
Review of continuous random variables

I: General continuous distributions. A random variable Y is said to be a continue random

variable if the cumulative distribution function (cdf), denoted by FY (y), of Y is continuous.

• FY (y) = P (Y ≤ y) for both discrete and continuous random variables.

• FY (y) is defined on the whole real line; i.e., for −∞ < y < +∞.

• See lecture notes Page 64 for the three properties of a cumulative distribution function.

• You should know how to calculate a cdf from a pmf (see Example 4.1 on page 62 of the notes)

• Also should know how to calculate a cdf from a pdf (see Example 4.3 on page 67 of the notes)

• For a continuous random variable Y , its probability density function (pdf), denoted by fY (y),

is defined by

fY (y) =
d

dy
FY (y).

This is how to calculate fY (y) from FY (y).

• Thus to find FY (y) from fY (y) is simply

FY (y) =

∫ y

−∞
fY (u)du.

• To check whether a function is a valid pdf, two things need be checked:

(1) fY (y) ≥ 0; (2)

∫ ∞
−∞

fY (y)dy = 1.

Two ways to calculate probability, based on cdf or pdf:

• P (Y ≤ b) = FY (b) =
∫ b
−∞ fY (y)dy.

• P (Y ≥ b) = 1− FY (b) =
∫ +∞
b fY (y)dy.

• P (a ≤ Y ≤ b) = FY (b)− FY (a) =
∫ b
a fY (y)dy.
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Important quantities of Y :

• The pth quantile of the distribution of Y , denoted by φp solves

FY (φp) = P (Y ≤ φp) = p.

• Expectation

E(Y ) =

∫ ∞
−∞

yfY (y)dy.

Note E(aY + b) = aE(Y ) + b.

• Variance

V (Y ) = E(Y 2)− [E(Y )]2

where

E(Y 2) =

∫ ∞
−∞

y2fY (y)dy.

Note V (aY + b) = a2V (Y ).

• Actually

E(Y k) =

∫ ∞
−∞

ykfY (y)dy.

You can certainly use the moment generating function to compute E(Y k), but sometimes, this

integral is much easier than taking derivatives of mgf.

• Moment generating function

mY (t) = E(etY ) =

∫ ∞
−∞

etyfY (y)dy,

defined on the collection of t that makes E(etY ) finite. The main use of mY (t) is to generate

moments:

E(Y k) =
dk

dtk
mY (t)

∣∣∣∣∣
t=0

.
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II: Uniform distributions. Y ∼ U(θ1, θ2), where θ1 < θ2. The support of Y is {y : θ1 < y < θ2}.

1. pdf

fY (y) =


1

θ2−θ1 , θ1 < y < θ2,

0, otherwise.

2. cdf

FY (y) =


0, y ≤ θ1,

y−θ1
θ2−θ1 , θ1 < y < θ2,

1, y ≥ θ2.

3. E(Y ) = θ1+θ2
2 , V (Y ) = (θ2−θ1)2

12

4. mgf:

mY (t) =


exp(θ2t)−exp(θ1t)

t(θ2−θ1) , t 6= 0,

1, t = 0.

5. Find probability of type P (Y > a), P (Y < b), P (a < Y < b).

III: Normal distributions. Y ∼ N (µ, σ2), where σ > 0. The support of Y is {y : −∞ < y <∞}.

1. pdf

fY (y) =
1√
2πσ

exp

{
−1

2

(
y − µ
σ

)2
}
.

Note that it is symmetric with respect to y = µ.

2. E(Y ) = µ, V (Y ) = σ2

3. mgf: mY (t) = exp(µt+ σ2t2/2).

4. Standardization:

Z =
Y − µ
σ

∼ N (0, 1).

5. P (a < Y < b) = normalcdf(a, b, µ, σ), where a, b could be ±∞, then put ±1099.

6. For Y ∼ N (µ, σ2), the pth quantile φp = invNorm(p, µ, σ).
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IV: Exponential distributions. Y ∼ exponential(β), where β > 0. The support is {y : y > 0}.

1. pdf

fY (y) =


1
β exp(−y/β), y > 0,

0, otherwise.

2. cdf

FY (y) =


0, y ≤ 0,

1− exp(−y/β), y > 0.

3. E(Y ) = β, V (Y ) = β2

4. mgf:

mY (t) = (1− βt)−1, for t < β−1.

5. Memoryless property: for any r > 0 and s > 0,

P (Y > r + s|Y > r) = P (Y > s).

6. Relationship with a Poisson process. Suppose that we are observing events according to a

Poisson process with rate λ = β−1, and let the random variable Y denote the time until the

first occurrence. Then Y ∼ exponential(β)

7. Find probability of type P (Y > a), P (Y < b), P (a < Y < b).

V: Gamma distributions. Y ∼ gamma(α, β), where α > 0, β > 0. The support of Y is {y : y > 0}.

1. Gamma function

Γ(t) =

∫ ∞
0

yt−1 exp(−y)dy, fort > 0.

for a positive integer n, Γ(n) = (n− 1)!.

2. An important formula:

Γ(α)βα =

∫ ∞
0

yα−1 exp(−y/β)dy.
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3. pdf

fY (y) =


1

Γ(α)βα y
α−1 exp(−y/β), y > 0,

0, otherwise.

4. E(Y ) = αβ, V (Y ) = αβ2

5. mgf:

mY (t) = (1− βt)−α, for t < β−1.

6. Relationship with a Poisson process. Suppose that we are observing events according to a

Poisson process with rate λ = β−1, and let the random variable Y denote the time until the

αth occurrence. Then Y ∼ gamma(α, β)

7. Find probability of type P (Y > a), P (Y < b), P (a < Y < b). TI-84 for definite integrals.

VI: χ2 distributions. Y ∼ χ2(ν) with ν being a positive integer, a special case of Gamma distri-

butions when α = ν/2 and β = 2. The support of Y is {y : y > 0}.

1. pdf

fY (y) =


1

Γ(ν/2)2ν y
(ν/2)−1 exp(−y/2), y > 0,

0, otherwise.

2. E(Y ) = ν, V (Y ) = 2ν

3. mgf:

mY (t) = (1− 2t)−ν/2, for t < 2−1.

4. Find the upper αth quantile χ2
α using the Table.

5. Find probability of type P (Y > a), P (Y < b), P (a < Y < b). TI-84 for definite integrals.
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VII: Beta distributions. Y ∼ beta(α, β), α > 0, β > 0. The support of Y is {y : 0 < y < 1}.

1. An important formulation

Γ(α)Γ(β)

Γ(α+ β)
=

∫ 1

0
yα−1(1− y)β−1dy.

2. pdf

fY (y) =


Γ(α+β)

Γ(α)Γ(β)y
α−1(1− y)β−1, 0 < y < 1,

0, otherwise.

3. E(Y ) = α/(α+ β), V (Y ) = (αβ)/{(α+ β)2(α+ β + 1)}

4. mgf: no closed form

5. Find probability of type P (Y > a), P (Y < b), P (a < Y < b). TI-84 for definite integrals.

6. Solve for quantiles, especially when α = 1, or β = 1, or both α and β are small integers (check

Example 4.17 on page 93).
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