α.

The LR,C involves three terms: BC , R, and r . We first use bootstrap to estimate BC . By sampling
{(X∗

i , Y
∗
i )T}ni=1 with replacement from {(Xi, Yi)

T}ni=1, the bootstrap estimator is

B∗
C(u, v) = n−1/2

n∑
i=1

[
I
{
X∗

i ≤ F−1
n (u),Y ∗

i ≤ G−1
n (v)

} − I
{
Xi ≤ F−1

n (u),Yi ≤ G−1
n (v)

}]

for 0 ≤ u,v ≤ 1, where F−1
n and G−1

n are the empirical quantile function associated with F and G, re-
spectively. Furthermore, we note that (2.1) only holds for a star-shaped R. We estimate R and r by their
restricted estimators (subject to H0) MRn and r̂n, respectively, where r̂n(u) = {1 −MRn(u)}/(1 −u)

for u ∈ [0,1) and r̂n(1) = limu↑1{1 −MRn(u)}/(1 − u). Finally, we estimate LR,C(u) by

L∗
R,C(u) = B∗

C

{
MRn(u),1

} − r̂n(u)B∗
C(1, u) for u ∈ [0,1].

The following lemma demonstrates that the distribution of ‖D[0,1]L∗
R,C‖p conditional on the data

well approximates the distribution of ‖D[0,1]LR,C‖p for all p ∈ [1,∞].

Lemma 2.1. If R is star-shaped,

sup
t∈R

∣∣pr∗
(∥∥D[0,1]L∗

R,C

∥∥
p

> t
) − pr

(‖D[0,1]LR,C‖p > t
)∣∣

converges to zero in probability, for all p ∈ [1,∞], as n → ∞, where pr∗ denotes the probability
conditional on the observed data.

Lemma 2.1 suggests that, at significance level α, the 1 − α quantile of the distribution of
‖D[0,1]L∗

R,C‖p conditional on the observe data asymptotically controls the size of the test to be no
larger than α. We denote that quantile by ĉα,p and reject H0 if Mn,p > ĉα,p . In practice, we can repeat
the bootstrap K times and take ĉα,p to be the 1 − α sample quantile of the K bootstrap versions of
‖D[0,1]L∗

R,C‖p .

Theorem 2.3. For p ∈ [1,∞], if R ∈ �0

lim
n→∞ pr(Mn,p > ĉα,p) ≤ α (2.2)
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where the equality holds when R = R0; if R ∈ � \ �0,

lim
n→∞ pr(Mn,p > ĉα,p) = 1.

Finally, Theorem 2.3 concludes that the ĉα,p yields an asymptotic size α test, and the test is con-
sistent. It is important to note that using this critical value, the test could still be conservative because
Mn,p converges in distribution to a degenerated term 0 when R is strictly star-shaped. But our simu-
lation shows the new critical value yields a larger power than the one used in Tang et al. [14] when X

and Y are truly independent.

3. Simulation

We use simulation to assess the finite-sample performance of our test. To assess size properties, we
consider the equal distribution line R0 and four star-shaped ODCs R1, R2, R3 and R4 shown in Figure 3
of Tang et al. [14]. All of our simulation results are based on 1000 Monte Carlo data sets. To generate
these data sets, we let F(u) = Rk(u) and G(u) = u for u ∈ [0,1], where k = 0,1, . . . ,4, and take C to
be the Gaussian copula with a correlation coefficient ρ. Then, we sample {(Ui,Vi)

T}ni=1 from C and
compute Xi = F−1(Ui) and Yi = G−1(Vi). As a result, the pairs are from a joint distribution with its
ODC being Rk . Throughout this section, we use K = 1000 to compute ĉα,p , because it is sufficient to
approximate the distribution of Mn,p at R = R0 for n ∈ {200,400} and ρ ∈ [−0.9,0.9]. In practice,
one could first estimate C by Ĉn, then choose a K such that the distribution of Mn,p at R = R0 and
C = Ĉn can be well approximated.

Table 1 summarizes Monte Carlo estimates of the probability of rejecting H0 when R = Rk , for
k ∈ {0, . . . ,4}, n ∈ {200,400}, p ∈ {1,2,∞}, and ρ ∈ {−0.8,0,0.8}, at α = 0.05. Because the equality
in (2.2) holds when R = R0, we first check the finite-sample performance when R = R0. Using 1000
data sets has 0.018 as the margin of error in estimating the probability of type I error. We see that our
test confers the nominal size for all considered ρ. Furthermore, the estimated rejection rates for R1,
R2, R3 and R4 are all bounded by α = 0.05, which reinforces the inequality (2.2) in Theorem 2.3. In
addition, we see that p = ∞ often yields the least conservative results than p ∈ {1,2}.

Table 1. Size study. Estimated probability (×103) of rejecting H0 at α = 0.05 for n ∈ {200,400}, ρ ∈
{−0.8,0,0.8}, and p ∈ {1,2,∞}. The considered star-shaped ODCs are R0,R1, . . . ,R4

p = 1 p = 2 p = ∞
ρ −0.8 0 0.8 −0.8 0 0.8 −0.8 0 0.8

R0 n = 200 60 62 61 58 56 51 51 52 52
n = 400 65 56 65 61 55 54 65 57 61

R1 n = 200 20 21 15 32 27 29 49 42 44
n = 400 17 11 8 25 22 23 40 36 32

R2 n = 200 0 0 0 0 0 0 5 2 2
n = 400 0 0 0 0 0 0 4 2 0

R3 n = 200 34 25 11 38 28 26 47 39 43
n = 400 32 22 11 38 37 29 48 43 42

R4 n = 200 0 0 0 0 0 0 2 2 0
n = 400 0 0 0 0 1 0 3 2 0
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Figure 1. ODC sequences. Each sequence is indexed by a parameter δ1 (left) and δ2 (right), where
δ1, δ2 ∈ {0, . . . ,9} and the δ2 = 0 member is R0.

To assess power properties, we consider two sequences of ODCs displayed in Figure 1. Each se-
quence is indexed by a parameter δ whose δ = 0 member is star-shaped (i.e., X � Y holds) and other
members, δ ∈ {1, . . . ,9}, gradually move away from H0 as δ increases. The closed-form expression for
each sequence is included in the supplementary file [15]. We repeat the aforementioned Monte Carlo
procedure to estimate the rejection rate for each member of the two sequences. The first row in Figure 2
presents the results for n = 200, p = ∞, ρ ∈ {−0.8,0,0.8}, and α = 0.05. When ρ = 0, the Gaussian
copula reduces to the independence copula. We then compared with Tang et al. [14]. Results of this
comparison are presented in the second row in Figure 2. The figures for p ∈ {1,2} and for n = 400 are
of a similar pattern and are included in the supplemental file [15].

Subfigures in the first row in Figure 2 present estimated power curves. We see that the correlation
ρ affects the power of the test; that is, as the correlation increases, the power increases. However,
regardless of the value of ρ, the overall trend of the estimated power curves is the same. Because
each ODC sequence starts with a star-shaped member, the power curves all start with a value less or
around α = 0.05. As the index parameter δ increases, all curves approach one. This trend reinforces
Theorem 2.3 as well.

The second row in Figure 2 presents the comparison between using the new critical value and the
one suggested in Tang et al. [14] when X and Y are independent (ρ = 0). The power gains of using
our data-driven critical value are promising, even Tang et al.’s [14] test is provided that X and Y are
independent in advance.
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Figure 2. Estimated power curves using p = ∞ for sample sizes n = 200, ρ ∈ {−0.8,0,0.8}, and α = 0.05.
Curves using the new critical value are shown in triangles and connected by dot-dashes (ρ = −0.8), lines (ρ = 0),
or dashes (ρ = 0.8). The second row focuses on ρ = 0 to compare with Tang et al.’s [14] critical value. Curves
using Tang et al. [14] are shown in circles. The horizontal dotted line marks α = 0.05. The left and right columns
correspond to the δ1 and δ2 ODC sequences, respectively.

Supplementary Material

Supplement to “Testing against uniform stochastic ordering with paired observations” (DOI:
10.3150/21-BEJ1322SUPP; .pdf). The supplementary material includes proofs of Lemmas 1.1–2.1 and
Theorems 2.1–2.3, closed-form expression of the ODCs plotted in Figure 1, and additional simulation
results.
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