Review of discrete random variables

I: General discrete distributions. For any discrete random variable Y, it has a pmf $p_{Y}(y)=$ $P(Y=y)$ defined on its support $R_{Y}:$

1. For each y in $R_{Y}, p_{Y}(y) \geq 0$.
2. $\sum_{y \in R_{Y}} p_{Y}(y)=1$
3. The expectation of Y is $E(Y)=\sum_{y \in R_{Y}} y p_{Y}(y)$.
4. The variance of Y is $V(Y)=E\left(Y^{2}\right)-\{E(Y)\}^{2}=\sum_{y \in R_{Y}} y^{2} p_{Y}(y)-\{E(Y)\}^{2}$.
5. Calculate a probability is a straightforward addition, for example, $P(Y \in B)=\sum_{y \in R_{Y} \cap B} p_{Y}(y)$.
6. The moment generating function of Y is

$$
m_{Y}(t)=E\left(e^{t Y}\right)=\sum_{y \in R_{Y}} e^{t y} p_{Y}(y)
$$

It can be used to generate moments of Y :

$$
E(Y)=\left.\frac{d m_{Y}(t)}{d t}\right|_{t=0}, \quad E\left(Y^{2}\right)=\left.\frac{d^{2} m_{Y}(t)}{d t^{2}}\right|_{t=0}, \quad V(Y)=\left.\frac{d^{2} m_{Y}(t)}{d t^{2}}\right|_{t=0}-\left(\left.\frac{d m_{Y}(t)}{d t}\right|_{t=0}\right)^{2} .
$$

II: Binomial distributions. It is used to model the number of "successes" out of n Bernoulli trials (where n is fixed). Notation: $Y \sim b(n, p), n$ is the number of trials, p is the success probability.

1. The support is $R_{Y}=\{0,1,2, \ldots, n\}$.
2. The pmf is $p_{Y}(y)=P(Y=y)=\binom{n}{y} p^{y}(1-p)^{n-y}$ for $y \in R_{Y}$. You can use TI-84 binompdf (n, p, y).
3. To calculate probability $P(Y \leq y)$ you can use IT-84 $\operatorname{binomcdf}(n, p, y)$.
4. The mgf of Y is $m_{Y}(t)=\left(1-p+p e^{t}\right)^{n}$.
5. $E(Y)=n p$ and $V(Y)=n p(1-p)$.

III: Geometric distributions. It is used to model the number of trials to observe the first success. Notation: $Y \sim \operatorname{geom}(p), p$ is the success probability.

1. The support is $R_{Y}=\{1,2, \ldots, \infty\}$.
2. The pmf is $p_{Y}(y)=P(Y=y)=(1-p)^{y-1} p$ for $y \in R_{Y}$. This calculation is easy or TI-84 geometpdf (p, y).
3. And $P(Y \leq y)=1-(1-p)^{y}$, again, an easy calculation or TI-84 $\operatorname{geometcdf}(p, y)$.
4. The mgf of Y is

$$
m_{Y}(t)=\frac{p e^{t}}{1-(1-p) e^{t}} \quad \text { for } \quad t<-\ln q .
$$

5. $E(Y)=1 / p$ and $V(Y)=(1-p) / p^{2}$.

IV: Negative binomial distributions. It is used to model the number of trials to observe the r th success. Notation: $Y \sim \operatorname{nib}(r, p), p$ is the success probability.

1. The support is $R_{Y}=\{r, r+1, r+2, \ldots, \infty\}$.
2. The pmf is

$$
p_{Y}(y)=P(Y=y)=\binom{y-1}{r-1} p^{r}(1-p)^{y-r} \quad \text { for } \quad y \in R_{Y} .
$$

This calculation can be done through $p \times \operatorname{binompdf}(y-1, p, r-1)$.
3. $P(Y \leq y)=1-\operatorname{binomcdf}(y, p, r-1)$.
4. The mgf of Y is

$$
m_{Y}(t)=\left(\frac{p e^{t}}{1-(1-p) e^{t}}\right)^{r} \quad \text { for } \quad t<-\ln q .
$$

5. $E(Y)=r / p$ and $V(Y)=r(1-p) / p^{2}$.

V: Hypergeometric distributions. We have a population of size N, out of N there are r objects of Class 1 and $N-r$ objects of Class 2. Randomly sample n objects out of N without replacement. Denote Y as the number of objects in the sample that belong to Class 1. Then Y has a hypergeometric distribution, written $Y \sim \operatorname{hyper}(N, n, r)$.

1. The support is $R_{Y}=\{y: \max (0, n-N+r) \leq y \leq \min (n, r)\}$.
2. The pmf is

$$
p_{Y}(y)=P(Y=y)=\frac{\binom{r}{y}\binom{N-r}{n-y}}{\binom{N}{n}} \text { for } y \in R_{Y}
$$

3. And $P(Y \leq y)$ is the summation of $p_{Y}(z)$ over $z \leq y$.
4.

$$
E(Y)=n\left(\frac{r}{N}\right) \quad \text { and } \quad V(Y)=n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right) .
$$

VI: Poisson distributions. It is used to model the number of occurrences in a certain unit of time or space. Notation: $Y \sim \operatorname{Poisson}(\lambda), \lambda$ is the rate parameter.

1. The support is $R_{Y}=\{0,1,2, \ldots, \infty\}$.
2. The pmf is $p_{Y}(y)=P(Y=y)=\lambda^{y} e^{-\lambda} / y!$. You can use TI-84 poissonpdf (λ, y).
3. $P(Y \leq y)$ can be calculated via poissoncdf (λ, y).
4. The mgf of Y is $m_{Y}(t)=\exp \left[\lambda\left(e^{t}-1\right)\right]$.
5. $E(Y)=\lambda$ and $V(Y)=\lambda$.
6. Consistent in unit: If events or occurrences occur at a rate of λ per unit time or space, then the number of occurrences in an interval of length t units follows a Poisson distribution with rate λt.

VII: Approximation.

1. When N is large, you can use Binomial $b(n, p=r / N)$ to approximate Hypergeometric hyper (N, n, r); i.e., if $Y \sim \operatorname{hyper}(N, n, r)$ and N is large, then

$$
P(Y=y) \approx \operatorname{binompdf}(n, r / N, y), \quad P(Y \leq y) \approx \operatorname{binomcdf}(n, r / N, y)
$$

Note that the calculation of $P(Y \leq y)$ can be very tedious if Y is Hypergeometrically distributed. This approximation can make such calculation much easier.
2. when n is large, one can use Poisson poisson $(\lambda=n p)$ to approximate Binomial $b(n, p)$; i.e., if $Y \sim b(n, p)$ and n is large, then

$$
P(Y=y) \approx \operatorname{poissonpdf}(n p, y), \quad P(Y \leq y) \approx \operatorname{poissoncdf}(n p, y)
$$

