Print then work on it directly. Staple HW 10-1 and 10-2 together.

Problem 1

5.26 In Exercise 5.8, we derived the fact that

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}4 y_{1} y_{2}, & 0 \leq y_{1} \leq 1,0 \leq y_{2} \leq 1, \\ 0, & \text { elsewhere }\end{cases}
$$

is a valid joint probability density function. Find
a the marginal density functions for Y_{1} and Y_{2}.
b $\quad P\left(Y_{1} \leq 1 / 2 \mid Y_{2} \geq 3 / 4\right)$.
c the conditional density function of Y_{1} given $Y_{2}=y_{2}$.
d the conditional density function of Y_{2} given $Y_{1}=y_{1}$.
e $P\left(Y_{1} \leq 3 / 4 \mid Y_{2}=1 / 2\right)$.

Problem 2

5.27 In Exercise 5.9, we determined that

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}6\left(1-y_{2}\right), & 0 \leq y_{1} \leq y_{2} \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

is a valid joint probability density function. Find
a the marginal density functions for Y_{1} and Y_{2}.
b $\quad P\left(Y_{2} \leq 1 / 2 \mid Y_{1} \leq 3 / 4\right)$.
c the conditional density function of Y_{1} given $Y_{2}=y_{2}$.
d the conditional density function of Y_{2} given $Y_{1}=y_{1}$.
e $P\left(Y_{2} \geq 3 / 4 \mid Y_{1}=1 / 2\right)$.

Problem 3

5.31 In Exercise 5.13, the joint density function of Y_{1} and Y_{2} is given by

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}30 y_{1} y_{2}^{2}, & y_{1}-1 \leq y_{2} \leq 1-y_{1}, 0 \leq y_{1} \leq 1, \\ 0, & \text { elsewhere. }\end{cases}
$$

a Show that the marginal density of Y_{1} is a beta density with $\alpha=2$ and $\beta=4$.
b Derive the marginal density of Y_{2}.
c Derive the conditional density of Y_{2} given $Y_{1}=y_{1}$.
d Find $P\left(Y_{2}>0 \mid Y_{1}=.75\right)$.

Problem 4
5.32 Suppose that the random variables Y_{1} and Y_{2} have joint probability density function, $f\left(y_{1}, y_{2}\right)$, given by (see Exercise 5.14)

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}6 y_{1}^{2} y_{2}, & 0 \leq y_{1} \leq y_{2}, y_{1}+y_{2} \leq 2 \\ 0, & \text { elsewhere }\end{cases}
$$

a Show that the marginal density of Y_{1} is a beta density with $\alpha=3$ and $\beta=2$.
b Derive the marginal density of Y_{2}.
c Derive the conditional density of Y_{2} given $Y_{1}=y_{1}$.
d Find $P\left(Y_{2}<1.1 \mid Y_{1}=.60\right)$.

Problem 5

5.61 In Exercise 5.18, Y_{1} and Y_{2} denoted the lengths of life, in hundreds of hours, for components of types I and II, respectively, in an electronic system. The joint density of Y_{1} and Y_{2} is

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}(1 / 8) y_{1} e^{-\left(y_{1}+y_{2}\right) / 2}, & y_{1}>0, y_{2}>0 \\ 0, & \text { elsewhere }\end{cases}
$$

Are Y_{1} and Y_{2} independent?

Why?

Problem 6

5.63 Let Y_{1} and Y_{2} be independent exponentially distributed random variables, each with mean 1. Find $P\left(Y_{1}>Y_{2} \mid Y_{1}<2 Y_{2}\right)$.

