Print then work on it directly. Staple HW 7-1 and 7-2 together.
Problem 1 Prove that:
4.43 A circle of radius r has area $A=\pi r^{2}$. If a random circle has a radius that is uniformly distributed on the interval $(0,1)$, what are the mean and variance of the area of the circle?

Problem 2

4.47 The failure of a circuit board interrupts work that utilizes a computing system until a new board is delivered. The delivery time, Y, is uniformly distributed on the interval one to five days. The cost of a board failure and interruption includes the fixed $\operatorname{cost} c_{0}$ of a new board and a cost that increases proportionally to Y^{2}. If C is the cost incurred, $C=c_{0}+c_{1} Y^{2}$.
a Find the probability that the delivery time exceeds two days.
b In terms of c_{0} and c_{1}, find the expected cost associated with a single failed circuit board.

Problem 3

4.58 Use Table 4, Appendix 3, to find the following probabilities for a standard normal random variable Z:
a $P(0 \leq Z \leq 1.2)$
b $\quad P(-.9 \leq Z \leq 0)$
c $\quad P(.3 \leq Z \leq 1.56)$

Ignore the words "Use Table 4, Appendix 3." Just find the above probabilities.
4.59 If Z is a standard normal random variable, find the value z_{0} such that
a $\quad P\left(Z>z_{0}\right)=.5$.
b $\quad P\left(Z<z_{0}\right)=.8643$.
c $\quad P\left(-z_{0}<Z<z_{0}\right)=.90$.
d $P\left(-z_{0}<Z<z_{0}\right)=.99$.
4.62 If Z is a standard normal random variable, what is
a $P\left(Z^{2}<1\right)$?
b $\quad P\left(Z^{2}<3.84146\right)$?

Problem 4
4.72 One method of arriving at economic forecasts is to use a consensus approach. A forecast is obtained from each of a large number of analysts; the average of these individual forecasts is the consensus forecast. Suppose that the individual 1996 January prime interest-rate forecasts of all economic analysts are androximately normally distributed with mean 7% and standard deviation 2.6%. If a single analyst is randomly selected from among this group, what is the probability that the analyst's forecast of the prime interest rate will
a exceed 11% ?
b be less than 9% ?

Problem 5

4.74 Scores on an examination are assumed to be normally distributed with mean 78 and variance 36 .
a What is the probability that a person taking the examination scores higher than 72 ?
b Suppose that students scoring in the top 10% of this distribution are to receive an A grade. What is the minimum score a student must achieve to earn an A grade?
c What must be the cutoff point for passing the examination if the examiner wants only the top 28.1% of all scores to be passing?
d Approximately what proportion of students have scores 5 or more points above the score that cuts off the lowest 25% ?
e Applet Exercise Answer parts (a)-(d), using the applet Normal Tail Areas and Quantiles.
f If it is known that a student's score exceeds 72 , what is the probability that his or her score exceeds 84 ?

Ignore part e.

Problem 6
4.80 Assume that Y is normally distributed with mean μ and standard deviation σ. After observing a value of Y, a mathematician constructs a rectangle with length $L=|Y|$ and width $W=3|Y|$. Let A denote the area of the resulting rectangle. What is $E(A)$?

